掌桥专利:专业的专利平台
掌桥专利
首页

技术领域

本发明涉及收容有多个单体电池的电池组、电源系统。

背景技术

近年来,混合动力车(HV)、插电混合动力车(PHV)、以及电动汽车(EV)正在普及。在这些电动车辆中,作为关键设备,搭载二次电池。在将几十到几千个单体电池电连接而使用的车载用电池组中,在电池组内的单体电池中发生了异常的情况下,需要迅速地检测异常,中断电池组的使用或进行给定的安全处理。

作为检测电池的异常的方法之一,存在计测电池的温度的方法。为了计测温度来高精度地检测电池的异常,需要计测电池组内的全部的单体电池的温度,成本以及部件数量增大。

此外,作为检测电池的异常的另一个方法,存在通过压力传感器监视电池组内的压力的方法(例如,参照专利文献1)。该方法利用了电池组内的压力因在单体电池异常时从单体电池喷出的气体而同样地上升的情况,能够通过少数的检测设备高精度地检测异常。

在先技术文献

专利文献

专利文献1:日本特开2010-45001号公报

发明内容

发明要解决的课题

然而,电池组内的异常时的压力上升是一秒到几秒以内的现象,因此为了通过压力传感器检测异常,需要在检测系统中以比该期间短的周期进行扫描,检测系统的负荷增大。

此外,在车载用途中,一般在停车中检测系统关机/待机。在该状态下,即使在电池组内的单体电池中发生异常,由于电池组内的压力也会在几秒以内返回到通常的压力,因此不仅无法实时地检测异常,而且还存在即使在电动车辆的起动时也无法检测异常的可能性。

本发明是鉴于这样的状况而完成的,其目的在于,提供一种通过少数的检测设备高精度地检测电池组内的单体电池的异常的技术。

用于解决课题的手段

为了解决上述课题,本发明的某个方式的电池组是大致密闭构造的电池组,包含:多个单体电池,分别设置有用于在内压上升的情况下排出内部的气体的释放部;以及非复位型的压力开关部,通过信号线连接在控制器。所述压力开关部在所述电池组内的压力超过了给定的压力阈值的情况下,从有效的状态不可逆地变化为非有效的状态。

另外,以上的构成要素的任意的组合、以及将本发明的表述在方法、装置、系统等之间变换而得的方式也作为本发明的方式而有效。

发明效果

根据本发明,能够通过少数的检测设备高精度地检测电池组内的单体电池的异常。

附图说明

图1是用于说明本发明的实施方式涉及的电源系统的图。

图2是示出本发明的实施方式涉及的电源系统中的从单体电池排出气体时的序列的图。

图3是示出本发明的实施方式涉及的电源系统中的从单体电池排出气体时的第1处理例的流程的流程图。

图4是示出本发明的实施方式涉及的电源系统中的从单体电池排出气体时的第2处理例的流程的流程图。

具体实施方式

图1是用于说明本发明的实施方式涉及的电源系统1的图。在本实施方式中,对电源系统1为搭载在电动车辆的驱动用电池的例子进行说明。电源系统1具备收纳有电池模块M1的大致密闭构造的电池组10。另外,在图1中,为了简化附图只描绘了一个电池模块M1,但是实际上,收纳有多个电池模块的情况多。多个电池模块串联连接、并联连接或串并联连接。

电池模块M1包含多个单体电池11-16。在图1中,描绘了电池模块M1收容有六个单体电池的例子,但是收容的单体电池的数量也可多于六个,也可以少于六个。此外,多个单体电池11-16在电连接方式上,可以是串联连接、并联连接、以及串并联连接中的任一种。在以下的说明中设想串联连接。

单体电池为方型、圆筒型、层压型等的二次电池,能够使用锂离子电池、镍氢电池、铅电池等。以下,在本说明书中设想使用方型的锂离子电池的例子。多个单体电池11-16以面积最大的面作为层叠面,层叠为一列。在多个单体电池11-16的层叠方向上的两端面设置有两片端板P1、P2,以使夹着多个单体电池11-16。两端的端板P1、P2通过多个侧束缚条连结。具体地,在被层叠的多个单体电池11-16的两侧分别设置有至少一个侧束缚条B1、B2。

单体电池在发生了内部短路、过充电等异常的情况下,使内压上升而产生高温的气体。在方型、圆筒型的单体电池中,一般在外装壳体的顶面设置有用于在内部的压力上升了的情况下排出内部的气体的安全阀(未图示)。在层压型的单体电池中,大多设计为若内压上升则通过使层压材料的密封部分裂开而排出内部的气体。无论在哪种情况下,都设置有用于排出内部的气体的释放部。以下,在本实施方式中,设想在多个单体电池11-16中使用在外装壳体的顶面设置有安全阀的方型单体电池的情况。

电池组10具备压力释放机构20。压力释放机构20若电池组10内的内压值比给定值(工作压力值)高则工作,将电池组10内的气体排出到外部。压力释放机构20例如具有若内压值比工作压力值高则打开的排出阀。若多个单体电池11-16中的任一安全阀被打开,而气体从单体电池的内部被排出,则电池组10内的内压也会上升,若超过压力释放机构20的工作压力值,则压力释放机构20工作。例如,压力释放机构20的工作压力值设定为10~50kPa(计示压力)。

在压力释放机构20的附近且从多个单体电池11-16排出的气体通过的位置设置有压力开关元件30。另外,压力开关元件30优选安装在热的影响小的位置。另外,多个单体电池11-16的安全阀的每一个与压力释放机构20之间也可以通过密闭的排气路连结。在该情况下,压力开关元件30设置在该排气路的内部。

压力开关元件30的两端与检测电路31连接。压力开关元件30和检测电路31构成压力开关部。压力开关部是在电池组10内的内压值超过了给定的压力阈值的情况下,从有效的状态不可逆地变化为非有效的状态的非复位型的开关。该压力阈值设定为比压力释放机构20的工作压力值低的值。

在压力开关元件30例如能够使用通过使机构性可动接片位移来对切换状态进行切换的机械性非复位型的开关。具体地,将压力开关元件30设置在能够检验电池组10的内外的压差的部位,使得对能够通气地设置在电池组10的壁面等的开口进行堵塞,可动接片通过电池组10内的压力变化进行位移。检测电路31检测可动接片的位移,检测压力开关元件30的切换。

此外,在压力开关元件30中例如能够使用利用了压阻效应的压敏传感器。在该压敏传感器中,电阻值根据对感应部的压力而变化。具体地,若压力增加,则电阻值降低。检测电路31在压力开关元件30的两端施加给定的恒定电压。在检测电路31与压力开关元件30的闭环内插入若流过超过与上述压力阈值对应的电流阈值的电流则不可逆地断开的开关。若对上述感应部的压力超过上述压力阈值,则流过超过电流阈值的电流,上述开关关断。另外,也可以代替该开关,而使用若流过超过电流阈值的电流则熔断的熔丝。

若上述开关关断,则检测电路31将异常信号发送到BMU(lang=EN-US>BatteryManagement Unit,电池管理单元)50。例如,检测电路31与BMU50之间通过信号线连接,检测电路31在上述开关接通的状态下持续输出低电平作为正常信号。检测电路31在上述开关断开的状态下持续输出高电平作为异常信号。相反地,检测电路31也可以在上述开关接通的状态下持续输出高电平作为正常信号,在上述开关断开的状态下持续输出低电平作为异常信号。

另外,压力开关部的结构是一个例子。也可以构成为,设置在压力开关元件30的两端施加偏置电压,并且从检测电路31向两端施加其他电压的开关,若在压力开关元件30流动的电流超过与上述压力阈值对应的电流阈值,则该开关由于电磁感应不可逆地接通。若上述开关导通,则检测电路31向BMU50发送异常信号。

此外,压力开关元件30也可以是形成一般的惠斯通电桥电路的四个压阻元件。在该情况下,一旦惠斯通电桥电路的输出电压超过与上述压力阈值对应的电压阈值,则检测电路31向BMU50持续发送异常信号。即使惠斯通电桥电路的输出电压下降,检测电路31也向BMU50持续发送异常信号。

BMU50是管理电源系统1的控制器。在BMU50被输入多个单体电池11-16的电压值、电流值、温度值。例如,分别通过包含ASIC或模拟前端的电压传感器(未图示)计测电压值,通过使用了分流电阻、霍尔元件的电流传感器(未图示)计测电流值,通过使用了热敏电阻的温度传感器(未图示)计测温度值。BMU50基于多个单体电池11-16的电压值、电流值、温度值,监视在多个单体电池11-16中是否发生过电压、过小电压、过电流、或温度异常。

在本实施方式中,来自检测电路31的信号线与接受BMU50的起动信号的端口连接。BMU50若在关机状态/待机状态下从检测电路31接收异常信号,则进行起动,并且判定为在电池组10内的单体电池11-16中发生了异常。

BMU50若判定为在电池组10内的单体电池11-16中发生了异常,则经由CAN等车载网络向ECU(lang=EN-US>Electronic Control Unit,电子控制单元)2通知单体电池的异常发生信号。

此外,若判定为在电池组10内的单体电池11-16中发生了异常,则BMU50接通传感器40。例如传感器40可以是比压力开关部高性能的压力传感器。例如,也可以是由包含四个压阻元件的惠斯通电桥电路形成的压力传感器。若判定为在电池组10内的单体电池11-16发生了异常,则BMU50使给定的恒定电流流过惠斯通电桥电路的输入端子。若在输入端子被供给电流,则在惠斯通电桥电路的输出端子产生与检测到的压力对应的电压,供给到BMU50。BMU50基于从传感器40输入的电压值,推定电池组10内的压力值。

ECU2是控制电动车辆整体的控制器,例如也可以包含综合型的VCM(lang=EN-US>Vehicle Control Module,车辆控制模块)。ECU2若从BMU50接收到单体电池的异常发生信号,则使电动车辆内的车内警告装置3报告电池组10的异常。车内警告装置3是用于向乘员警告电池组10的异常的用户接口。例如ECU2使设置在仪表板的电池组10的异常灯点亮。此外,也可以通过语音消息向乘员通知电池组10的异常。

在电源系统1为搭载在混合动力车的驱动用电池的情况下,ECU2若在电动机行驶中从BMU50接收到单体电池的异常发生信号,则使电动机行驶停止,切换为发动机行驶。

在电源系统1为搭载在纯粹的电动汽车的驱动用电池的情况下,在确保安全性的同时,允许自行驶至汽车经销商、修理工厂为止,由此兼顾安全性和便利性。作为确保安全性的方法,可考虑对电源系统1进行冷却。

ECU2若从BMU50接收到单体电池的异常发生信号,则使冷却装置4工作,对电池组10内的单体电池11-16进行冷却。在水冷方式的情况下,冷却装置4具有用于对散热片等散热器、冷却用液体(以下,称为冷却液)进行冷却的电动风扇。另外,也可以是与车辆内的空调系统连动并通过空调系统的冷却风对冷却液进行冷却的结构,来代替电动风扇。

冷却装置4与电源系统1通过未图示的冷却管连接。在电源系统1的电池模块M1安装有冷却板(未图示)。冷却板经由绝缘性的导热片(未图示)安装在电池模块M1。另外,在单体电池的外装壳体包含绝缘性材料的情况下,也可以将冷却板直接安装在电池模块M1。另外,在气冷方式的情况下,将通过电动风扇、空调系统生成的冷却风直接供给到电池组10内的单体电池11-16。

ECU2若在冷却装置4为工作中的情况下从BMU50接收到单体电池的异常发生信号,则也可以指示冷却装置4提高冷却能力。例如,在电动风扇被使用的情况下,为了降低冷却液的温度,也可以指示为增加电动风扇的转速。例如,也可以指示为以最大转速旋转。此外,在通过空调对冷却液进行冷却的情况下,也可以指示为降低冷却风的温度/增加冷却风的风量。

图2是示出本发明的实施方式涉及的电源系统1中的从单体电池排出气体时的序列的图。若单体电池的内压发生异常,则安全阀打开,气体被排出到电池组10内。若电池组10的压力超过压力开关部的压力阈值,则向压力开关元件30的通电被切断。由此,表示单体电池的异常发生的检测电路31的输出信号接通,BMU50起动,BMU50成为接通状态。BMU50接通传感器40,获取更详细的压力数据。BMU50向ECU2通知单体电池的异常发生,ECU2使冷却装置4工作。

图3是示出本发明的实施方式涉及的电源系统1中的从单体电池排出气体时的第1处理例的流程的流程图。若电池组10内的压力超过压力开关部的压力阈值(S10的“是”),则切断向压力开关元件30的通电(S11),接通从检测电路31对BMU50供给的异常信号(S12)。在BMU50为关机状态/待机状态时(S13的“否”),触发该异常信号的接通而BMU50起动(S14)。在BMU50为起动中的情况下(S13的“是”),跳过步骤S14的处理。

BMU50向ECU2通知单体电池的异常发生信号(S15)。ECU2使车内警告装置3向乘员报告电池组10的异常(S16)。ECU2使冷却装置4工作,对电池组10内的单体电池进行冷却(S17)。

图4是示出本发明的实施方式涉及的电源系统1中的从单体电池排出气体时的第2处理例的流程的流程图。在至此为止的说明中,以来自检测电路31的信号线连接在接受BMU50的起动信号的端口的结构作为了前提。在第2处理例中,以来自检测电路31的信号线不是连接在接受BMU50的起动信号的端口,而是连接在接受传感器输入的端口的结构作为前提。即,以在BMU50为关机状态/待机状态的情况下,即使检测电路31输出异常信号,BMU50也不会立即起动的结构作为前提。

若电池组10内的压力超过压力开关部的压力阈值(S10的“是”),则切断向压力开关元件30的通电(S11),接通从检测电路31向BMU50供给的异常信号(S12)。在BMU50为关机状态/待机状态的情况下(S13的“否”),若BMU50的定期起动定时到来(S131的“是”),则BMU50起动(S14)。

在电动车辆为停车中且电池模块不为外部充电中时,为了降低BMU50的消耗电力,BMU50成为关机状态/待机状态。即使BMU50成为关机状态/待机状态,为了监视电池组10内的多个单体电池11-16有无异常,BMU50也定期地起动。BMU50定期地起动,获取多个单体电池11-16的电压值、电流值、温度值来判定有无异常。在本实施方式中,也判定有无来自检测电路31的异常信号。BMU50例如每隔5~60分钟起动来判定有无异常。

在BMU50的定期起动定时未到来的期间(S131的“否”),若由驾驶员接通电动车辆的电源(相当于发动机车辆的点火接通)(S132的“是”),则BMU50起动(S14)。在BMU50为起动中的情况下(S13的“是”),跳过步骤S131、S132、S14的处理。

BMU50向ECU2通知单体电池的异常发生信号(S15)。ECU2使车内警告装置3向乘员报告电池组10的异常(S16)。ECU2使冷却装置4工作,对电池组10内的单体电池进行冷却(S17)。

如以上说明的那样,根据本实施方式,通过将因来自单体电池的安全阀的气体排出而同样地变化的电池组10内的压力作为检测对象,能够通过少数的检测设备高精度地检测单体电池的异常。例如,在使用热敏电阻通过温度来检测来自单体电池的安全阀的高温气体的排出的情况下,需要设置大量的热敏电阻,成本以及部件数量增大。

此外,通过将检测设备设为非复位型的压力开关,能够高精度地检测变化时间短的电池组10内的压力的变化。由来自单体电池的安全阀的气体排出引起的电池组内的压力上升在几秒以内会返回到通常的压力。例如BMU50为了减轻负荷而以5秒以上的间隔扫描压力传感器的值的情况下,在使用一般的压力传感器的压力值的监视中,无法检测该压力上升的可能性高。

例如如果以一秒间隔扫描压力传感器的值,则能够检测该压力上升,但是BMU50的负荷增大。此外,在BMU50处于关机状态/待机状态的情况下,在定期起动时检测上述压力上升几乎是不可能的。相对于此,根据本实施方式,由于使用了非复位型的压力开关,因此在BMU50的起动中,在上述压力上升的接下来的扫描定时能够检测上述压力上升,在BMU50未起动的情况下,在下一起动时能够检测上述压力上升。

此外,通过使用电开关作为检测设备,能够将检测设备自身用作BMU50的起动开关,能够在上述压力上升时使BMU50起动。另外,即使在不将检测设备用作BMU50的起动开关的结构中,至少能够在驾驶员对电动车辆钥匙起动的时刻检测上述压力上升。相对于此,在使用了一般的压力传感器的结构中,由于不残留压力上升的履历,所以事后也无法检测上述压力上升。

此外,还考虑到从单体电池电压检测打开了安全阀的单体电池的情况,但是在打开了安全阀的单体电池与其他单体电池并联连接的情况下,难以从电压检测单体电池的异常。这样,根据本实施方式,能够低成本以及低负荷且高精度地检测单体电池的异常。

以上,基于实施方式对本发明进行了说明。本领域技术人员可以理解为,实施方式是例示,这些各构成要素、各处理工艺的组合能够有各种变形例,此外,这样的变形例也在本发明的范围内。

在上述的实施方式中,对使用非复位型的压力开关的例子进行了说明。关于这一点,在如第1处理例那样来自检测电路31的信号线连接在接受BMU50的起动信号的端口的结构中,也能够使用复位型的压力开关。在压力开关从有效的状态变化为非有效的状态的时刻BMU50能够掌握上述压力上升,因此即使压力开关返回到原来的状态,也可避免无法检测上述压力上升的情况。在该情况下,能够使用一般的压力传感器,也能够再利用压力开关。

在上述图1中,在电池组10的外侧描绘了检测电路31以及BMU50,但是还可以将检测电路31以及BMU50也收容在电池组10内。此外,在上述图1中,描绘了ECU2控制冷却装置4的例子,但是也可以是BMU50直接控制冷却装置4的结构。

此外,在上述图1中描绘了传感器40,但是传感器40不是必须的,而能够省略。此外,对传感器40为压力传感器的例子进行了说明,但是传感器40可以是温度传感器,也可以是电压传感器。无论在哪种情况下,只要是能够更详细地检测单体电池的状态的检测设备均可。

此外,在上述的实施方式中,对将电源系统1用于车载用途的例子进行了说明,但是也能够用于定置型蓄电用途、笔记本型PC、智能手机等电子设备用途。

另外,实施方式也可以通过以下的项目确定。

[项目1]

一种电池组(10),为大致密闭构造,其特征在于,

在所述电池组(10)中,包括:

多个单体电池(11-16),分别设置有用于在内压上升了的情况下排出内部的气体的释放部;以及

非复位型的压力开关部(30、31),通过信号线与控制器(50)连接,

所述压力开关部(30、31)在所述电池组(10)内的压力超过了给定的压力阈值的情况下,从有效的状态不可逆地变化为非有效的状态。

由此,能够在不使控制器(50)的负荷上升的情况下,基本上通过一个压力开关部(30、31)高精度地检测来自单体电池(11-16)的气体排出。

[项目2]

根据项目1所述的电池组(10),其特征在于,

所述电池组(10)还具备:压力释放机构(20),若所述电池组(10)内的压力超过给定的压力则工作,

所述压力开关部(30、31)的状态变化的压力阈值被设定为比所述压力释放机构(20)的工作压力低的值。

由此,能够在压力释放机构(20)被打开之前,使压力开关部(30、31)的状态变化。

[项目3]

一种电源系统(1),具备:

项目1或2所述的电池组(10);以及

控制器(50),通过信号线与所述压力开关部(30、31)连接。

由此,能够构筑能够在不使控制器(50)的负荷上升的情况下,基本上通过一个压力开关部(30、31)高精度地检测来自单体电池(11-16)的气体排出的电源系统(1)。

[项目4]

电源系统(1),其特征在于,所述控制器(50)以所述压力开关部(30、31)从有效的状态变化为非有效的状态的情况为触发而起动。

由此,即使在控制器(50)为关机状态/待机状态,也能够实时地检测来自单体电池(11-16)的气体排出。

[项目5]

根据项目3或4所述的电源系统(1),其特征在于,所述控制器(50)若检测到所述压力开关部(30、31)从有效的状态变化为非有效的状态的情况,则获取所述电池组(10)内的其他传感器(40)的输出值。

由此,控制器(50)能够掌握电池组(10)内的更详细的状况。

[项目6]

根据项目3至5中任一项所述的电源系统(1),其特征在于,

所述电源系统(1)搭载在电动车辆,

所述控制器(50)若基于所述压力开关部(30、31)的状态判定为所述电池组(10)异常,则向车辆侧的控制器(2)发送异常发生信号,

所述车辆侧的控制器(2)若接收到所述异常发生信号,则使所述电动车辆内的用户接口(3)报告所述电池组(10)的异常。

由此,能够使乘员识别电池组(10)的异常。

[项目7]

根据项目3至6中任一项所述的电源系统(1),其特征在于,所述控制器(50)若基于所述压力开关部(30、31)的状态判定为所述电池组(10)异常,则使用于对所述电池组(10)进行冷却的冷却装置(4)工作。

由此,能够抑制电池组(10)的单体电池的异常扩大到其他单体电池。

[项目8]

一种电池组(10),为大致密闭构造,其特征在于,

在所述电池组(10)中包括:

多个单体电池(11-16),分别设置有用于在内压上升了的情况下排出内部的气体的释放部;以及

压力开关部(30、31),通过信号线与控制器(50)连接,

所述压力开关部(30、31)在所述电池组(10)内的压力超过了给定的压力阈值的情况下,从有效的状态变化为非有效的状态,并且将该状态的变化经由所述信号线通知给所述控制器(50)。

由此,能够在不使控制器(50)的负荷上升的情况下,基本上通过一个压力开关部(30、31)高精度地实时地检测来自单体电池(11-16)的气体排出。

附图标记说明

1:电源系统;

10:电池组;

20:压力释放机构;

30:压力开关元件;

31:检测电路;

40:传感器;

50:BMU;

M1:电池模块;

11-16:单体电池;

B1、B2:束缚条;

P1、P2:端板;

2:ECU;

3:车内警告装置;

4:冷却装置。

相关技术
  • 铅酸电池组与锂电池组混合使用的保护装置及电源系统
  • 一种电池组及使用该电池组的电源系统
技术分类

06120113105591