掌桥专利:专业的专利平台
掌桥专利
首页

技术领域

本发明涉及电动汽车技术领域,具体涉及一种电动汽车充电保护电路。

背景技术

目前电动汽车慢充模式主要采用模式二(16A)与模式三(32A)两种,为保证安全充电,需要对电缆进行漏电检测。

现有常用的漏电保护电路直接采用民用级的漏电保护芯片(FM2147)进行设计,安全性较低。同时由于传统漏电保护芯片(FM2147)设计时,通常将地作为检测基准,其检测精度低。

而对于过流检测,目前均采用电流互感器采集原理设计,电流互感器采集到的电流再通过处理电流处理送出电流值,电路采样响应实时性差。

发明内容

本发明的目的就是针对现有技术的缺陷,提供一种电动汽车充电保护电路,其安全性高,检测精度高。

本发明技术方案为:包括MCU、输入漏电检测电路和充电继电器,充电电缆通过所述MCU与电动汽车的电力信号输入端连接,所述输入漏电检测电路包括基准电压输出电路、电流互感器T500和电压跟随器U500A,所述电流互感器T500的一次侧绕组一端与充电电缆的电力信号输出端连接,另一端接地,所述电流互感器T500的二次侧绕组一端连接基准电压输出电路,另一端通过分压电路与电压跟随器U500A的输入端连接,所述电压跟随器U500A的输出端与MCU的漏电检测信号输入端连接,所述MCU的控制信号输出端与充电继电器的控制信号输入端连接。

较为优选的,所述基准电压输出电路包括基准电压产生电路和电压跟随器U500B,所述基准电压产生电路的信号输出端与电压跟随器U500B的信号输入端连接,所述电压跟随器U500B的信号输出端与电流互感器T500的二次侧绕组一端连接。

较为优选的,所述基准电压产生电路包括基准电压产生芯片U501、电阻R500~R503,所述电阻R503、R502、R500依次串联在电源与地之间,所述基准电压产生芯片U501的第一输入端连接于电阻R503与R502之间,所述基准电压产生芯片U501的第二输入端子接地,所述基准电压产生芯片U501的输出端与电压跟随器U500B的信号输入端连接。

较为优选的,还包括电阻R504、R505和电容C500,所述电阻R504与电容C500并联设置于电流互感器T500的二次侧绕组两端之间,所述电阻R505一端与电阻R504连接,另一端与电压跟随器U500A的正相输入端连接。

较为优选的,所述输入漏电检测电路还包括自检电路,所述自检电路的信号输出端与电流互感器T500一次侧绕组的非接地端连接。

较为优选的,所述自检电路包括电阻R501和三极管Q500,所述电阻R501一端连接电源,另一端连接三极管Q500发射集,所述三极管Q500的基集与MCU的自检信号输出端连接,所述三极管Q500的集电极与电流互感器T500一次侧绕组的非接地端连接。

较为优选的,还包括输出过流检测电路,所述过流检测电路的输出端与MCU的电流检测信号输入端连接。

较为优选的,所述过流检测电路包括电流检测传感器,所述充电继电器连接在充电插座与电流检测传感器输入端之间,所述电流检测传感器的输出端与MCU的电流检测信号输入端连接。

较为优选的,所述电流检测传感器输出端连接有RC滤波电路。

较为优选的,还包括续流二极管,所述续流二极管与充电继电器并联设置于充电插座与电流检测传感器输入端之间。

本发明的有益效果为:

1、取消传统的民用级漏电保护芯片,采用独立的汽车级分立元件搭建漏电保护电路,大大提高了充电电缆的安全性。

2、利用基准电压输出电路输出稳定的基准电压,相较于基准地,其检测灵敏度和精度大大提高。采用基准电压产生芯片U501作为基准电压产生芯片,能稳定产生2.5v基准电压,配合电压跟随器U500B,进一步保证基准电压稳定在2.5v,2.5v的电压属于量程中央,具有最高的偏差检测灵敏度,有效提高漏电检测的可靠性。

3、采用电流检测传感器直接采集插座端的电流信号,电流检测传感器内部芯片可直接输出处理后的电流信号,无需设计处理电路对采集的电流信号进行处理,缩短了采样时间,提高了过流检测的响应速度,进一步保证了充电电缆的安全性。

附图说明

图1为本发明一种电动汽车充电保护电路的框图连接示意图;

图2为本发明输入漏电检测电路示意图;

图3为本发明输出过流检测电路;

图4为本发明输入处理电路;

图5为本发明控制电源电路。

具体实施方式

下面结合附图和具体实施例对本发明作进一步的详细说明,便于清楚地了解本发明,但它们不对本发明构成限定。

如图1所示,一种电动汽车充电保护电路,包括MCU、CP信号采集电路、输入漏电检测电路、输出过流检测电路、插头过温检测电路和充电继电器。

CP信号是PWM信号,也是充电电缆(模式二)与车辆充电交互的导引信号,根据CP的占空比来确定输出的最大功率,MCU通过CP的三种电压(12V/9V/6V)值来确定充电电缆与车俩之间的状态(未连接、半连接、连接、充电)。模式二的充电控制器工作电压范围是AC85V-AC267V,输入端有电压采集,当电压不在该范围时,控制器会切断充电继电器输出,进入保护状态。CC信号是也车辆的连接信号,用于判断车辆是否成功连接充电枪;充电电缆插头中装了温度传感器,用于检测插头与插座连接时的温度,当温度达到预值时会切断继电器输出,起到防火灾的作用。

如图2所示,输入漏电检测电路用于当AC220V交流输入漏电达到30mA时,产生漏电输出信号(DIH_Leakage_Current)给中央处理器(MCU),MCU做出漏电判定后通过切断供电继电器,是控制器强制退出充电,从而起到漏电保护人员的功能。充电电缆通过MCU与电动汽车的电力信号输入端连接,输入漏电检测电路包括基准电压输出电路、电流互感器T500和电压跟随器U500A,电流互感器T500的一次侧绕组一端与充电电缆的电力信号输出端连接,另一端接地,电流互感器T500的二次侧绕组一端连接基准电压输出电路,另一端通过分压电路与电压跟随器U500A的输入端连接,电压跟随器U500A的输出端与MCU的漏电检测信号输入端连接,MCU的控制信号输出端与充电继电器的控制信号输入端连接。基准电压输出电路包括基准电压产生电路和电压跟随器U500B,基准电压产生电路的信号输出端与电压跟随器U500B的信号输入端连接,电压跟随器U500B的信号输出端与电流互感器T500的二次侧绕组一端连接。基准电压产生电路包括基准电压产生芯片U501、电阻R500~R503,电阻R503、R502、R500依次串联在电源与地之间,基准电压产生芯片U501的第一输入端连接于电阻R503与R502之间,基准电压产生芯片U501的第二输入端子接地,基准电压产生芯片U501的输出端与电压跟随器U500B的信号输入端连接。电阻R504与电容C500并联设置于电流互感器T500的二次侧绕组两端之间,电阻R505一端与电阻R504连接,另一端与电压跟随器U500A的正相输入端连接。输入漏电检测电路还包括自检电路,自检电路的信号输出端与电流互感器T500一次侧绕组的非接地端连接。自检电路包括电阻R501和三极管Q500,电阻R501一端连接电源,另一端连接三极管Q500发射集,三极管Q500的基集与MCU的自检信号输出端连接,三极管Q500的集电极与电流互感器T500一次侧绕组的非接地端连接。其中,基准电压产生芯片U501和三极管Q500连接的电源均为5v电源。

系统在上电初始化时,通过自检电路模拟30mA的漏电,以实现输入漏电检测电路正常与否的监测。MCU发出自检信号给DO_GFCI_IN信号端,模拟30mA的漏电给T500,此时T500的第3脚会产生电压变化,此时如果漏电输出信号(DIH_Leakage_Current)能产生漏电信号,表示漏电电路工作正常,自检结束后,MCU停止发出自检信号,进入到正常充电准备模式。

由于漏电的电流量非常微小,为了提高检测精度,本方案设计基准电压参考点,由U501组成的电路可以输出精度非常高直流2.5V,通过电压跟随器U500B的第7脚可以稳定输出直流2.5V,此时T500的第4脚也稳定在2.5V,U500B也可以提升直流2.5V的带载能力,从而更能保证基准电压2.5V的可靠性,当有漏电产生时,T500第3脚与第4脚会产生感应电压,由于T500的第4脚电压被固定,故只有T500的第3脚的电压会有变化。图中R504是让电路形成检测回路,C500在检测回路中起滤波作用,R505为了防止感应电流过大设计的限流电阻,U500A同样是电压跟随器,当有漏电产生时,U500A的第3脚会在基准2.5V的基础上产生电压变化,U500A的第1脚输出的值就会偏移DC2.5V,当偏移达到一定值时(漏电大于30mA),MCU就会判定此时有漏电发生。

如图3所示,输出过流检测电路用于当输出电流大于一定值(默认设定大于16A小于20A)时,控制器会保持5s输出后,切断输出,使模式二充电电缆处于锁定自我保护状态。输出过流检测电路包括电流检测传感器,充电继电器连接在充电插座与电流检测传感器输入端之间,电流检测传感器的输出端与MCU的电流检测信号输入端连接。电流检测传感器输出端连接有RC滤波电路。还包括续流二极管,续流二极管与充电继电器并联设置于充电插座与电流检测传感器输入端之间。

实施例一

电流检测传感器采用电流采样芯片U701,充电继电器为RL700和RL701,分别连接与充电插座的L_TN和N_IN脚,充电插座的L_TN和N_IN脚之间设有熔断器R711。充电继电器RL700和RL701的控制信号输入端(Relay_12v和Relay_-12v)与MCU的控制信号输出端连接。在充电继电器RL700和RL701两端分别并联有一个续流二极管(D700和D702),用于将继电器关断时产生的感应电压释放掉。电流采样芯片U701通过第7引脚输出电流信号,并通过电阻R712和电容C702形成的RC滤波电路后,将电流信号(AI_power_input_current)送到MCU,实现电流检测信号的采集。当模式二充电电缆处于充电状态时,RL700与RL701继电器处于吸合状态,充电电流会流向U701的电流传感器芯片,该电流传感器芯片最大通过电流为30A,电流传感器芯片将大电流值转换成电压模拟量通过该芯片第7脚输出,经过R712与C702组成RC滤波电路后,将电流信号(AI_power_input_current)送到MCU,MCU采集到转换的电压值后作出过流判定,从而起到过流保护功能。

如图4所示,本方案还在AC220V转DC±12V电源的前端设计有输入处理电路,用于提高控制器的抗干扰能力。该输入处理电路中,R301是NCT电阻;R305是压敏电阻,如果瞬间严重过压时,此时R305接近于导通状态,此时R307可自恢复的保险丝会自动断开,从而起到瞬间过压保护的作用;L300是共模电感,对EMI进行滤波,抑制各种高速信号产生的电磁波向外发射,当有共模电流流经时,这时候共模电流会被衰减,达到抑制干扰的目的。

如图5所示,由于AC220V需要转化为DC5V才能为控制器供电,本方案的控制电源电路采用一片三端稳压源NCV1117ST50T3G芯片来完成电压转换。

以上仅为本发明的实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均包含在申请待批的本发明的权利要求范围之内。

相关技术
  • 一种充电保护电路、电动汽车的充电方法及电动汽车
  • 一种电动汽车充电保护电路
技术分类

06120112565893