掌桥专利:专业的专利平台
掌桥专利
首页

一种GaN光传感生物传感芯片及其制备方法和应用

文献发布时间:2023-06-19 09:32:16


一种GaN光传感生物传感芯片及其制备方法和应用

技术领域

本发明涉及半导体领域,具体涉及一种GaN光传感生物传感芯片及其制备方法和应用。

背景技术

与传统的白炽灯相比,发光二极管(LED)具有出色的特性,例如长期稳定性,高效率和强亮度。凭借这些优势,不仅针对照明应用,在消费电子领域也应用广泛,例如LCD背光单元(BLU)及大尺寸室内外RGB直接显示模组。此外,由于LED可以发出不同波长的光,其光效高、体积小,尤其适合医疗应用,包括人体成分检测器(例如,血红蛋白,人体脂肪,前列腺特异性抗原(PSA) 和胆固醇)和治疗设备(例如消毒,皮肤稳态和手术灯)。尤其是,可以柔性可弯的柔性LED吸引了研究人员的关注,可用于生物传感器和微型手术机器人领域中,用于无出血诊断和治疗。

Kim等人介绍了首批基于III–V材料的柔性LED,使用微结构GaAs (ms-GaAs)。将他们的ms-GaAs LED印刷在聚对苯二甲酸乙二醇酯(PET) 基板上,以根据透射光强度的变化检测葡萄糖浓度。但是,仅发射红外和红光的基于GaAs的LED由于波长范围狭窄,最终限制了可能的应用。最近在2011 年,Kim等人通过微结构转移工艺建立了柔性GaN ILED。但是该柔性GaN ILED 的防水性能差,弯曲后发光性能下降。

发明内容

本发明的目的在于克服现有技术存在的不足之处而提供一种GaN光传感生物传感芯片及其制备方法和应用。

为实现上述目的,本发明采取的技术方案为:一种GaN光传感生物传感芯片,包括LED阵列和PD阵列,所述LED阵列包括若干个串联的微型柱状LED 结构,所述PD阵列包括若干个串联的微型柱状LED结构,所述LED阵列外接电源;所述LED阵列和PD阵列的各个微型柱状LED结构按顺序依次包括紫外光敏树脂层、GaN LED外延层和液晶聚合物(LCP)基板;所述GaN LED外延层按顺序依次包括p-GaN层、In

上述的GaN光传感生物传感芯片首次以液晶聚合物基板为基板,具有优异的防水性能,具有生物相容性,具有优异的机械性能和光学性能,光学稳定性优异,可以应用于化学、生物传感器领域。上述的GaN光传感生物传感芯片将相同结构的微型柱状LED结构经过分别串联后,形成LED阵列和PD阵列,LED 阵列外接电源发射光谱,PD阵列在LED阵列的光谱辐射下产生光电信号,可以应用与生化传感、生化检测,而且防水性能和、生物相容性优异。

优选地,所述LED阵列和PD阵列的各个微型柱状LED结构为正六棱柱状 LED结构,所述正六棱柱状LED结构的上底面与所述液晶聚合物基板所在平面平行。

发明人通过研究发现,LED阵列和PD阵列的各个微型柱状LED结构为正六棱柱状LED结构时,PD阵列对光信号变化更敏感,具有更好的灵敏度。

优选地,所述LED阵列呈矩阵列分布,所述PD阵列呈矩阵列分布,以所述液晶聚合物基板所在平面构建平面直角坐标系,则LED阵列的微型柱状LED 结构所在的坐标为(2a,b),所述LED阵列的微型柱状LED结构所在的坐标为(2a+1,b),其中,a为按数轴顺序排列的整数,b为按数轴顺序排列的整数。

上述的GaN光传感生物传感芯片将LED阵列和PD阵列如上述排列时,PD 阵列能够更好的接收LED阵列的辐射信号,具有更优异的灵敏度。

优选地,所述LED阵列中的微型柱状LED结构与所述PD阵列中的微型柱状LED结构的数量比例为1:1。

优选地,所述PD阵列外接光电流检测设备。

优选地,所述In

上述的GaN光传感生物传感芯片当0.50≤x≤0.52时,可以稳定的发出 600~620nm之间的光,对生物体例如细胞、蛋白质等有较强的穿透作用和反应。

优选地,所述n欧姆接触垫为Au层,所述p欧姆接触垫为Cr层。

更优选地,所述Au层的厚度为35~45nm,所述Cr层的厚度为4~6nm。

优选地,所述紫外光敏树脂层的材料为紫外光敏感的环氧树脂。

更优选地,所述紫外光敏树脂层的材料为紫外线敏感的环氧树脂(SU8-5)。

本发明还提供一种生物传感器,所述生物传感器包括PSA反应板和上述任一所述的GaN光传感生物传感芯片。

本发明还提供上述所述生物传感器检测前列腺特异性抗原(PSA)的定量方法,所述方法包括以下步骤:(1)将已知浓度的单克隆抗体溶液涂覆在PSA反应板的微孔中,用酪蛋白作为阻滞剂封闭,将待测的前列腺特异性抗原样品与单克隆抗体结合,将胶体金标记的第二抗体与前列腺特异性抗原混合,所述胶体金标记的第二抗体为多克隆抗体(pab)–PSA–Au纳米颗粒(NP)偶联物 (pab–PSA–Au NP),将胶体金标记的第二抗体与前列腺特异性抗原的混合物与Ag混合染色;(2)将上述任一所述的GaN光传感生物传感芯片的LED阵列接通电源发光辐射步骤(1)中的PSA反应板;(3)将步骤(2)所述GaN 光传感生物传感芯片的PD阵列电连接电流检测设备获得光电流信号;(4)将步骤(3)获得的信号进行外标法定量。

上述任一所述的GaN光传感生物传感芯片应用于生物传感器,并且用于检测抗原浓度时,具有很好的定量效果,检出限低,灵敏度高。

本发明还提供上述任一所述的GaN光传感生物传感芯片的制备方法,所述方法包括以下步骤:

(1)在Si衬底生长GaN LED外延层,所述GaN LED外延层包括p-GaN 层、In

(2)进行刻蚀去除Si衬底并将GaN LED外延层与母基板分离;

(3)将GaN LED外延层转移到PDMS印模上,并通过聚氨酯将GaN LED 外延层固定在LCP基板上,并去除PDMS印模,得到GaN LED/PU/LCP基板;

(4)将步骤(3)所得到的GaN LED/PU/LCP基板,用光刻定义紧密镶嵌的微六边形图案,然后通过反应离子刻蚀方法刻蚀形成微型柱,进一步通过等离子体耦合等离子体刻蚀方法刻蚀GaN区域向下蚀刻至衬底;

(5)刻蚀GaN LED外延层至部分暴露n-GaN层,在暴露的n-GaN层上沉积Au层,所述Au层作为n欧姆接触垫,在p-GaN层上沉积Cr层,所述Cr层作为p欧姆接触垫;

(6)在步骤(5)得到的所述GaN LED/PU/LCP基板的GaN LED外延层上涂覆紫外光敏树脂层,利用光刻技术处理紫外光敏树脂层暴露所述n欧姆接触垫和p欧姆接触垫;

(7)对步骤(6)得到的材料进行金属化工艺,金属化工艺包括RF溅射沉积180-200nm Au层和20-40nm Cr层的电极,并连线,得到所述GaN光传感生物传感芯片。

为了将GaN LED结构转移并固定在液晶聚合物基板上,上述方法首先将分离后的GaN LED结构负载在聚二甲基硅氧烷亚膜上,然后通过在GaN LED结构和液晶聚合物基板上之间涂覆聚氨酯(PU)作为光学粘合剂,通过紫外光将聚氨酯硬化固定后,GaN LED结构就结合在了LCP基板上得到的GaN LED/PU /LCP基板,再通过光刻及刻蚀隔离LED与PD,然后涂覆紫外光敏树脂层并去除部分紫外光敏树脂层暴露n欧姆接触垫和p欧姆接触垫,得到上述所述GaN 光传感生物传感芯片。上述的GaN光传感生物传感芯片的制备方法工艺简单,大部分步骤为半导体工艺,可以形成工业流水线。

优选地,所述步骤(2)中,通过质量浓度18%~25%的氢氧化钾溶液在 70~80℃下进行各向异性湿法蚀刻去除Si衬底。

优选地,所述步骤(5)中,沉积Au/Cr层后,对Au层和Cr层进行快速退火。

更优选地,所述步骤(5)中,对Au层和Cr层在氮气氛围下与500℃进行快速退火1分钟。

优选地,所述步骤(7)中,所述金属化工艺包括Au/Cr沉积和电极的形成。

本发明的有益效果在于:本发明提供了一种GaN光传感生物传感芯片及其应用,本发明的GaN光传感生物传感芯片首次以液晶聚合物基板为基板,具有优异的防水性能,具有生物相容性,具有优异的机械性能和光学性能,光学稳定性优异,可以应用于化学、生物传感器领域。上述的GaN光传感生物传感芯片将相同结构的微型柱状LED结构经过分别串联后,形成LED阵列和PD阵列, LED阵列外接电源发射光谱,PD阵列在LED阵列的光谱辐射下产生光电信号,可以应用与生化传感、生化检测,而且防水性能和、生物相容性优异。

附图说明

图1为本发明实施例的GaN光传感生物传感芯片的结构示意图。(a)实施例的GaN光传感生物传感芯片的单个微型柱状LED结构示意图,(b)实施例的GaN光传感生物传感芯片的LED阵列和PD阵列的分布和连接示意图。

图2为本发明实施例的实施例的GaN光传感生物传感芯片和对照例的EL 光谱图。

图3为本发明实施例的GaN光传感生物传感芯片的抗弯曲性能结果示意图。(a)实施例的GaN光传感生物传感芯片的同弯曲半径的EL光谱,(b) 实施例的GaN光传感生物传感芯片和对照例的I–V曲线图。

图4为本发明实施例的GaN光传感生物传感芯片的防水性能结果示意图。不同浸泡时间后的GaN光传感生物传感芯片的IV曲线图。

图5为本发明实施例的GaN光传感生物传感芯片对不同浓度PAS溶液的测试结果。(a)PAS反应芯片中PSA感应机制的示意图。(b)不同浓度PAS溶液对应的PD光电流变化图。

具体实施方式

为更好的说明本发明的目的、技术方案和优点,下面将结合具体实施例对本发明作进一步说明。

本发明提供一种GaN光传感生物传感芯片,包括LED阵列和PD阵列,所述LED阵列包括若干个串联的微型柱状LED结构,所述PD阵列包括若干个串联的微型柱状LED结构,所述LED阵列外接电源;所述LED阵列和PD阵列的各个微型柱状LED结构按顺序依次包括紫外光敏树脂层、GaN LED外延层和液晶聚合物(LCP)基板;所述GaN LED外延层按顺序依次包括p-GaN层、In

所述LED阵列和PD阵列的各个微型柱状LED结构为正六棱柱状LED结构,所述正六棱柱状LED结构的上底面与所述液晶聚合物基板所在平面平行。

所述LED阵列呈矩阵列分布,所述PD阵列呈矩阵列分布,以所述液晶聚合物基板所在平面构建平面直角坐标系,则LED阵列的微型柱状LED结构所在的坐标为(2a,b),所述LED阵列的微型柱状LED结构所在的坐标为(2a+1, b),其中,a为按数轴顺序排列的整数,b为按数轴顺序排列的整数;

所述LED阵列中的微型柱状LED结构与所述PD阵列中的微型柱状LED 结构的数量比例为1:1;

所述In

实施例1

作为本发明实施例的一种GaN光传感生物传感芯片,包括LED阵列和PD 阵列,所述LED阵列包括10×10个串联的微型柱状LED结构,所述PD阵列包括10×10个串联的微型柱状LED结构,所述LED阵列外接电源;所述LED阵列和PD阵列的各个微型柱状LED结构按顺序依次包括紫外光敏树脂层、GaN LED外延层和液晶聚合物(LCP)基板;所述GaN LED外延层按顺序依次包括 p-GaN层、In

所述LED阵列和PD阵列的各个微型柱状LED结构为正六棱柱状LED结构,所述正六棱柱状LED结构的上底面与所述液晶聚合物基板所在平面平行。

所述LED阵列呈矩阵列分布,所述PD阵列呈矩阵列分布,以所述液晶聚合物基板所在平面构建平面直角坐标系,则LED阵列的微型柱状LED结构所在的坐标为(2a,b),所述LED阵列的微型柱状LED结构所在的坐标为(2a+1, b),其中,a为按数轴顺序排列的整数,b为按数轴顺序排列的整数;

所述LED阵列中的微型柱状LED结构与所述PD阵列中的微型柱状LED 结构的数量比例为1:1;

所述In

所述n欧姆接触垫为Au层,所述Au层的厚度为40±2nm,所述p欧姆接触垫为Cr层,所述Cr层的厚度为4~6nm。

作为本实施例一种GaN光传感生物传感芯片的制备方法,所述方法包括以下步骤:

(1)在Si衬底生长GaN LED外延层,所述GaN LED外延层包括p-GaN 层、In

(2)进行刻蚀去除Si衬底并将GaN LED外延层与母基板分离;通过质量浓度18%~25%的氢氧化钾溶液在70~80℃下进行各向异性湿法蚀刻去除Si衬底;

(3)将GaN LED外延层转移到PDMS印模上,并通过聚氨酯将GaN LED 外延层固定在LCP基板上,并去除PDMS印模,得到GaN LED/PU/LCP基板;

(4)将步骤(3)所得到的GaN LED/PU/LCP基板,用光刻定义紧密镶嵌的微六边形图案,然后通过反应离子刻蚀方法刻蚀形成微型柱,进一步通过等离子体耦合等离子体刻蚀方法刻蚀GaN区域向下蚀刻至衬底;

(5)刻蚀GaN LED外延层至部分暴露n-GaN层,在暴露的n-GaN层上沉积Au层,所述Au层作为n欧姆接触垫,在p-GaN层上沉积Cr层,所述Cr层作为p欧姆接触垫;,沉积Au层和Cr层后,对Au层和Cr层在氮气氛围下与 500℃进行快速退火1分钟;

(6)在步骤(5)得到的所述GaN LED/PU/LCP基板的GaN LED外延层上涂覆紫外光敏树脂层,利用光刻技术处理紫外光敏树脂层暴露所述n欧姆接触垫和p欧姆接触垫;

(7)对步骤(6)得到的材料进行金属化工艺,金属化工艺包括RF溅射沉积180-200nm Au层和20-40nm Cr层的电极,并连线,得到所述GaN光传感生物传感芯片。

实施例2

作为本发明实施例的一种GaN光传感生物传感芯片,包括一个的微型柱状 LED结构,所述PD阵列包括若干个串联的微型柱状LED结构,所述LED阵列外接电源;所述LED阵列和PD阵列的各个微型柱状LED结构按顺序依次包括紫外光敏树脂层、GaN LED外延层和液晶聚合物(LCP)基板;所述GaN LED 外延层按顺序依次包括p-GaN层、In

所述LED阵列和PD阵列的各个微型柱状LED结构为正六棱柱状LED结构,所述正六棱柱状LED结构的上底面与所述液晶聚合物基板所在平面平行。

效果例

1、图1为本发明实施例1的GaN光传感生物传感芯片的结构示意图。(a) 实施例1的GaN光传感生物传感芯片的单个微型柱状LED结构示意图,(b) 实施例1的GaN光传感生物传感芯片的LED阵列和PD阵列的分布和连接示意图。

测量实施例2的GaN光传感生物传感芯片的电致发光(EL)光谱。以Si 衬底替换实施例2中的液晶聚合物基板的GaN基LED芯片作为对照1,结果如图2所示,由图2中观察到实施例和对照组的光谱波长峰值仅存在细微差异,说明将液晶聚合物基板替换Si衬底后发光性能没有下降。

2、在不同的弯曲半径下测量实施例1的GaN基LED的电致发光(EL)光谱和I–V曲线。

结果如图3a和3b所示,由图3a和3b可知,实施例1的GaN光传感生物传感芯片在平面到弯曲半径2.1mm的电致发光(EL)光谱和I–V曲线没有出现退化。说明,实施例1的GaN光传感生物传感芯片保持了机械稳定性,具有很好的柔性效果,在弯曲时仍然保持了光学特性和电学特性。图3b还显示了对照组2的LED在平面下的I–V曲线,对照组2与实施例1的唯一区别为:Si衬底替换实施例1中的液晶聚合物基板,实施例1的导通电压在0.1mA时为5.6V,实施例1的这种低电压操作是由于GaN和金属之间的低能结势垒,这是由于在步骤(5)中,进行退火处理使得高温欧姆形成引起的。

在对实施例1的GaN光传感生物传感芯片在进行不同次数的以弯曲半径为 3.5mm的弯曲疲劳试验(BFT)后,发现实施例1的GaN光传感生物传感芯片经过2000次的弯曲循环后,电性能未发生衰减。说明实施例1的GaN光传感生物传感芯片具有很好的抗弯曲机械性能和柔性。

3、对实施例1的GaN光传感生物传感芯片进行防水性能评估。

将实施例1的GaN光传感生物传感芯片浸泡在磷酸盐缓冲液(PBS,pH 7.4) 中,浸泡特定的时间后检测浸泡后实施例1的GaN光传感生物传感芯片的I–V 曲线,结果如图4所示。

图4中的I–V曲线表明,实施例1的GaN光传感生物传感芯片在PBS中浸泡60h后,电性能也不会衰减,说明实施例1的GaN光传感生物传感芯片优异的防水性能。

4、生物传感器包括PSA反应板与实施例1的GaN光传感生物传感芯片。

首先制备PSA反应板,将1*PBS中的5mg/mL单克隆抗体(mab)–PSA 溶液(Fitzgerald)涂在聚苯乙烯96孔微量滴定板(Nunc)中2h。然后用酪蛋白作为阻滞剂封闭未反应的板。将浓度从1到10ng/ml的PSA抗原溶液 (Fitzgerald,1*PBS)添加到mab-PSA包被的PSA反应板中,引起特异性结合反应。使用夹心型免疫金测定法,在微量滴定板上再滴加胶体金标记的第二抗体:多克隆抗体(pab)–PSA–Au纳米颗粒(NP)偶联物(pab–PSA–Au NP),从而导致pab–PSA–Au NP与固定靶标PSA抗原之间发生特异性反应。如示意图 5(a)所示。利用特异性反应后有颜色变化的金纳米颗粒(Au NP),将光反射给PD,检测PD产生的光电流。为了增加来自固定在表面上的NP的反光效果,在Au NP上进行Ag染色12分钟。随后将制得的PSA反应板放置在实施例1 得到的GaN光传感生物传感芯片上面,进行检测。

图5中(b)图的结果表明,对于不同抗体浓度的溶液,其PD光电流水平存在明显差异,对其关系的观察表明,GaN光传感生物传感芯片可以用于精确监测PAS溶液的浓度。其检出限(LOD)为1ng/mL。这些结果表明,GaN光传感生物传感芯片可用于生物传感器。

最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

相关技术
  • 一种GaN光传感生物传感芯片及其制备方法和应用
  • 一种LSPR反射式生物传感芯片及其制备方法、重复利用方法和应用
技术分类

06120112201139