掌桥专利:专业的专利平台
掌桥专利
首页

一种增材制造材料寿命预测方法

文献发布时间:2023-06-19 19:30:30


一种增材制造材料寿命预测方法

技术领域

本发明属于航空发动机结构安全领域,具体涉及一种激光增材制造镍基高温合金材料寿命预测方法。

背景技术

镍基高温合金作为典型的沉积强化型变形高温合金,以其特有的合金成分设计,具有优异的高温机械强度、抗辐射、抗氧化、抗蠕变及抗疲劳的综合性能,在当前工业领域中被广泛应用。其良好的加工性能、焊接性能及稳定性能使之能够加工各种形状复杂的零部件,因而广泛应用于制造航空航天、核能及石油化工领域产品和设备的高温工作部件,如涡轮叶片、涡轮盘及燃烧室。

近年来,航空工业发展迅速,超高航速、超长航时、超远航程新一代飞机航空发动机的复杂程度及精度要求越来越高,为保证发动机的可靠性,国内外研发了一系列高性能航空发动机关键制造技术。增材制造技术结合计算机辅助设计、材料成型加工等技术,运用烧结、熔融等方式,以其数字化、网络化、个性化及定制化等特点,成为新型智能之技术的代表,其与拓扑优化方法的结合,对实现航空发动机复杂零部件制造整体化、轻量化乃至发动机整体性能提升具有重要意义。

在服役过程中,航空发动机多数转子部件如涡轮叶片、涡轮盘等都处于高温、高压以及反复起停的交变应力的工作环境中,因而90%以上零部件都是疲劳失效。而金属增材制造技术由于其技术特性(金属粉末熔融凝固),难以避免存在尺寸分散且位置不确定的气孔、夹杂及未熔融导致的裂纹等缺陷,这些内部的缺陷会直接影响服役构件的疲劳寿命。此外,由于航空发动机多数形状复杂的零部件存在圆孔、开口、凸台以及榫槽等应力集中部位,在构件服役过程中其疲劳寿命不仅受到内部缺陷的影响,同时也受应力集中部位的缺口效应影响。

因此要准确预测增材制造材料的服役寿命,需要考虑内部缺陷和外部应力集中的耦合效应。目前主要有两种方式:一是通过大量服役构件疲劳试验获得疲劳寿命数据,但增材制造构件内部缺陷会导致疲劳寿命数据的分散性,且试验条件难以精确控制,对于航空发动机关键零部件,材料和加工成本太高,试验周期过长。另一种就是建立相关的寿命预测模型结合少量构件疲劳试验,避免过高的试验成本和过长的试验周期。当前针对含内部微裂纹与缺陷的材料疲劳寿命研究,主要基于Murakami在其著作Metal Fatigue:Effects ofSmall Defects and Nonmetallic Inclusions中提出的含微裂纹材料的疲劳极限预测模型与疲劳裂纹扩展寿命模型。

然而,现有的增材制造材料的寿命预测方法并未考虑增材制造加工产品的内部缺陷对产品疲劳寿命的影响,以及外部应力集中部位的缺口效应与内部缺陷对疲劳裂纹萌生与扩展得耦合效应,限制了增材制造技术在航空发动机领域更全面、深入地应用。

发明内容

为解决现有问题,本发明提出了一种增材制造材料寿命预测方法,用于解决现有技术存在的材料因内部缺陷造成疲劳寿命分散预测困难,以及因未考虑外部应力集中结构与内部缺陷的耦合作用所造成的寿命预测不准确的问题。

为实现以上目的,本发明提供了一种增材制造材料寿命预测方法,其特征在于,包括如下步骤:

步骤S1:利用增材制造技术制造材料试样,获取所述材料试样的硬度、弹性模量和极限抗拉强度;

步骤S2:基于所述极限抗拉强度对所述材料试样进行疲劳试验,获得所述材料试样的缺陷初始尺寸;

步骤S3:通过有限元分析计算与所述缺陷初始尺寸对应的初始应力强度因子,以及与所述初始应力强度因子对应的当量初始缺陷尺寸;将当量初始裂纹尺寸带入Murakami疲劳极限预测模型,计算得到不同初始缺陷尺寸下材料试样对应的应力强度因子阈值;

基于所述弹性模量和所述缺陷初始尺寸,利用限元计算软件计算材料试样的初始缺陷尺寸对应的应力强度因子,以及裂纹由缺陷初始尺寸扩展过程中所述应力强度因子与裂纹尺寸的关系曲线;

计算所述材料试样由所述缺陷初始尺寸扩展至最终尺寸过程中的有限个不同的裂纹尺寸所对应的应力强度因子,并建立弹性力学应力强度因子与二维裂纹尺寸公式:

式中,K代表应力强度因子,

将有限元计算得到的所述初始缺陷尺寸对应的应力强度因子带入所述弹性力学应力强度因子与二维裂纹尺寸公式,得到当量初始缺陷尺寸;

步骤S4:在步骤S3计算结果的基础上,基于对Murakami含缺陷的疲劳裂纹扩展寿命模型的改进,构建疲劳寿命预测模型;

步骤S5:基于所述疲劳寿命预测模型对增材制造的应力集中缺口件的疲劳寿命进行预测。

进一步地,所述步骤S1中获取所述材料试样的硬度、高温弹性模量和极限抗拉强度具体包括:

对所述材料试样进行硬度测试与高温静态拉伸实验,获得其硬度的平均值,并通过应力应变曲线获得材料高温弹性模量和极限抗拉强度。

进一步地,所述步骤S2中基于所述极限抗拉强度对所述材料试样进行疲劳试验,获得所述材料试样的缺陷初始尺寸具体包括:

在极限抗拉强度应力水平下,遵循降力法原则对疲劳样本试样进行高温疲劳试验;

利用工业CT技术对材料试样进行分层扫描,获得材料试样缺陷尺寸的均值与方差,同时分析试样材料断口形貌,用与轴向载荷垂直的平面上缺陷投影面积的平方根统一量化材料试样的缺陷初始尺寸。

进一步地,所述步骤S3中的Murakami疲劳极限预测模型公式具体为:

式中,ΔK

进一步地,所述步骤S4中的基于对Murakami含缺陷的疲劳裂纹扩展寿命模型的改进,构建疲劳寿命预测模型具体为:

基于对Murakami含缺陷的疲劳裂纹扩展寿命模型的改进,以应力强度因子变程与应力强度因子阈值的比值ΔK/ΔK

式中

其中Δσ为所加载的应力变程,

其中

进一步地,所述步骤S5中的基于所述疲劳寿命预测模型对增材制造的应力集中缺口件的疲劳寿命进行预测具体为:

基于CT扫描技术获得增材制造应力集中缺口件的内部缺陷尺寸分布与均值,重复所述步骤S3,计算应力集中缺口件的当量初始缺陷和应力强度因子阈值,通过有限元软件计算应力集中缺口件初始缺陷处的应力强度因子,以及裂纹由初始尺寸扩展过程中,应力强度因子与裂纹尺寸的关系曲线。

将外部应力集中与内部缺陷因素耦合,以缺陷处的应力强度因子统一量化内部缺陷因素与应力集中的共同作用;

重复所述步骤S4,计算不同加载应力下增材制造应力集中缺口试件的高温疲劳寿命。

进一步地,所述增材制造材料为GH4169镍基高温合金。

进一步地,所述增材制造技术为SLM增材制造技术。

进一步地,所述应力集中缺口件为航空发动机关键零部件。

本发明的有益效果如下:

1.提出了一种基于Murakami应力强度因子阈值预测公式,考虑到了外部结构应力集中效应与内部增材制造缺陷对构件疲劳寿命的耦合作用,通过有限元软件计算的应力集中缺口试件内部缺陷处的应力强度因子,统一量化了外部应力集中与内部缺陷对疲劳裂纹扩展的共同影响。

2.以实验样件疲劳试验数据与断口信息为样本数据构建的应力强度因子变程比值为裂纹扩展驱动力的改进Murakami疲劳裂纹扩展寿命模型;基于构建的寿命模型,结合有限元软件计算,可以实现对增材制造缺口试件疲劳寿命预测,有利于对具有圆孔、开口、凸台以及榫槽等具有复杂形状的零部件进行寿命评估。

实际工程应用中,本发明方法可以只基于少量疲劳试验与较短工作周期就可较为准确地预测航空发动机具有应力集中效应的具体结构件的疲劳寿命。

附图说明

图1是增材制造光滑试件尺寸加工尺寸示意图

图2是增材制造应力集中缺口试验件加工尺寸示意图

图3是增材制造光滑试件在400℃下的S-N曲线图

图4是增材制造光滑试件在SEM电镜下不同断口形貌图

图5是FRANC3D软件缺陷处应力强度因子计算结果图

图6是应力强度因子与裂纹尺寸的关系样条插值结果图

图7是增材制造应力集中缺口试验件S-N数据图

图8是增材制造应力集中缺口试验件寿命预测结果

具体实施方式

为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。

本发明的实施例提供了一种基于少量材料疲劳试验样本数据,结合有限元分析方法与Murakami提出的含有缺陷材料的疲劳极限预测公式与疲劳裂纹扩展模型,对增材制造GH4169构件内部缺陷与外部应力集中联合作用下的疲劳裂纹扩展的描述与寿命预测方法。

下面结合附图及具体实施例对本发明作进一步详细说明:

步骤S1:首先利用SLM增材制造技术,采取致密度在99%的GH4169生产工艺加工若干78*16*16(mm)GH4169方块,如附图1所示,加工成光滑圆柱试件与缺口试件,进行980℃固溶+双时效热处理后精抛光,对材料进行维氏硬度测试与400℃高温拉伸试验,获取其硬度平均值HV:440kgf/mm

步骤S2:根据第一步UTS结果,在材料抗拉强度下,采用降力法在应力峰值为1200MPa、1100MPa、900MPa、800MPa、700MPa、600MPa各应力水平下分别重复进行三次应力比R=0.05的疲劳试验,获得该增材制造GH4169光滑试件在400℃下S-N曲线,如附图3所示。并在SEM电镜下进行断口分析,测量断口缺陷初始尺寸

步骤S3:基于上述弹性模量E、缺陷初始尺寸

应力强度因子与二维裂纹尺寸关系式:

式中,

将有限元计算的

式中,HV为材料维氏硬度取440kgf/mm

α为与应力比相关的材料参数,其通过疲劳试验数据计算。具体过程方法是:认定疲劳试验中寿命达到10

各疲劳试样的缺陷初始尺寸

表1疲劳试验样本试样数据计算汇总。

步骤S4:在上述

式中

其中Δσ为所加载的应力变程,

当裂纹由当量初始缺陷尺寸

式中,

结合n个疲劳样本试样的预测疲劳寿命N

利用优化工具对目标函数进行全局最小化优化,确定参数C

步骤5:基于构建的模型预测增材制造的GH4169应力集中缺口件疲劳寿命,考虑CT扫描的周期较长,成本也较高,本实例采取先进行应力集中缺口件试件疲劳试验,分析断口获得缺陷信息。再基于试验数据结果验证上述构建GH4169应力集中缺口件疲劳寿命模型。重复上述第二、三步内容,获得同温度下的S-N曲线,如附图7所示;通过对疲劳试样断口分析,获得原始缺陷尺寸值

表2应力集中缺口试验件疲劳寿命预测结果

本发明预测的增材制造GH4169应力集中缺口试验件疲劳寿命如附图8所示,为了验证本发明预测方法的计算精度,以实际400℃下增材制造GH4169缺口件疲劳试验寿命为标准。从附图8可知该发明方法在高应力水平下有限疲劳寿命区间与低应力的高周疲劳寿命区间预测结果和试验数据具有一致性。

结果表明本发明方法在保证疲劳寿命预测精度下,能够基于较低成本的疲劳试验与较短的试验周期很好处理增材制造材料因缺陷造成疲劳寿命分散性问题和航空发动机构件疲劳寿命受外部应力集中效应与内部打印缺陷耦合作用的问题,从而进一步推动增材制造技术在航空发动机制造领域的深入应用。

尽管参考附图详尽地公开了本发明的具体实施方式,但应理解的是,这些描述仅仅是示例性的,并非用来限制本发明的应用。对于本领域技术人员来说,在不脱离本发明保护范围和精神的前提下,还可以作出若干的变型、改型的等效方案,这方案也应视为本发明的保护范围。

技术分类

06120115929096