掌桥专利:专业的专利平台
掌桥专利
首页

太阳能电池的制备方法

文献发布时间:2023-06-19 13:45:04


太阳能电池的制备方法

技术领域

本发明涉及光伏领域,具体涉及一种太阳能电池的制备方法。

背景技术

PERL电池(Passivated emitter and Rear locally diffused)是钝化发射极、背面定域扩散太阳能电池的简称,其电池效率较高。PERL双面电池不仅能够保证电池正面效率,同时也可以增强双面率。正面利用局部重掺杂形成选择性发射极,降低发射极的复合,改善正面电极与硅的接触电阻率。背面采用局域重掺杂,降低背面的局域复合,减少金属与硅的接触电阻,其技术路线基于选择性发射极,背面局部重掺杂的电池结构,是对P型PERC的升级且电池成本可控的高效晶体硅电池技术路线。

未来为了满足进一步降低成本及制作柔性组件以扩大应用市场要求,硅片厚度会越来越薄。而采用丝网印刷过程中,由于与硅片接触会对硅片产生一定的压力,不可避免地会加大硅片隐裂或碎片的风险,影响电池片的良率,而且印刷的金属电极宽度较宽,且存在外扩情况,会使遮光面积较大,导致电池片光吸收能力和吸收量的同比降低,进而影响电池片转换效率;同时丝网印刷的金属电极形貌差异较大,尤其对于纳米硅硼浆而言。

发明内容

为解决现有技术的缺陷,本发明提供一种太阳能电池的制备方法,包括:在硅片正面或背面沉积激光局部掺杂用纳米硅硼浆栅线,在硅片背面沉积背面金属栅线电极,以及在硅片正面沉积正面金属栅线电极;上述沉积都采用非接触式激光转印方式。

优选的,所述激光转印包括如下具体步骤:将硅片置于承载台上,在硅片上方设置转印衬底,转印衬底的底面涂覆待转印材料;转印衬底上方设置激光器,利用激光器产生激光(高能量的线形光束或者高斯光束)将转印衬底底面的待转印材料扫描转印至硅片上;

转印衬底采用满足透光性、耐高温、耐腐蚀且化学性质稳定的材料;

采用激光转印在硅片正面或背面沉积激光局部掺杂用纳米硅硼浆栅线时,所用的待转印材料为纳米硅硼浆;

采用激光转印在硅片背面沉积背面金属栅线电极、采用激光转印在硅片正面沉积正面金属栅线电极时,所用的待转印材料为金属导电材料。

优选的,所述金属导电材料为铝浆或银浆。

优选的,所述承载台具有加热功能,激光转印之前,承载台对硅片进行加热,使硅片达到预定温度。

优选的,所述激光转印过程中,激光线直径(聚焦后的光束大小)控制在1μm~20μm,激光脉冲控制在1ns~100ns。

优选的,所述激光转印过程中,转印衬底底面与硅片的距离控制在1μm~50μm。

优选的,所述激光转印过程中,转印图形的主栅线数目为1~10,且纳米硅硼浆栅线宽度为1μm~180μm,正面副栅线宽度为1μm~50μm, 背面副栅线宽度为1μm~200μm。

优选的,所述太阳能电池为PERL电池,制备方法的具体步骤包括:

1)硅片清洗制绒;

2)磷扩散;

3)正面激光局部重掺;

4)链式氧化;

5)去PSG和背面抛光;

6)背面氧化;

7)背面沉积钝化膜;

8)正面沉积减反膜;

9)在硅片背面沉积激光局部掺杂用纳米硅硼浆;

10)背面激光局部掺杂;

11)沉积背面金属栅线电极;

12)沉积正面金属栅线电极;

13)烧结。

优选的,所述正面激光局部重掺的工艺参数:激光波长为300~780nm,激光功率为1~50w,频率为1~50MHz,扫描速度为1~50m/s,光斑尺寸为1~100um。

优选的,所述太阳能电池为Topcon电池,制备方法的具体步骤包括:

1)硅片清洗制绒;

2)正面硼扩散;

3)BSG刻蚀;

4)氧化隧穿层;

5)背面多晶硅沉积;

6)背面磷扩散;

7)清洗;

8)正面沉积钝化膜;

9)背面沉积减反膜;

10)在硅片正面沉积激光局部掺杂用纳米硅硼浆;

11)正面激光局部掺杂;

12)清洗去除正面硼浆;

13)沉积背面金属栅线电极;

14)沉积正面金属栅线电极;

15)烧结。

本发明的优点和有益效果在于:提供一种太阳能电池的制备方法,利用激光转印实现了非接触式沉积纳米硅硼浆和电极,降低了硅片的隐裂和碎片率;并且有利于优化电极的规格尺寸和形貌,增加光吸收且提高电池效率,同时改善了硅片的洁净度,消除了污染源,适于规模化生产的应用。

附图说明

图1是激光转印的示意图;

图2是实施例1所制备PERL太阳能电池的结构示意图;

图3是实施例2所制备Topcon太阳能电池的结构示意图。

具体实施方式

下面结合附图和实施例,对本发明的具体实施方式作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。

实施例1

本发明提供一种PERL太阳能电池的制备方法,包括如下步骤:

1)硅片清洗制绒:使用碱溶液制绒,单晶硅片经过表面织构,形成金字塔状,降低表面反射,并且进行表面清洁去除杂质和金属离子,工艺温度60~80℃,腐蚀时间为20min;

2)磷扩散:制绒面磷扩形成pn结,扩散温度850℃,扩散后方阻约为150ohm/sq;

3)正面激光局部重掺:(532nm,绿光)利用磷硅玻璃作为掺杂源实现选择性发射结,正面激光掺杂区的方阻为70ohm/sq;

4)链式氧化:在链式设备中对硅片进行氧化处理,使正面激光掺杂区表面形成一层氧化硅,保护碱抛过程中不受影响,厚度约为10nm;

5)去PSG和背面抛光:先用水膜保护去除硅片背面PSG,之后采用碱抛工艺实现背面抛光,去除硅片正面磷硅玻璃及边缘pn结,工艺温度约为60~80℃,工艺时间约为20min;

6)背面氧化:在硅片背面氧化形成一层氧化硅,厚度约为10nm;

7)背面沉积钝化膜:在硅片背面用PECVD的方法生长氮氧化硅/氮化硅叠层膜,叠层膜的厚度为150nm;

8)正面沉积减反膜:在硅片正面用PECVD的方法生长氮化硅减反膜,厚度75nm;

9)在硅片背面沉积激光局部掺杂用纳米硅硼浆:采用非接触式激光转印方式在硅片背面沉积激光局部掺杂用纳米硅硼浆栅线,精准控制纳米硅硼浆栅线尺寸和形貌,激光脉冲10ns~20ns,激光线直径(聚焦后的光束大小)控制在15μm~20μm,转印衬底底面与硅片的距离控制在20μm~40μm,纳米硅硼浆栅线宽度控制在60μm~100μm;

10)背面激光局部掺杂:采用纳米级激光(532nm,绿光)对纳米硅硼浆栅线进行掺杂,在硼浆位置形成重掺区,掺杂浓度约为1E+20,深度为0.8~1.2um;

11)沉积背面金属栅线电极:采用非接触式激光转印方式在硅片背面沉积背面金属栅线电极(背面铝栅线),使背面金属栅线电极完全覆盖硼浆栅线;

12)沉积正面金属栅线电极:采用非接触式激光转印方式在硅片正面沉积正面金属栅线电极;

13)烧结。

实施例2

本发明还提供一种Topcon太阳能电池的制备方法,包括如下步骤:

1)以N型硅片作为衬底进行清洗制绒:使用碱溶液制绒,单晶硅片经过表面织构,形成金字塔状,降低表面反射,并且进行表面清洁去除杂质和金属离子,工艺温度60~80℃,腐蚀时间约为20min;

2)正面硼扩散:绒面表面使用BCl

3)BSG刻蚀:背面酸洗去BSG清洗,再使用碱溶液进行背面刻蚀抛光;

4)氧化隧穿层:背面使用干法氧化形成氧化硅隧穿层,工艺温度温度约为650℃,隧穿层厚度约为1~2nm之间;

5)背面多晶硅沉积:使用PECVD在背面隧穿层上沉积一层poly硅;通入SiH4,工艺温度400~500℃,先进行沉积一层较薄的poly硅,厚度为20nm;随后进行升温至650℃,沉积约110 nm厚的二次poly硅,沉积的多晶硅总厚120~140nm之间;

6)背面磷扩散:背面采用POCl

7)清洗:酸洗去PSG和BSG,其中HF浓度为5%,温度为70℃,总时间为10min;

8)正面沉积AlOx、SiNx钝化膜:在硅片正面用PECVD的方法生长AlOx、SiNx叠层膜,叠层膜的厚度为85nm;

9)背面沉积SiNx减反膜:在硅片背面用PECVD的方法生长氮化硅减反膜,厚度75nm;

10)在硅片正面沉积激光局部掺杂用纳米硅硼浆:采用非接触式激光转印方式在硅片正面沉积激光局部掺杂用纳米硅硼浆栅线,精准控制纳米硅硼浆栅线尺寸和形貌,转印衬底底面与硅片的距离控制在20μm~40μm,纳米硅硼浆栅线宽度控制在60μm~100μm;

11)正面激光局部掺杂:采用激光对纳米硅硼浆栅线进行掺杂,在硼浆位置形成重掺区,且对绒面无明显破坏;

12)清洗去除正面硼浆;

13)沉积背面金属栅线电极:采用非接触式激光转印方式在硅片背面沉积背面金属栅线电极;

14)沉积正面金属栅线电极:采用非接触式激光转印方式在硅片正面沉积正面金属栅线电极,精确控制使正面金属栅线电极完全处在硼浆激光重掺区域内;

15)烧结。

实施例1的步骤9)在硅片背面沉积激光局部掺杂用纳米硅硼浆、步骤11)沉积背面金属栅线电极、步骤12)沉积正面金属栅线电极都采用非接触式激光转印方式;

实施例2的步骤10)在硅片正面沉积激光局部掺杂用纳米硅硼浆、步骤13)沉积背面金属栅线电极、步骤14)沉积正面金属栅线电极也都采用非接触式激光转印方式;

具体的,如图1所示,所述非接触式激光转印方式包括如下具体步骤:将硅片4置于承载台5上,在硅片4上方设置转印衬底2,转印衬底2的底面涂覆待转印材料3;转印衬底2上方设置激光器1,利用激光器1产生激光6(高能量的线形光束或者高斯光束)将转印衬底2底面的待转印材料3扫描转印至硅片4上;

转印衬底2采用满足透光性、耐高温、耐腐蚀且化学性质稳定的材料;

采用激光转印在硅片4背面沉积激光局部掺杂用纳米硅硼浆栅线时,所用的待转印材料3为纳米硅硼浆;

采用激光转印在硅片4背面沉积背面金属栅线电极,所用的待转印材料3为铝浆;

采用激光转印在硅片4正面沉积正面金属栅线电极时,所用的待转印材料3为银浆;

所述承载台5具有加热功能,激光转印之前,承载台5对硅片4进行加热,使硅片4达到预定温度;

所述激光转印过程中:

激光线直径(聚焦后的光束大小)控制在15μm~20μm,激光脉冲控制在10ns~20ns。

转印衬底2底面与硅片4的距离控制在20μm~40μm;

转印图形的主栅线数目为9,且纳米硅硼浆栅线宽度为60μm-100μm,正面副栅线宽度为10μm~40μm, 背面副栅线宽度为100μm-120μm。

实施例1所制备PERL太阳能电池的结构如图2所示,自电池一侧面至另一侧面的分层结构包括:正电极11,正电极细栅重掺区12,正面氮化硅减反膜13,磷扩散层14,硅衬底10,钝化层16,氮化硅层17,纳米硅硼浆重掺区15,纳米硅硼浆栅线18,背电极19。

实施例2所制备Topcon太阳能电池的结构如图3所示,自电池一侧面至另一侧面的分层结构包括:正电极21,正面SiNx减反膜22,AlOx钝化层23,硼扩散层24,纳米硅硼浆重掺区25,N型硅衬底20,SiOx隧穿层26,磷扩p型poly硅27,背面SiNx层28,背电极29。

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

技术分类

06120113789950