掌桥专利:专业的专利平台
掌桥专利
首页

基于联合收获机相对位移的作物产量确定方法及系统

文献发布时间:2023-06-19 12:13:22


基于联合收获机相对位移的作物产量确定方法及系统

技术领域

本发明涉及农业产量测量领域,特别是涉及一种基于联合收获机相对位移的作物产量确定方法及系统。

背景技术

精细农业(Precision Agriculture,PA)是农业可持续的一个发展方向。该模式下,通过对环境中的影响因素的掌握和管理,获取农田中作物产量和其他影响作物生长的因素在空间和时间上的差异信息。通过差异信息改善植物生产和生长的条件和方法,达到合理的利用资源、节约投入、降低农业生产成本、提高作物产量、改善生态环境的目的。其中,产量图是评估大田作物的产量高低的重要途径,用于评价耕地、植保、施肥、收获各个环节的指标。此外,产量图还为下一轮的谷物种植和管理提供了处方信息。

产量图是产量监测传感器的延续,其能够整合大田中的产量分布信息,并能给用户提供可视化界面。基于已有的产量监测系统,产量监测系统必须包含谷物流量测量传感器、谷物水分测量传感器、全球定位系统(Global Positioning System,GPS)传感器和割幅测量传感器。在目前的产量图生成方法中,由于绘图时都是采用了满割幅的绘图方法,或是采用了大区域方块化的绘图方法,导致了割幅信息的丢失,进而导致产量预测不准确,收割时不能合理安排收获机的数量以及人员的分配,导致收割效率低,资源浪费,成本增加等问题。

发明内容

本发明的目的是提供一种基于联合收获机相对位移的作物产量确定方法及系统,通过在产量图中明确显示割幅对产量的影响,以在收割环节合理安排收获机和人员的分配,提高收割效率,避免资源浪费。

为实现上述目的,本发明提供了如下方案:

一种基于联合收获机相对位移的作物产量确定方法,所述联合收获机上安装有全球定位系统GPS传感器和谷物流量传感器,所述基于联合收获机相对位移的作物产量确定方法包括:

实时采集联合收获机在当前收割区域中各点的经度坐标、纬度坐标以及对应的产量数据;

针对任意相邻的两点,根据两对经度坐标和纬度坐标,得到联合收获机的相对位移及对应的航向角;

根据各对的相对位移及对应的航向角,确定联合收获机的行驶路径;

根据对应各点的产量数据以及联合收获机的割幅长度,对所述行驶路径进行颜色填充,得到作物产量图;

根据所述作物产量图,确定当前收割区域的作物产量。

可选地,根据以下公式,得到联合收获机的相对位移:

其中,

可选地,所述根据对应各点的产量数据以及联合收获机的割幅长度,对所述行驶路径进行颜色填充,得到作物产量图,具体包括:

根据所述行驶路径,确定所述联合收获机的初始作业区域;

对所述初始作业区域进行网格化处理,得到网格化作业区域;

根据各点的产量数据,对所述网格化作业区域中对应行驶路径的网格进行颜色填充,得到初始产量分布区域;

计算联合收获机的割幅长度与所述GPS传感器在联合收获机上安装位置的左右距离,得到左侧填充长度和右侧填充长度;

根据所述左侧填充长度和右侧填充长度,对所述初始产量分布区域进行扩充,得到最终的作物产量图。

可选地,所述网格化作业区域的网格大小为1cm。

可选地,所述根据各点的产量数据,对所述网格化作业区域中对应行驶路径的网格进行颜色填充,得到初始产量分布区域,具体包括:

针对第

在所述第

在所述第

判断所述累积相对位移与步进距离的大小;

若所述累积相对位移小于所述步进距离,继续获取第

按照产量数据的数值大小,以不同深度的颜色填充对应的网格,得到初始产量分布区域。

可选地,所述根据所述左侧填充长度和右侧填充长度,对所述初始产量分布区域进行扩充,得到最终的作物产量图,具体包括:

针对第

若斜率不为0,在所述初始产量分布区域中,沿网格左右两侧分别填充左侧填充长度和右侧填充长度的颜色;

若斜率为0,在所述初始产量分布区域中,沿网格的上下两侧分别填充左侧填充长度和右侧填充长度的颜色。

为实现上述目的,本发明还提供了如下方案:

一种基于联合收获机相对位移的作物产量确定系统,所述基于联合收获机相对位移的作物产量确定系统包括:

采集单元,用于实时采集联合收获机在当前收割区域中各点的经度坐标、纬度坐标以及对应的产量数据;

相对位移计算单元,与所述采集单元连接,用于针对任意相邻的两点,根据两对经度坐标和纬度坐标,得到联合收获机的相对位移及对应的航向角;

行驶路径确定单元,与所述相对位移计算单元连接,用于根据各对的相对位移及对应的航向角,确定联合收获机的行驶路径;

作物产量图绘制单元,分别与所述采集单元及所述行驶路径确定单元连接,用于根据对应各点的产量数据以及联合收获机的割幅长度,对所述行驶路径进行颜色填充,得到作物产量图;

产量确定单元,与所述作物产量图绘制单元连接,用于根据所述作物产量图,确定当前收割区域的作物产量。

可选地,根据以下公式,得到联合收获机的相对位移:

其中,

可选地,所述作物产量图绘制单元包括:

初始作业区域确定模块,与所述行驶路径确定单元连接,用于根据所述行驶路径,确定所述联合收获机的初始作业区域;

网格化模块,与所述初始作业区域确定模块连接,用于对所述初始作业区域进行网格化处理,得到网格化作业区域;

第一填充模块,分别与所述采集单元及所述网格化模块连接,用于根据各点的产量数据,对所述网格化作业区域中对应行驶路径的网格进行颜色填充,得到初始产量分布区域;

计算模块,与所述采集单元连接,用于计算联合收获机的割幅长度与所述GPS传感器在联合收获机上安装位置的左右距离,得到左侧填充长度和右侧填充长度;

第二填充模块,分别与所述第一填充模块及所述计算模块连接,用于根据所述左侧填充长度和右侧填充长度,对所述初始产量分布区域进行扩充,得到最终的作物产量图。

可选地,所述第一填充模块包括:

第一判断子模块,用于针对第

第一写入子模块,分别与所述采集单元、所述第一判断子模块及所述网格化模块连接,用于在所述第

第一累积子模块,与所述第一判断子模块连接,用于在所述第

第二判断子模块,与所述第一累积子模块连接,用于判断所述累积相对位移与步进距离的大小;

第二累积子模块,与所述第二判断子模块连接,用于若所述累积相对位移小于所述步进距离,继续获取第

第二写入子模块,分别与所述第二判断子模块及所述第二累积子模块连接,用于在

填充子模块,分别与所述第一写入子模块及所述第二写入子模块连接,用于按照产量数据的数值大小,以不同深度的颜色填充对应的网格,得到初始产量分布区域。

根据本发明提供的具体实施例,本发明公开了以下技术效果:通过实时采集联合收获机在当前收割区域中各点的经度坐标、纬度坐标以及对应的产量数据;针对任意相邻的两点,根据两对经度坐标和纬度坐标,得到联合收获机的相对位移及对应的航向角;根据各对的相对位移及对应的航向角,确定联合收获机的行驶路径;根据对应各点的产量数据以及联合收获机的割幅长度,对所述行驶路径进行颜色填充,得到作物产量图;在产量图中明确显示了割幅对产量的影响,再根据作物产量图,确定当前收割区域的作物产量,进而在收割环节可以合理安排收获机和人员的分配,提高收割效率,避免资源浪费。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。

图1为本发明基于联合收获机相对位移的作物产量确定方法的流程图;

图2为确定作物产量图的流程图;

图3为本发明基于联合收获机相对位移的作物产量确定方法的应用场景示意图;

图4为作物产量确定方法的整体流程图;

图5(a)到图5(d)为作物产量的效果图;

图6为最终生成的产量图;

图7为本发明基于联合收获机相对位移的作物产量确定系统的模块结构示意图。

符号说明:

采集单元-1,相对位移计算单元-2,行驶路径确定单元-3,作物产量图绘制单元-4,产量确定单元-5。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

本发明的目的是提供一种基于联合收获机相对位移的作物产量确定方法,通过在产量图中明确显示割幅对产量的影响,以在收割环节合理安排收获机和人员的分配,提高收割效率,避免资源浪费。

为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。

如图1所示,本发明基于联合收获机相对位移的作物产量确定方法包括:

S1:实时采集联合收获机在当前收割区域中各点的经度坐标、纬度坐标以及对应的产量数据。

S2:针对任意相邻的两点,根据两对经度坐标和纬度坐标,得到联合收获机的相对位移及对应的航向角。

具体地,根据以下公式,得到联合收获机的相对位移:

其中,

在本实施例中,将采集到的GPS经纬度数据,根据以上公式将相邻的两对经度坐标和纬度坐标转换为直角坐标系下的相对位移,代表联合收获机前进距离,再通过航向角,得到联合收获机的前进方向。

S3:根据各对的相对位移及对应的航向角,确定联合收获机的行驶路径。

由于联合收获机整个收割过程中采集了多组相对位移及航向角,根据所有的相对位移及对应的航向角,即可确定联合收获机行驶路径。

S4:根据对应各点的产量数据以及联合收获机的割幅长度,对所述行驶路径进行颜色填充,得到作物产量图。

S5:根据所述作物产量图,确定当前收割区域的作物产量。

作物产量图中包含联合收获机的割幅信息,因此,根据此作物产量图确定的当前收割区域的作物产量更详细,为之后的收割等环节提供详细的产量信息,可合理安排收获机及人员的分配,进而提高收割效率,降低机械及人力资源的浪费。

进一步地,如图2所示,S4:根据对应各点的产量数据以及联合收获机的割幅长度,对所述行驶路径进行颜色填充,得到作物产量图,具体包括:

S41:根据所述行驶路径,确定所述联合收获机的初始作业区域。

S42:对所述初始作业区域进行网格化处理,得到网格化作业区域。在本实施例中,所述网格化作业区域的网格大小为1cm。

S43:根据各点的产量数据,对所述网格化作业区域中对应行驶路径的网格进行颜色填充,得到初始产量分布区域。

S44:计算联合收获机的割幅长度与所述GPS传感器在联合收获机上安装位置的左右距离,得到左侧填充长度和右侧填充长度。

S45:根据所述左侧填充长度和右侧填充长度,对所述初始产量分布区域进行扩充,得到最终的作物产量图。

可选地,所述割幅长度为联合收获机自身的参数。所述割幅长度也可以通过安装在联合收获机上的割幅测量传感器检测得到。

更进一步地,S43:根据各点的产量数据,对所述网格化作业区域中对应行驶路径的网格进行颜色填充,得到初始产量分布区域,具体包括:

针对第

在所述第

在所述第

判断所述累积相对位移与步进距离的大小。

若所述累积相对位移小于所述步进距离,继续获取第

按照产量数据的数值大小,以不同深度的颜色填充对应的网格,得到初始产量分布区域。

在本实施例中,将产量数据的数值大小以连续的不同颜色填充到网格中。然后读取与GPS数据关联的左右割幅信息,分别计算出两侧实际割幅距离GPS安装位置的距离

优选地,S45:根据所述左侧填充长度和右侧填充长度,对所述初始产量分布区域进行扩充,得到最终的作物产量图,具体包括:

针对第

若斜率不为0,在所述初始产量分布区域中,沿网格左右两侧分别填充左侧填充长度和右侧填充长度的颜色。

若斜率为0,在所述初始产量分布区域中,沿网格的上下两侧分别填充左侧填充长度和右侧填充长度的颜色。

由于采用了航向角作为判断方向的参数,当航向角为0时即相邻两个点之间的斜率为0时,会存在垂直线无法求解问题,因此需要对两个相邻的经纬度坐标的斜率进行判断,防止存在垂直线无法求解的问题。

如图3所示,本发明基于联合收获机相对位移的作物产量确定方法在以前产量图生成的作物产量、水分、GPS位置数据的基础上引入割幅信息,实现产量图重绘功能。

如图4所示,基于联合收获机相对位移的作物产量确定方法的整体流程为:首先设置田块网格化的最小分辨率和产量图生成时的步进距离△d,本实施例中田块网格化的最小分辨率默认为1cm,然后读取联合收获机的GPS数据,对联合收获机的行驶距离和航向角度进行监控。通过遍历所有的产量数据确定联合收获机的作业区域,然后对作业区域在直角坐标系下的作业区域利用数组将区域划分为网格,通过行驶距离和航向角度在网格中生成联合收获机的作业轨迹,如图5(a)所示。然后基于作业轨迹,每次的GPS数据读取当时的产量数据,并将产量数据写入数组的网格中,如图5(b)所示,并按数值大小将数字转换成连续的颜色块,如图5(c)所示。

当判断连续几次的GPS数据的行驶距离之和大于步进距离△d后,读取基于每次GPS数据的左右割幅数据

此外,本发明还可以使用同样的方法绘制带有割幅信息的谷物含水率分布图、带有割幅信息的谷物湿产量分布图、带有割幅信息的谷物干产量分布图、带有割幅信息的联合收获机行驶速度图、带有割幅信息的联合收获机能耗图。仅需在联合收获机安装对应的传感器,获取相应的数据,将传感器采集的数据替换为上述基于联合收获机相对位移的作物产量图重绘方法中的产量数据即可。

最终生成的产量图如图6所示,本发明绘制的产量图能够反应联合收获机的实际作业情况,对复杂地形和土地中的湖泊、石块、树木、作物的行间距和未开垦的土地具有明显区别度。进而可以在评价耕地、植保、施肥、收割等各个环节合理安排收获机和人员的分配,提高收割效率,避免资源的浪费。

如图7所示,本发明基于联合收获机相对位移的作物产量确定系统包括:采集单元1、相对位移计算单元2、行驶路径确定单元3、作物产量图绘制单元4以及产量确定单元5。

其中,所述采集单元1用于实时采集联合收获机在当前收割区域中各点的经度坐标、纬度坐标以及对应的产量数据。

所述相对位移计算单元2与所述采集单元1连接,所述相对位移计算单元2用于针对任意相邻的两点,根据两对经度坐标和纬度坐标,得到联合收获机的相对位移及对应的航向角。

具体地,根据以下公式,得到联合收获机的相对位移:

其中,

所述行驶路径确定单元3与所述相对位移计算单元2连接,所述行驶路径确定单元3用于根据各对的相对位移及对应的航向角,确定联合收获机的行驶路径。

所述作物产量图绘制单元4分别与所述采集单元1及所述行驶路径确定单元3连接,所述作物产量图绘制单元4用于根据对应各点的产量数据以及联合收获机的割幅长度,对所述行驶路径进行颜色填充,得到作物产量图。

所述产量确定单元5与所述作物产量图绘制单元4连接,所述产量确定单元5用于根据所述作物产量图,确定当前收割区域的作物产量。

进一步地,所述作物产量图绘制单元4包括:初始作业区域确定模块、网格化模块、第一填充模块、计算模块以及第二填充模块。

其中,所述初始作业区域确定模块与所述行驶路径确定单元3连接,所述初始作业区域确定模块用于根据所述行驶路径,确定所述联合收获机的初始作业区域。

所述网格化模块与所述初始作业区域确定模块连接,所述网格化模块用于对所述初始作业区域进行网格化处理,得到网格化作业区域。

所述第一填充模块分别与所述采集单元1及所述网格化模块连接,所述第一填充模块用于根据各点的产量数据,对所述网格化作业区域中对应行驶路径的网格进行颜色填充,得到初始产量分布区域。

所述计算模块与所述采集单元1连接,所述计算模块用于计算联合收获机的割幅长度与所述GPS传感器在联合收获机上安装位置的左右距离,得到左侧填充长度和右侧填充长度。

所述第二填充模块分别与所述第一填充模块及所述计算模块连接,所述第二填充模块用于根据所述左侧填充长度和右侧填充长度,对所述初始产量分布区域进行扩充,得到最终的作物产量图。

更进一步地,所述第一填充模块包括:第一判断子模块、第一写入子模块、第一累积子模块、第二判断子模块、第二累积子模块、第二写入子模块以及填充子模块。

其中,所述第一判断子模块用于针对第

所述第一写入子模块分别与所述采集单元1、所述第一判断子模块及所述网格化模块连接,所述第一写入子模块用于在所述第

所述第一累积子模块与所述第一判断子模块连接,所述第一累积子模块用于在所述第

所述第二判断子模块与所述第一累积子模块连接,所述第二判断子模块用于判断所述累积相对位移与步进距离的大小。

所述第二累积子模块与所述第二判断子模块连接,所述第二累积子模块用于若所述累积相对位移小于所述步进距离,继续获取第

所述第二写入子模块分别与所述第二判断子模块及所述第二累积子模块连接,所述第二写入子模块用于在

所述填充子模块分别与所述第一写入子模块及所述第二写入子模块连接,所述填充子模块用于按照产量数据的数值大小,以不同深度的颜色填充对应的网格,得到初始产量分布区域。

相对于现有技术,本发明基于联合收获机相对位移的作物产量确定系统与上述基于联合收获机相对位移的作物产量确定方法的有益效果相同,在此不再赘述。

本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。

本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

相关技术
  • 基于联合收获机相对位移的作物产量确定方法及系统
  • 基于联合收获机相对位移的作物产量确定方法及系统
技术分类

06120113210982