掌桥专利:专业的专利平台
掌桥专利
首页

一种基于改进Mask-RCNN的变电站现场进度识别方法

文献发布时间:2023-06-19 19:27:02


一种基于改进Mask-RCNN的变电站现场进度识别方法

技术领域

本发明属于工程技术领域,具体涉及一种基于改进Mask-RCNN的变电站现场进度识别方法,适用于提高现场进度识别准确率、精确率、召回率的同时降低识别耗时。

背景技术

随着信息技术的飞速发展,电网基础建设工程的数字化水平已得到了显著提升。由于传统装配式变电站项目工程进度管理存在延迟严重、资源浪费、耗时较长的缺点,因此运用数字化、智能化的手段加强装配式变电站基建项目工程进度管理,提升装配式变电站进度计划管控水平已迫在眉睫。深度学习方法能够很好地提取图像中的设备特征并将其融入到模型建立过程中,相比于传统图像检测方法,其具有抗干扰能力强,图像检测精度高,误检率和不良漏检率低的优点。因此,为了能够保质保量的完成装配式变电站基建重点工程项目的建设,如何将深度学习用于对装配式变电站基建现场进度的智能化识别,以实现对项目实际进度的及时跟踪和管控,是一个值得深入研究的课题。

《红外技术》期刊2021年第43卷230页起报道了一种基于改进高斯卷积核的变电站设备红外图像检测方法,在CenterNet模型的基础上针对高斯卷积核进行了改进,提高了变电站设备的定位识别精度;《电网技术》期刊2020年第44卷1148页起报道了一种单级多帧检测器智能变电站电力设备图像目标检测算法,可以对小样本电力设备数据集进行最优检测;《电网技术》期刊2021年第45卷713页起报道了一种基于深度学习的智能变电站二次设备故障定位研究,建立了基于循环神经网络的二次设备故障定位模型,采用深度学习方法对样本集进行训练,具有处理高维故障特征集和准确检测故障的能力;《电力建设》期刊2022年第43卷66页起报道了基于深度学习和知识图谱的变电站设备故障智能诊断,采用YOLOV4算法对故障样本进行聚类,结合多模态知识图谱来实现变电站智能故障诊断;然而,上述文献主要集中于将深度学习应用于变电站的设备和故障检测,鲜有考虑利用深度学习对变电站基建项目工程现场进度进行管控的研究。

申请公布号为CN115511808A的发明提供了一种基于卷积神经网络的水下混凝土质量检测方法,先获取混凝土灌注过程中水下混凝土的图像数据集并分成训练集、验证集和测试集,然后构造并训练改进的Mask RCNN网络,实时获取钻孔灌注桩灌注过程中水下混凝土图像,图像处理后输入Mask RCNN网络进行语义分割,对分割后的图像进行二值化,最后根据二值化图像,得到混凝土骨料占比,但是该方法难以解决因装配式变电站工程建设环境复杂导致电力设备和建筑检测难度较高,识别准确率和精确率低、召回率低、识别耗时过长的问题。

发明内容

本发明的目的是克服现有技术存在的上述问题,提供一种识别准确率和精确率高的一种基于改进Mask-RCNN的变电站现场进度识别方法。

为实现以上目的,本发明提供了以下技术方案:

一种基于改进Mask-RCNN的变电站现场进度识别方法,所述识别方法依次按照以下步骤进行:

S1、采集不同时序定点区域范围的装配式变电站工程现场的设备与建筑图像,并将其均分为样本数据集、待检测数据集;

S2、先将样本数据集、待检测数据集输入改进Mask-RCNN网络模型的CNN网络中提取图像特征,然后通过改进EC模块整合图像特征得到特征图,随后通过RPN网络对特征图的ROI进行提取和过滤,再通过兴趣区域对齐层根据过滤后的ROI统一特征图的尺寸,最后在全连接层中对特征图进行二值分类、边框回归、Mask掩膜分割生成二值掩膜图像,建立二值掩膜图像的多任务损失函数

S3、通过不断调整二值分类、边框回归、Mask掩膜的参数以减小多任务损失函数

S4、将多任务损失函数

步骤S4中,所述权重矩阵

上式中,

所述图像处理目标函数

上式中,

步骤S4中,所述图像处理目标函数

上式中,

步骤S2中,所述多任务损失函数

上式中,

步骤S2中,通过RPN网络对特征图的ROI进行提取和过滤具体为:先利用非极大抑制法减少特征图中候选ROI的数量、增加有效ROI的数量,然后根据ROI特征层数计算公式对有效ROI进行过滤得到最合适尺寸的特征图,实现对ROI的提取和过滤,其中,所述ROI特征层数计算公式为:

上式中,

所述非极大抑制法为:先以利用分类器获得候选ROI中属于检测目标类别的概率值作为得分,并对所有ROI的得分进行排序,然后选中得分最高的ROI,遍历其余ROI并将与得分最高的ROI之间的交并比超过设定阈值的ROI删除,在未被删除的ROI中继续选中得分最高的ROI并重复上述过程。

步骤S2中,所述改进EC模块包括第一通道、第二通道,所述第一通道由第一卷积单元、第二卷积单元组成,所述第二通道由第二卷积单元组成,输入的图像特征分别进入第一通道中的第一卷积单元、第二通道中的第二卷积单元,所述第一通道中的第一卷积单元的输出结果进入第一通道中的第二卷积单元,随后对第一通道中的第二卷积单元、第二通道中的第二卷积单元的输出结果通过加权求和进行特征连接,最后由输出层输出整合后的图像特征。

所述第一卷积单元、第二卷积单元后均设置有对卷积结果进行归一化处理的群组自适配归一化层GSN,所述群组自适配归一化层GSN由批量归一化层BN、实例归一化层IN、层归一化层GN组成,群组自适配归一化层GSN的输出结果根据以下公式计算得到:

;/>

上式中,

所述

上式中,

所述第一卷积单元、第二卷积单元分别使用Leaky Relu激活函数、Linear激活函数。

所述步骤S1还包括对样本数据集、待检测数据集进行预处理,所述预处理具体为依次进行灰度化、归一化处理、图像滤波处理。

与现有技术相比,本发明的有益效果为:

1、本发明一种基于改进Mask-RCNN的变电站现场进度识别方法,将采集的装配式变电站电力设备和建筑图像输入到改进Mask-RCNN中,先通过CNN网络中提取图像特征,然后通过改进EC模块整合图像特征得到特征图,再通过RPN网络过滤ROI,随后采用兴趣区域对齐层统一特征图尺寸,再在全连接层中进行二值分类、边框回归、Mask掩膜生成二值掩膜图像并建立二值掩膜图像的多任务损失函数,然后通过不断调整对应参数以减小多任务损失函数的值,直至得到多任务损失函数的全局最优解,将多任务损失函数的全局最优解、计算得到的权重矩阵代入到变电站工程现场的设备与建筑图像处理目标函数中,多次迭代改进Mask-RCNN网络模型参数,直至得到图像处理目标函数的最优解,最后对图像处理目标函数的最优解进行处理分析即可得到装配式变电站基建项目工程现场进度识别的最终结果;该方法设计多任务损失函数求其全局最优解的目的是为了实现像素级的图像目标分割,当多任务损失函数的值为全局最优解时样本数据集的检测效果达到最佳,考虑相似度的问题,该方法将权重融合相似度与图像特征相互结合,计算出权重矩阵,最终利用权重矩阵、多任务损失函数的全局最优解求得图像处理目标函数的最优解,提高了识别结果的准确率和精准率。因此,本发明能提高识别结果的准确率和精准率,图像检测效果好。

2、本发明一种基于改进Mask-RCNN的变电站现场进度识别方法中,改进EC模块包括第一通道、第二通道,将图像特征分别输入第一通道、第二通道中,再对第一通道、第二通道的输出结果通过加权求进行特征连接,最后由输出层输出整合后的图像特征,第一通道由第一卷积单元、第二卷积单元组成,第二通道由第二卷积单元组成,第一卷积单元、第二卷积单元后均设置有对卷积结果进行归一化处理的群组自适配归一化层GSN,群组自适配归一化层GSN由批量归一化层BN、实例归一化层IN、层归一化层GN组成;该设计中群组自适配归一化层GSN不仅增强了网络特征信息聚合的适应性,图像信息鲁棒性好,提升了目标检测任务精度,而且计算复杂度低,简化了特征处理过程的计算冗余,最终降低识别耗时的同时提高召回率。因此,本发明通过改进EC模块提高召回率的同时降低了识别耗时。

附图说明

图1为本发明的流程图。

图2为本发明中改进EC模块的结构示意图。

具体实施方式

下面结合说明书附图和具体实施方式对本发明作进一步的说明。

参见图1、图2,一种基于改进Mask-RCNN的变电站现场进度识别方法,具体按照以下步骤进行:

S1、采集不同时序定点区域范围的装配式变电站工程现场的设备与建筑图像,并将其均分为样本数据集、待检测数据集;

S2、将经预处理后的样本数据集、待检测数据集输入改进Mask-RCNN网络模型中利用CNN网络提取图像特征,其中,所述预处理具体为依次进行灰度化、归一化处理、图像滤波处理;

S3、利用改进EC模块整合提取的图像特征得到特征图,所述改进EC模块包括第一通道、第二通道、输出层,所述第一通道由一个第一卷积单元、一个第二卷积单元组成,所述第二通道由一个第二卷积单元组成,提取的图像特征分别进入第一通道中的第一卷积单元、第二通道中的第二卷积单元,所述第一通道中的第一卷积单元的输出结果进入第一通道中的第二卷积单元,对第一通道中的第二卷积单元、第二通道中的第二卷积单元的输出结果通过加权求和进行特征连接,最后由输出层输出整合后的图像特征图,所述第一卷积单元、第二卷积单元分别使用Leaky Relu激活函数、Linear激活函数,第一卷积单元、第二卷积单元后均设置有对卷积结果进行归一化处理的群组自适配归一化层GSN,所述群组自适配归一化层GSN由批量归一化层BN、实例归一化层IN、层归一化层GN组成,群组自适配归一化层GSN的计算公式如下:

上式中,

上式中,

S4、在RPN网络中先利用非极大抑制法减少图像特征图中候选ROI的数量、增加有效ROI的数量,然后根据ROI特征层数计算公式对有效ROI进行过滤得到最合适尺寸的特征图,其中,所述非极大抑制法为:先以利用分类器获得候选ROI中属于检测目标类别的概率值作为得分,然后对所有ROI的得分进行排序,再选中得分最高的ROI,遍历其余ROI并将与得分最高的ROI之间的交并比超过设定阈值的ROI删除,在剩余ROI中继续选中得分最高的ROI后重复排序、删除步骤直至剩余ROI与得分最高的ROI之间的交并比不超过设定阈值;

所述ROI特征层数计算公式为:

上式中,

S5、先利用兴趣区域对齐层统一特征图的尺寸,然后在全连接层中对特征图进行二值分类、边框回归、Mask掩膜分割生成二值掩膜图像,建立二值掩膜图像的多任务损失函数

上式中,

S6、通过不断调整二值分类、边框回归、Mask掩膜的参数以减小多任务损失函数

S7、将多任务损失函数

上式中,

所述图像处理目标函数

上式中,

步骤S4中,所述图像处理目标函数

上式中,

性能测试:

分别利用本发明所述识别方法(测试例)、基于Faster-RCNN的装配式变电站现场进度识别方法(对比例1)、基于Mask-RCNN的装配式变电站现场进度识别方法(对比例2)对某地装配式变电站基建项目工程现场进度进行识别,得到识别结果后采用平均准确率、平均精确率、平均召回率及平均耗时这4个评价指标定量评价3种识别方法的综合性能,所述平均准确率根据以下公式计算得到:

所述平均精确率根据以下公式计算得到:

;/>

所述平均召回率根据以下公式计算得到:

所述平均耗时根据以下公式计算得到:

上式中,TP为正样本被正确识别的数量,FP为误报的负样本数量,TN为负样本被正确识别的数量,FN为漏报的正样本数量,正样本指与真值对应的目标类别的样本,负样本指与真值不对应的其他所有目标类别的样本;

上述三种识别方法综合性能对比如表1所示:

表1 三种识别方法综合性能对比

由表1可知,测试例在平均准确率上相比对比例1提高了6.33%,相比对比例2提高了5.36%,在平均精确率上相比对比例1提高了11.01%,相比对比例2提高了3.29%,在平均召回率上相比对比例1提高了10.58%,相比对比例2提高了3.89%,在平均耗时上相比对比例1减少了54.90%,相比对比例2减少了51.11%,由此可见,本发明所述识别方法相比另外两种识别方法的图像识别准确率、精确率和召回率更高,同时识别耗时更短。

技术分类

06120115918748