掌桥专利:专业的专利平台
掌桥专利
首页

介电陶瓷组合物以及包括其的多层陶瓷电容器

文献发布时间:2023-06-19 19:28:50


介电陶瓷组合物以及包括其的多层陶瓷电容器

本申请是申请日为2020年04月07日、申请号为202010264305.9的发明专利申请“介电陶瓷组合物以及包括其的多层陶瓷电容器”的分案申请。

技术领域

本公开涉及一种具有改善的可靠性的介电陶瓷组合物和包括该介电陶瓷组合物的多层陶瓷电容器。

背景技术

通常,诸如电容器、电感器、压电元件、压敏电阻、热敏电阻等的使用陶瓷材料的电子组件包括利用陶瓷材料形成的陶瓷主体、在陶瓷主体中形成的内电极以及安装在陶瓷主体的表面上以连接到内电极的外电极。

近来,由于电子产品以及片组件被小型化和多功能化的趋势,需要尺寸更小但容量更大的多层陶瓷电容器。

用于使多层陶瓷电容器小型化并同时增加其容量两者的方法是减小介电层和内电极层的厚度以层叠更多数量的层。当前,介电层的厚度为约0.6μm,并且已经在努力开发更薄的介电层。

在这种情况下,确保介电层的可靠性成为介电材料的主要问题。另外,由于介电材料的绝缘电阻的劣化增加,在管理质量和良率上的难点已经成为问题。

为了解决这些问题,需要开发一种用于确保不仅针对多层陶瓷电容器的结构而且特别针对电介质的成分的高可靠性的新方法。

当确保具有高介电常数和改善电流可靠性的介电组合物时,可制造较薄的多层陶瓷电容器。

发明内容

本公开的一方面提供了具有改善的可靠性的介电陶瓷组合物以及包括该介电陶瓷组合物的多层陶瓷电容器。

根据本公开的一方面,一种介电陶瓷组合物包括:钛酸钡(BaTiO

根据本公开的另一方面,一种多层陶瓷电容器包括:陶瓷主体,包括介电层以及被设置为彼此面对的第一内电极和第二内电极,且相应介电层介于所述第一内电极和所述第二内电极之间;以及第一外电极和第二外电极,设置在所述陶瓷主体的外表面上。所述第一外电极电连接到所述第一内电极,并且所述第二外电极电连接到所述第二内电极,所述介电层包括包含介电陶瓷组合物的介电晶粒。所述介电陶瓷组合物包括BaTiO

附图说明

通过以下结合附图进行的详细描述,本公开的以上和其他方面、特征及优点将被更清楚地理解,在附图中:

图1是根据实施例的多层陶瓷电容器的示意性透视图;

图2是沿图1中的线I-I'截取的截面图;并且

图3是示出根据实施例示例和比较示例的相对于温度的介电常数的结果的曲线图。

具体实施方式

在下文中,将参照附图如下描述本公开的实施例。然而,本公开可以以许多不同的形式来体现,并且不应被解释为限于在此阐述的实施例。确切地说,提供这些实施例使得本公开将是彻底的和完整的,并将向本领域技术人员充分传达本公开的范围。在附图中,为了清楚起见,可夸大元件的形状和尺寸,并且相同的附图标记将始终用于表示相同或相似的元件。

图1是根据实施例的多层陶瓷电容器的示意性透视图。

图2是沿图1中的线I-I'截取的截面图。

参照图1和图2,根据实施例的多层陶瓷电容器100包括:陶瓷主体110,包括介电层111以及被设置为彼此面对且相应介电层介于它们之间的第一内电极121和第二内电极122;以及第一外电极131和第二外电极132,设置在陶瓷主体110的外表面上。第一外电极131电连接到第一内电极121,第二外电极132电连接到第二内电极122。

关于根据实施例的多层陶瓷电容器100,图1的“长度方向”、“宽度方向”和“厚度方向”分别被定义为“L”方向、“W”方向和“T”方向。“厚度方向”可以以与堆叠介电层的方向(例如,“层叠方向”)相同的含义被使用。

尽管没有特别限制,但是陶瓷主体110的构造可以是如附图中所示的矩形长方体形状。

形成在陶瓷主体110内部的多个第一内电极121和多个第二内电极122具有暴露于陶瓷主体110的一个表面或陶瓷主体110的与所述一个表面相对设置的另一表面的一端。

内电极可包括成对的具有不同极性的第一内电极121和第二内电极122。

第一内电极121的一端可暴露于陶瓷主体的一个表面,第二内电极122的一端可暴露于陶瓷主体的与所述一个表面相对设置的另一表面。

第一外电极131和第二外电极132分别形成在陶瓷主体110的一个表面和与所述一个表面相对设置的另一表面上,并且可电连接到内电极。

第一内电极121和第二内电极122的材料没有特别限制,并且可以是包含从由例如银(Ag)、铅(Pb)、铂(Pt)、镍(Ni)和铜(Cu)组成的组中选择的至少一种元素的导电膏。

第一外电极131和第二外电极132可分别电连接到第一内电极121和第二内电极122,以产生电容。第二外电极132可连接到与连接到第一外电极131的电位不同的电位。

包含在第一外电极131和第二外电极132中的导电材料不受特别限制,而可包括从由镍(Ni)、铜(Cu)及它们的合金组成的组中选择的至少一种元素。

第一外电极131和第二外电极132的厚度可根据其用途等适当地确定,并且没有特别限制,而可以是例如10μm至50μm。

根据实施例,形成介电层111的材料没有特别限制,只要可利用其获得足够的电容即可,并且没有特别限制,并且可以是例如BaTiO

形成介电层111的材料可包括添加到BaTiO

处于烧结状态的介电层111可一体化成单个主体,使得相邻介电层111之间的边界可能不是显而易见的。

第一内电极121和第二内电极122可形成在介电层111上,并且内电极121和122可通过烧结而形成在陶瓷主体110的内部,同时在内电极121和122之间具有一个介电层。

可根据电容器的容量设计来可选地改变介电层111的厚度。烧结后的实施例中的介电层的厚度可以为每层0.4μm或更小。

此外,在烧结之后,第一内电极121和第二内电极122的厚度可以为每层0.4μm或更小。

根据实施例,介电层111包括包含介电陶瓷组合物的介电颗粒。介电陶瓷组合物包括BaTiO

为了开发具有高容量的小型化多层陶瓷电容器,近来需要开发当在包含添加剂的BaTiO

在这方面,研究表明,当应用施主型掺杂剂组合物时,晶格中的钉扎源浓度降低,导致高畴壁运动性。

通过应用各种已知的施主型掺杂剂中的离子尺寸与钡(Ba)的离子尺寸最相似的添加剂,开发了能够使晶格失配最小化并允许高介电常数的介电组合物。

另外,由于通常当施主型添加剂的含量增加时,绝缘电阻(IR)降低并且不容易确保抗还原性,因此应确定适当的含量比。

通常,镝(Dy)是最常用的施主型掺杂剂,其影响多层陶瓷电容器的介电常数和可靠性的改善。通过适当地调整这种施主型掺杂剂和受主型掺杂剂的含量,可实现所需的介电特性和可靠性。

尽管Dy在BaTiO

因此,需要使稀土元素更顺利地在元素Ba中进行取代,使得这种固溶效果最大化。

具体地,为了增加施主效应,需要使用化合价比Dy(Dy的离子尺寸与Ba的离子尺寸相似)的化合价大并且离子尺寸比Dy的离子尺寸大的稀土元素。

在本公开中,发明了能够在缺陷化学(defect-chemically)上抑制介电组合物中氧空位产生或降低氧空位浓度的包含铈(Ce)(化合价为4或更大的稀土元素)的介电组合物。

由于Ce的离子半径大于元素钡(Ba)(作为介电组合物的主成分)和元素Dy(作为施主型掺杂剂并且离子半径与元素Ba的离子半径相似)的离子半径,因此Ce可有效地在Ba位点处进行取代。

另外,元素Ce具有高价态,因此可有效地去除作为施主的氧空位。

在实施例中,通过除了应用Dy之外还应用表现出稳定的介电特性的Ce并确定最佳的含量比,以确保高介电常数和优异的可靠性。

根据实施例,介电陶瓷组合物包括BaTiO

通过基于100mol的基体材料主成分,将Dy和Ce的总含量调整为大于0.25mol并且小于或等于1.0mol,可获得高介电常数并且可改善诸如绝缘电阻的可靠性。

根据实施例,包括在陶瓷主体中的介电层中的介电陶瓷组合物包含Dy和Ce(稀土元素)作为副成分。通过调整Dy和Ce含量,可获得高介电特性,并且可改善诸如绝缘电阻的可靠性。

当基于100mol的基体材料主成分,Dy和Ce的总含量小于或等于0.25mol时,稀土元素的含量可能不足,从而导致在高温和高压环境下的可靠性降低。

换句话说,当基于100mol的基体材料主成分,Dy和Ce的总含量小于或等于0.25mol时,稀土元素在A位点处进行取代,并且氧空位的抑制变得不足。这将使可靠性劣化,从而导致介电常数的改善不足。

此外,当基于100mol的基体材料主成分,Dy和Ce的总含量大于1.0mol时,用作施主的稀土元素的含量增加,因此电子浓度也增加。这可能由于半导体化而导致绝缘电阻降低。

根据实施例,基于100mol的基体材料主成分,介电陶瓷组合物中的Ce含量可满足0.233mol≤Ce≤0.932mol。

通过基于100mol的基体材料主成分,将Ce含量调整为满足0.233mol≤Ce≤0.932mol,可获得高的介电特性并且可改善诸如绝缘电阻的可靠性。

具体地,通过基于100mol的基体材料主成分,将Ce含量调整为满足0.466mol≤Ce≤0.932mol,可获得高介电特性并且可改善诸如绝缘电阻的可靠性。

当基于100mol的基体材料主成分,Ce含量小于0.233mol时,与仅包含Dy的常规介电陶瓷组合物相比,介电常数不显著增加。

然而,如在本公开的实施例中,当基于100mol的基体材料主成分,Ce含量大于或等于0.233mol时,与仅包含Dy的常规介电陶瓷组合物相比,可更有效地去除氧空位。因此,改善了畴壁运动性,因此可实现高介电常数。

然而,当基于100mol的基体材料主成分,Ce含量大于0.932mol时,用作施主的稀土元素的含量增加,因此电子浓度也增加。这可能由于半导体化而导致绝缘电阻降低。

根据实施例,第一副成分还包括包含镧(La)的氧化物或碳酸盐,镧(La)可设置在介电晶粒的边界处。

此外,当使用离子半径大于Dy的离子半径的稀土元素(诸如,La)时,可更有效地取代Ba位点,从而使其对氧空位浓度的降低更有效。

因此,还可包括La作为第一副成分,以确保绝缘电阻,同时使氧空位浓度最小化以改善可靠性。

然而,如果La含量太高,则绝缘电阻可能由于过度的半导体化而迅速降低。因此,优选的是,基于100mol的基体材料主成分,La的含量为大于或等于0.233mol且小于或等于0.699mol。

如前所述,根据实施例的多层陶瓷电容器100是具有高容量的小型化产品,并且包括厚度为0.4μm或更小的介电层111以及厚度为0.4μm或更小的第一内电极121和第二内电极122,但是厚度不限于此。

另外,多层陶瓷电容器100的尺寸可以是1005(长×宽,1.0mm×0.5mm)或更小。

换句话说,由于根据实施例的多层陶瓷电容器100是具有高容量的小型化产品,因此介电层111以及第一内电极121和第二内电极122的厚度比现有技术产品的介电层以及第一内电极和第二内电极的厚度薄。对于应用了薄膜介电层和内电极的这种产品,研究改善诸如绝缘电阻的可靠性是非常重要的问题。

换句话说,由于与根据本公开的实施例的多层陶瓷电容器相比,现有技术的多层陶瓷电容器具有相对较厚的介电层和内电极,因此即使介电陶瓷组合物的成分与现有技术相同,可靠性也不是大问题。

然而,对于作为本公开的实施例的应用了薄膜介电层和内电极的多层陶瓷电容器的产品,多层陶瓷电容器的可靠性很重要,并且需要调整介电陶瓷组合物的成分。

也就是说,在实施例中,即使在介电层111为厚度为0.4μm或更小的薄膜的情况下,也可以通过基于100mol的基体材料主成分以大于0.25mol且小于或等于1.0mol的量包含第一副成分Dy和Ce来改善诸如绝缘电阻的可靠性。通过基于100mol的基体材料主成分,将Ce含量调整为满足0.233mol≤Ce≤0.932mol,即使当介电层111为厚度为0.4μm或更小的薄膜时,也可改善诸如绝缘电阻的可靠性。

然而,薄膜并不意味着介电层111以及内电极121和122的厚度为0.4μm或更小,并且可理解为介电层和内电极比现有技术产品的介电层和内电极薄的含义。

在下文中,将更详细地描述根据实施例的介电陶瓷组合物的每种成分。

(a)基体材料主成分

根据本公开的实施例的介电陶瓷组合物可包括由BaTiO

根据实施例,基体材料主成分包括从由BaTiO

根据实施例的介电陶瓷组合物可具有2000或更高的室温介电常数。

基体材料主成分没有特别限制,但是主成分粉末的平均直径可以为大于或等于40nm且小于或等于150nm。

(b)第一副成分

根据本公开的实施例,介电陶瓷组合物基本上包括Dy和Ce作为第一副成分的元素,并且基于100mol的基体材料主成分,介电陶瓷组合物可另外包括大于或等于0.233mol且小于或等于0.699mol的镧(La)的氧化物或碳酸盐。

在实施例中,第一副成分用于抑制应用了介电陶瓷组合物的多层陶瓷电容器的可靠性劣化。

当La含量小于0.233mol时,介电常数不增加。当La含量超过0.699mol时,绝缘电阻或损耗因数(DF)可能降低。

根据实施例,通过以大于0.25mol且小于或等于1.0mol的量(基于100mol的基体材料主成分)包含Dy和Ce作为第一副成分,并将存在于介电陶瓷组合物中的Ce含量调整为满足0.233mol≤Ce≤0.932mol(具体地,0.466mol≤Ce≤0.932mol)(基于100mol的基体材料主成分),即使当介电层111的厚度为0.4μm或更小时,也可改善诸如绝缘电阻的可靠性。

当基于100mol的基体材料主成分,Ce含量小于0.233mol时,与仅包含Dy的常规介电陶瓷组合物相比,介电常数不显著增加。

当基于100mol的基体材料主成分,Ce含量大于0.932mol时,绝缘电阻可能由于半导体化而降低。

(c)第二副成分

根据本公开的实施例,介电陶瓷组合物可包括包含从由锰(Mn)、钒(V)、铬(Cr)、铁(Fe)、镍(Ni)、钴(Co)、铜(Cu)和锌(Zn)组成的组中选择的至少一种元素的氧化物或者包含从由Mn、V、Cr、Fe、Ni、Co、Cu和Zn组成的组中选择的至少一种元素的碳酸盐作为第二副成分。

基于100mol的基体材料主成分,可以以0.1mol至2.0mol的量包括包含从由Mn、V、Cr、Fe、Ni、Co、Cu和Zn组成的组中选择的至少一种元素的氧化物和包含从由Mn、V、Cr、Fe、Ni、Co、Cu和Zn组成的组中选择的至少一种元素的碳酸盐作为第二副成分。

第二副成分用于降低烧制温度并增强应用了介电陶瓷组合物的多层陶瓷电容器的高温耐受电压特性。

第二副成分以及将要描述的第三副成分和第四副成分的含量可以是基于100mol的基体材料主成分而在介电陶瓷组合物中包含的量,具体地,可被定义为各种副成分包含的金属离子的摩尔数。

当第二副成分的含量小于0.1mol时,烧制温度升高并且高温耐受电压特性可能略微降低。

当第二副成分的含量大于2.0mol时,高温耐受电压特性和室温比电阻可能降低。

具体地,基于100mol的基体材料主成分,根据本公开的实施例的介电陶瓷组合物可包括0.1mol至2.0mol的第二副成分。这将使得能够在低温下烧制并提供高温耐受电压特性。

(d)第三副成分

根据本公开的实施例,介电陶瓷组合物可包括第三副成分,第三副成分是包括镁(Mg)的固定价受主元素的氧化物或碳酸盐。

基于100mol的基体材料主成分,可以以0.001mol至0.5mol的量包括固定价受主元素Mg作为第三副成分。

作为固定价受主元素或包括固定价受主元素的化合物的第三副成分用作受主以降低电子浓度。通过基于100mol的基体材料主成分,添加0.001mol至0.5mol的作为第三副成分的固定价受主元素Mg,可显著提高由于n型引起的可靠性改善效果。

当基于100mol的基体材料主成分,第三副成分的含量大于0.5mol时,介电常数可能减小,这可能是有问题的。

然而,根据实施例,优选的是,基于100mol的Ti包括0.5mol的第三副成分,以使由n型引起的可靠性改善最大化,但是不限于此。可以以0.5mol或更少或者稍微多于0.5mol的量包括第三副成分。

(e)第四副成分

根据本公开的实施例,介电陶瓷组合物可包括包含硅(Si)和铝(Al)中的至少一种元素的氧化物或者包含Si的玻璃化合物作为第四副成分。

基于100mol的基体材料主成分,介电陶瓷组合物还可包括0.001mol至4.0mol的第四副成分,第四副成分包括包含Si和Al中的至少一种元素的氧化物或者包含Si的玻璃化合物。

第四副成分的含量可以是第四副成分中包含的Si和Al中的至少一种元素的含量,而与诸如玻璃、氧化物的添加形式无关。

第四副成分用于降低烧制温度并改善应用了介电陶瓷组合物的多层陶瓷电容器的高温耐受电压特性。

当基于100mol的基体材料主成分,第四副成分的含量超过4.0mol时,可能存在诸如烧结性和密度降低、第二相形成等的问题,这可能是有问题的。

具体地,根据实施例,当介电陶瓷组合物包含4.0mol或更少的Al时,可将晶粒生长控制为均匀的,从而改善耐受电压特性和可靠性以及DC偏压特性。

在下文中,将参照本公开的实施例和比较示例更详细地描述本公开。提供这些实施例和比较示例以帮助对本发明的全面理解,并且不应被解释为限于在此阐述的实施例。

(实施例示例)

通过以下工艺来形成介电层:将添加剂(诸如,Dy、Ce、La、Al、Mg、Mn等)、粘合剂和有机溶剂(诸如,乙醇)添加到包含BaTiO

将粒径为BaTiO

具体地,在添加到介电浆料中的稀土元素之中,基于100mol的基体材料主成分,以大于0.25mol且小于或等于1.0mol的量添加Dy和Ce。

在实施例示例1中,将0.466mol的Dy和0.466mol的Ce添加到介电浆料中,而在实施例示例2中,将0.233mol的Dy和0.699mol的Ce添加到介电浆料中。

通过使用刮刀法将介电浆料制备为具有几微米厚度的陶瓷生片。

然后,制备平均粒径为0.1μm至0.2μm的包括40重量份至50重量份(相对于100重量份的导电膏)的镍粉末的用于内电极的导电膏。

用于内电极的导电膏被丝网印刷在陶瓷生片上以形成内电极图案。然后将其上形成有内电极图案的生片层压以形成层压体,然后压制和切割层压体。

然后,加热切割的层压体以去除粘合剂,并在高温还原气氛中烧制以形成陶瓷主体。

在烧制工艺期间,通过在1100℃至1200℃下在还原气氛(0.1% H

使用铜(Cu)膏来对烧制的陶瓷主体执行封端工艺和电极烧制,并形成外电极。

另外,将陶瓷主体110内部的介电层111以及第一内电极121和第二内电极122制造为在烧制之后具有0.4μm或更小的厚度。

(比较示例1)

比较示例1表示基于100mol的基体材料主成分添加了0.932mol的Dy的常规情况。其余制造工艺与实施例示例中描述的制造工艺相同。

(比较示例2)

在比较示例2中,基于100mol的基体材料主成分,添加了0.699mol的Dy和0.233mol的Ce。其余制造工艺与实施例示例中描述的制造工艺相同。

(比较示例3)

在比较示例3中,基于100mol的基体材料主成分,添加了0.932mol的Ce。其余制造工艺与实施例示例中描述的制造工艺相同。

对实施例示例1和2以及比较示例1至3(如上制造的原型多层陶瓷电容器(MLCC)样品)测试了介电常数、损耗因数(DF)和绝缘电阻(IR),并且评估了其结果。

在以下两个状态(即,陶瓷状态和多层陶瓷电容器状态)下,执行测试以精确地测量Ce添加的效果。

下表1示出了根据试验示例(实施例示例1和2以及比较示例1至3)的陶瓷片和原型MLCC的介电常数、DF和IR。

[表1]

参照表1,其中基于100mol的基体材料主成分,仅将0.932mol的Dy添加到介质陶瓷组合物中的比较示例1显示出低的介电常数和绝缘电阻。

与仅使用Dy的比较示例1相比,其中基于100mol的基体材料主成分,Ce含量为0.233mol的比较示例2显示出显著提高的介电常数。

其中基于100mol的基体材料主成分,仅添加0.932mol的Ce的比较示例3显示出将经受半导体化和降低的IR的趋势并且具有关于DF的问题。

相比之下,基于100mol的基体材料主成分,实施例示例1和2的Dy和Ce含量大于0.25mol且小于或等于1.0mol,这满足基于100mol的基体材料主成分,0.233mol≤Ce≤0.932mol,具体地,0.466mol≤Ce≤0.932mol。这导致高介电常数和改善的可靠性(诸如绝缘电阻等)。

图3是示出根据实施例示例和比较示例的相对于温度的介电常数的结果的曲线图。

参照图3,与仅使用Dy的比较示例1相比,实施例示例1和2显示出相对于温度的显著改善的介电常数,其中,在实施例示例1和2中,基于100mol的基体材料主成分,Dy和Ce含量为大于0.25mol且小于或等于1.0mol,并且基于100mol的基体材料主成分,Ce含量满足0.233mol≤Ce≤0.932mol,具体地,0.466mol≤Ce≤0.932mol。

此外,其中基于100mol的基体材料主成分,仅包含0.932mol的Ce的比较示例3显示出高介电常数;然而,存在半导体化的趋势,这可能导致绝缘电阻降低,从而引起可靠性问题。

根据实施例,通过包括新的稀土元素Ce作为副成分同时控制其含量,介电陶瓷组合物可具有改善的可靠性(诸如,改善的绝缘电阻)。

尽管上面已经示出和描述了实施例,但是对于本领域技术人员而言将明显的是,在不脱离由所附权利要求限定的本公开的范围的情况下,可以进行修改和改变。

相关技术
  • 具有高介电常数的介电组合物、包括其的多层陶瓷电容器、和多层陶瓷电容器的制备方法
  • 介电陶瓷组合物和含有该介电陶瓷组合物的多层陶瓷电容器
技术分类

06120115924637