掌桥专利:专业的专利平台
掌桥专利
首页

废旧聚氨酯泡沫胺解制备喷涂用聚醚多元醇的方法

文献发布时间:2024-04-18 19:53:33



技术领域

本发明涉及废旧聚氨酯泡沫回收技术领域,具体涉及一种废旧聚氨酯泡沫胺解制备喷涂用聚醚多元醇的方法。

背景技术

聚氨酯是一种应用十分广泛的有机合成材料,在化工生产过程中,改变聚醚多元醇与多元异氰酸酯的种类与数量,选择各样的生产工艺,可以得到性能各异、外表各异的聚氨酯产品。由于其良好的性能,被广泛应用于各个领域,聚氨酯材料成为近些年来发展最为迅速的合成材料之一。

但是随着聚氨酯产品应用领域的不断拓展与生产规模的扩大,在制造使用聚氨酯产品的过程中产生了大量的废弃物。处理废旧聚氨酯的常规方法是掩埋与焚烧,但这两种方法会对环境产生严重的负面影响。随着人们的环保意识逐渐增强,为保护赖以生存的生态环境,实现资源的充分回收再利用,对废旧聚氨酯产品进行回收再利用拥有了较大的经济效益与社会效益。常规的聚氨酯化学降解法有水解法、醇解法、碱解法等多种方法,但是水解、碱解法所需的工艺复杂,醇解法降解周期长,所得降解产物,难以提纯分离,再利用率低。其中醇解法反应机理如下所示:

发明内容

本发明要解决的技术问题是:克服现有技术的不足,提供一种废旧聚氨酯泡沫胺解制备喷涂用聚醚多元醇的方法,对废旧聚氨酯泡沫进行胺解,利用胺解产物复配起始剂在催化剂的作用下与环氧单体进行反应,制备出用于喷涂用的聚醚多元醇,在回收利用废旧聚氨酯泡沫以减少环境压力的同时,采用本发明制备的聚醚多元醇作为原料所制得的聚氨酯泡沫具有较低的导热系数。

本发明的技术方案为:

废旧聚氨酯泡沫胺解制备喷涂用聚醚多元醇的方法,以烷基胺、小分子醇和碱金属催化剂作为胺解剂,与废旧聚氨酯泡沫进行降解反应,将所得的产物与起始剂复配,在碱金属催化剂的作用下与环氧单体进行反应,得到喷涂用聚醚多元醇。

优选地,所述起始剂为蔗糖或70wt.%山梨醇溶液;小分子醇为二乙二醇、丙二醇和乙二醇中的一种或多种。

优选地,所述烷基胺为乙醇胺、二异丙醇胺、二甲胺和三甲胺中的一种或几种。

优选地,所述碱金属催化剂为固体KOH,碱金属催化剂的加入量为制备聚醚多元醇时投入原料(包括废旧聚氨酯泡沫、胺解剂、起始剂、碱金属催化剂、环氧单体、磷酸、水和吸附剂)总质量的0.15%-0.25%。

优选地,所述环氧单体为环氧丙烷。

优选地,具体包括以下步骤:

S1去除废旧聚氨酯泡沫表面的附着物,再将其机械粉碎成小块;

S2将烷基胺、小分子醇与碱金属催化剂调配成胺解剂;

S3将调配的胺解剂与机械粉碎后的废旧聚氨酯泡沫小块投入反应釜中,氮气置换后进行降解反应;

S4反应后降到室温,开釜,加入起始剂,升温至100-110℃,进行抽真空脱水操作,控制釜内物料水分低于0.1%;

S5控制反应釜釜内温度80-110℃,连续滴加环氧单体进行反应,进料速度控制釜内压力为0.1-0.4MPa,环氧单体全部滴加完毕,熟化2-3h;

S6控制釜内温度为100-140℃,抽真空控制釜内压力为-0.08MPa~-0.09MPa,脱除未反应的环氧单体;

S7降低反应釜内温度至75-85℃,加入磷酸和水,搅拌后加入吸附剂,升温至100-110℃,抽真空脱水控制釜内压力为-0.08MPa~-0.09MPa,计时3-5h,检测水分低于0.1%,放料抽滤,得到喷涂用聚醚多元醇。磷酸与前面加入的碱金属催化剂进行反应生成磷酸氢盐或者磷酸二氢盐,后加入吸附剂,是为了在脱水的条件下与磷酸氢盐或者磷酸二氢盐形成磷酸盐晶体,然后过滤脱除晶体,以达到去除金属离子的目的。

优选地,步骤S3中,废旧聚氨酯泡沫小块的胺解温度为120-150℃,压力为-0.1~-0.09Mpa,时间为3-6h。

优选地,步骤S7中,吸附剂为硅酸镁、硅酸铝或硅酸镁铝。

优选地,步骤S7中,磷酸加入量为制备聚醚多元醇时投入原料总质量的0.3-0.7%,水加入量为制备聚醚多元醇时投入原料总质量的5-10%,吸附剂加入量为制备聚醚多元醇时投入原料总质量的0.15-3%。

优选地,制备得到的聚醚多元醇的羟值为400-480mg·KOH/g,25℃粘度为6000-11000mpa·s。

本发明与现有技术相比,具有以下有益效果:

1. 本发明克服目前聚氨酯回收技术中水解法、碱解法、醇解法中产物难以有效分离提纯利用的弊端,采用胺解法,对废旧聚氨酯泡沫进行胺解,随后将胺解后的产物再复配常规起始剂,与环氧单体反应,得到喷涂用聚醚多元醇,从而避免了聚氨酯降解产物复杂的分离提纯过程,实现了废旧聚氨酯泡沫的高效利用。

2. 本发明的胺解法在较低温度下就可以降解废旧聚氨酯泡沫,相较于碱解法、水解法,避免了苛刻的反应条件,工业技术条件较为容易实现;相较于目前较多的醇解法,避免了聚氨酯降解产物复杂的分离提纯的过程。

3. 本发明将胺解产物再复配常规起始剂,与环氧单体反应制备得到的喷涂用聚醚多元醇,有较低的导热系数,实现了废旧聚氨酯泡沫的有效利用。

具体实施方式

下面结合实施例对本发明作进一步地说明,但其并不限制本发明的实施。实施例中所用原料均为市售产品。

实施例1

将150g二乙醇胺、150g丙二醇、1.8g 40wt.%的二甲胺水溶液和4.2g固体KOH调配成的胺解剂,与300g废旧聚氨酯泡沫颗粒一起投入反应釜中,氮气置换后,升温到120℃,压力为-0.1~-0.09Mpa,加热搅拌3h后得到棕红色分解产物。降到室温后,开釜加入500g蔗糖,升温至100℃,进行抽真空脱水操作,控制釜内物料水分低于0.1%。控制反应釜釜内温度在80℃,连续滴加1919g环氧丙烷反应,进料速度控制釜内压力在0.1-0.4MPa,环氧丙烷全部滴加完毕,熟化2-3h至压力稳定。控制釜内温度在122±2℃之间,抽真空控制釜内压力在-0.08至-0.09MPa之间,脱除未反应的环氧丙烷单体1h。降低反应釜内温度至80±5℃之间,加入10.1g磷酸和136.5g水,搅拌1h,加入4.09g硅酸镁,升温至105±5℃之间,抽真空脱水控制釜内压力在-0.08至-0.09MPa之间,计时4h,检测水分低于0.1%,放料抽滤成合格的聚醚多元醇成品。

经检测,聚醚多元醇的羟值为416mg·KOH/g,25℃粘度为6050 mpa·s。

实施例2

将150g二异丙醇胺、150g二乙二醇、3.2g 30%的三甲胺水溶液和5.5g固体KOH调配成的胺解剂,与350g废旧聚氨酯泡沫颗粒一起投入反应釜中,氮气置换后,升温到150℃,压力为-0.1~-0.09Mpa,加热搅拌6h后得到棕红色分解产物。降到室温后,开釜加入572g 70%的山梨醇,升温至100℃,进行抽真空脱水操作控制釜内物料水分低于0.1%。控制反应釜釜内温度在100℃,连续滴加1575g环氧丙烷反应,进料速度控制釜内压力在0.1-0.4MPa,环氧丙烷全部滴加完毕,熟化2-3h。控制釜内温度在122±2℃之间,抽真空控制釜内压力在-0.08至-0.09MPa之间,脱除未反应的环氧丙烷单体1h。降低反应釜内温度至80±5℃之间,加入16.5g磷酸和113.9g水,搅拌1h,加入3.42g硅酸铝,升温至105±5℃之间,抽真空脱水控制釜内压力在-0.08至-0.09MPa之间,计时4h,检测水分低于0.1%,放料抽滤成合格的聚醚多元醇成品。

经检测,聚醚多元醇的羟值为469mg·KOH/g,25℃粘度为10396 mpa·s。

实施例3

将150g乙醇胺、150g乙二醇、4g 40%的二甲胺水溶液和7g固体KOH调配成的胺解剂,与500g废旧聚氨酯泡沫颗粒一起投入反应釜中,氮气置换后,升温到135℃,压力为-0.1~-0.09Mpa,加热搅拌4.5h后得到棕红色分解产物。降到室温后,开釜加入714g 70%的山梨醇,升温至110℃,进行抽真空脱水操作控制釜内物料水分低于0.1%。控制反应釜釜内温度在110℃,连续滴加2937g环氧丙烷反应,进料速度控制釜内压力在0.1-0.4MPa,环氧丙烷全部滴加完毕,熟化2-3h。控制釜内温度在122±2℃之间,抽真空控制釜内压力在-0.08至-0.09MPa之间,脱除未反应的环氧丙烷单体1h。降低反应釜内温度至80±5℃之间,加入19.6g磷酸和187.2g水,搅拌1h,加入5.61g硅酸镁铝,升温至105±5℃之间,抽真空脱水控制釜内压力在-0.08至-0.09MPa之间,计时4h,检测水分低于0.1%,放料抽滤成合格的聚醚多元醇成品。

经检测,聚醚多元醇的羟值(OHV)为441mg·KOH/g,25℃粘度(VIS)为8652 mpa·s。

对比例1

将300g甘油和13.27g固体KOH投入反应釜内,进行密封釜操作升温至100℃,进行抽真空脱水操作控制釜内物料水分低于0.1%。控制反应釜釜内温度在100-105℃,连续滴加环氧丙烷,过程中控制物料实际温度在100-105℃之间反应,进料速度控制釜内压力在小于0.4MPa,滴加3472g的环氧丙烷全部滴加完毕,熟化3h。控制釜内温度在110-115℃之间,抽真空控制釜内压力在-0.08至-0.09MPa之间,脱除未反应的环氧丙烷单体1h。降低反应釜内温度至75-85℃之间,加入31.85g磷酸和151g水,搅拌1h,加入3.78g硅酸镁,升温至100-110℃之间,抽真空脱水控制釜内压力在-0.08至-0.09MPa之间,计时4h,检测水分低于0.1%,放料抽滤成合格的聚醚多元醇成品。

经检测,聚醚多元醇的羟值为145mg·KOH/g,25℃粘度为25mpa·s。

对比例2

将150g四乙烯五胺、150g甘油、2g 40%的二甲胺水溶液和3g固体KOH调配成的胺解剂,与500g废旧聚氨酯泡沫颗粒一起投入反应釜中,氮气置换后,升温到120℃,压力为-0.1~-0.09Mpa,加热搅拌5h后得到黑褐色粘稠物质,并伴随着未降解完毕的泡沫碎块。泡沫胺解效果较差。

对比例2采用四乙烯五胺对废旧聚氨酯泡沫进行胺解,由结果可知,胺解效果差,这是因为四乙烯五胺粘度较大,根据化学反应的分子运动碰撞理论,粘度越大,分子运动越困难,而分子只有在运动的时候相互碰撞才会发生反应,因此粘度大,分子运动困难,相互碰撞的几率减少,反应效果差。

将以上实施例1-3和对比例1制备的聚醚多元醇用于制备喷涂用聚氨酯保温材料,制备喷涂用聚氨酯保温材料的原料包括A组分和B组分,其中以重量份数计,A组分包括聚醚多元醇100份、水1.5份、闭孔硅油2份、PC-8催化剂1份和环戊烷14份;将称量好的物料混合均匀,即得到A组分。B组分为多苯基多亚甲基多异氰酸酯。将A、B组分按照A:B=1:1.2重量比混合,制作成喷涂用聚氨酯保温材料,在聚氨酯泡沫导热系数测试仪上测试其导热性能,测试结果如表1所示。

表1

/>

如上表所示,本发明实施例1-3所制备的聚醚多元醇配置组合聚醚发泡后进行泡沫性能测试,其导热系数要小于对比例1的一般聚氨酯泡沫。这是由于在配置废旧聚氨酯泡沫胺解剂时,所用的烷基胺通常为过量,多余的烷基胺在与起始剂复配后继续与环氧单体反应,进入聚醚主链中,与异氰酸酯反应,形成聚氨酯泡沫后带来较低的导热系数,使用时能够增强保温效果。

技术分类

06120116339403