掌桥专利:专业的专利平台
掌桥专利
首页

技术领域

本申请实施例涉及通信领域,尤其涉及一种传输物理层协议数据单元的方法和装置。

背景技术

随着移动互联网的发展和智能终端的普及,数据流量快速增长,用户对通信服务质量的需求也越来越高,电气和电子工程师协会(institute of electrical andelectronics engineers,IEEE)802.11ax标准已经难以在大吞吐量、低抖动和低延迟等方面满足用户需求,因此,迫切需要发展下一代无线局域网(wireless local area network,WLAN)技术,即IEEE 802.11be标准。

与IEEE 802.11ax不同,IEEE 802.11be将采用超大带宽,例如240MHz和320MHz,以实现超高传输速率和支持超密用户的场景。并且在超大下还考虑了打孔以及多个RU合并的场景,针对更大的信道带宽,如何设计短训练域(short training field,STF)序列,是一个值得关心的问题。

发明内容

本申请提供一种传输物理层协议数据单元的方法和装置,能够针对更大的信道带宽,设计短训练域序列。

第一方面,提供了一种传输物理层协议数据单元的方法,包括:生成遵循802.11be标准的物理层协议数据单元PPDU,所述PPDU包括短训练域,所述短训练域的频域序列的子载波个数大于2048;在目标信道上发送所述PPDU,其中,所述目标信道的带宽大于或等于160MHz。本申请实施例的方法能够确定更大信道带宽所对应的短训练序列或者说频域序列,可以支持接收端对在更大信道带宽上传输的数据进行自动增益控制。该短训练序列可以基于现有信道带宽的短训练序列得到,并且,通过仿真计算,例如调节参数,可以获得性能较好的短训练序列。短训练域可以基于该短训练序列得到。根据本申请实施例,不仅可以满足实际中的更大信道带宽,且向后兼容,而且通过对参数进行穷举仿真验证了本申请实施例提供的短训练序列,峰均功率值PAPR较小,性能较优,进而提高接收端的自动增益控制电路的估计效果,从而降低接收误码率。

结合第一方面,在第一方面的某些实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

{HES

{HES

其中,

结合第一方面,在第一方面的某些实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

其中,

结合第一方面,在第一方面的某些实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

其中,

结合第一方面,在第一方面的某些实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

{HES

其中,

结合第一方面,在第一方面的某些实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

{HES

其中,

结合第一方面,在第一方面的某些实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

{HES

{HES

{HES

其中,

结合第一方面,在第一方面的某些实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

其中,

结合第一方面,在第一方面的某些实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

其中,

结合第一方面,在第一方面的某些实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

{HES

{HES

{HES

{HES

{HES

{HES

其中,

结合第一方面,在第一方面的某些实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

{HES

其中,

结合第一方面,在第一方面的某些实现方式中,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

其中,

结合第一方面,在第一方面的某些实现方式中,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

其中,

结合第一方面,在第一方面的某些实现方式中,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

{HES

其中,

结合第一方面,在第一方面的某些实现方式中,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

其中,

结合第一方面,在第一方面的某些实现方式中,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

其中,

结合第一方面,在第一方面的某些实现方式中,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

其中,

结合第一方面,在第一方面的某些实现方式中,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

{HES

{HES

{HES

{HES

{HES

其中,

结合第一方面,在第一方面的某些实现方式中,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

{HES

其中,

结合第一方面,在第一方面的某些实现方式中,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

其中,

第二方面,提供了另一种传输物理层协议数据单元的方法,包括:在目标信道上接收遵循802.11be标准的物理层协议数据单元PPDU,所述PPDU包括短训练域,所述短练域的频域序列的子载波个数大于2048,其中,所述目标信道的带宽大于或等于160MHz;解析所述PPDU。

结合第二方面,在第二方面的某些实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

{HES

{HES

其中,

结合第二方面,在第二方面的某些实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

其中,

结合第二方面,在第二方面的某些实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

其中,

结合第二方面,在第二方面的某些实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

{HES

其中,

结合第二方面,在第二方面的某些实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

{HES

其中,

结合第二方面,在第二方面的某些实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

{HES

{HES

{HES

其中,

结合第二方面,在第二方面的某些实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

其中,

结合第二方面,在第二方面的某些实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

其中,

结合第二方面,在第二方面的某些实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

{HES

{HES

{HES

{HES

{HES

{HES

其中,

结合第二方面,在第二方面的某些实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

{HES

其中,

结合第二方面,在第二方面的某些实现方式中,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

其中,

结合第二方面,在第二方面的某些实现方式中,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

其中,

结合第二方面,在第二方面的某些实现方式中,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

{HES

其中,

结合第二方面,在第二方面的某些实现方式中,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

其中,

结合第二方面,在第二方面的某些实现方式中,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

其中,

结合第二方面,在第二方面的某些实现方式中,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

其中,

结合第二方面,在第二方面的某些实现方式中,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

{HES

{HES

{HES

{HES

{HES

其中,

结合第二方面,在第二方面的某些实现方式中,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

{HES

其中,

结合第二方面,在第二方面的某些实现方式中,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

其中,

第三方面,提供一种传输物理层协议数据单元的装置,所述装置用于执行上述第一方面提供的方法。具体地,所述装置可以包括用于执行第一方面以及第一方面任一种可能实现方式的模块。

第四方面,提供一种传输物理层协议数据单元的装置,所述装置用于执行上述第二方面提供的方法。具体地,所述装置可以包括用于执行第二方面以及第二方面任一种可能实现方式的模块。

第五方面,提供一种传输物理层协议数据单元的装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面以及第一方面任一种可能实现方式中的方法。可选地,该装置还包括存储器。可选地,该装置还包括通信接口,处理器与通信接口耦合。

在一种实现方式中,该装置为接入点。当该装置为接入点时,所述通信接口可以是收发器,或,输入/输出接口。

在另一种实现方式中,该装置为配置于接入点中的芯片。当该装置为配置于接入点中的芯片时,所述通信接口可以是输入/输出接口。

在一种实现方式中,该装置为站点。当该装置为站点时,所述通信接口可以是收发器,或,输入/输出接口。

在另一种实现方式中,该装置为配置于站点中的芯片。当该装置为配置于站点中的芯片时,所述通信接口可以是输入/输出接口。

在另一种实现方式中,该装置为芯片或芯片系统。

可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。

第六方面,提供一种传输物理层协议数据单元的装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面以及第二方面任一种可能实现方式中的方法。可选地,该装置还包括存储器。可选地,该装置还包括通信接口,处理器与通信接口耦合。

在一种实现方式中,该装置为接入点。当该装置为接入点时,所述通信接口可以是收发器,或,输入/输出接口。

在另一种实现方式中,该装置为配置于接入点中的芯片。当该装置为配置于接入点中的芯片时,所述通信接口可以是输入/输出接口。

在一种实现方式中,该装置为站点。当该装置为站点时,所述通信接口可以是收发器,或,输入/输出接口。

在另一种实现方式中,该装置为配置于站点中的芯片。当该装置为配置于站点中的芯片时,所述通信接口可以是输入/输出接口。

在另一种实现方式中,该装置为芯片或芯片系统。

可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。

第七方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被装置执行时,使得所述装置实现第一方面以及第一方面任一种可能实现方式中的方法。

第八方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被装置执行时,使得所述装置实现第二方面以及第二方面任一种可能实现方式中的方法。

第九方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得装置实现第一方面以及第一方面任一种可能实现方式中提供的方法。

第十方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得装置实现第二方面以及第二方面任一种可能实现方式中提供的方法。

第十一方面,提供一种通信系统,包括如前所述的发送端和接收端。

附图说明

为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。

图1是适用于本申请实施例的方法的通信系统的示意图;

图2是适用于本申请实施例的接入点的内部结构图;

图3是适用于本申请实施例的站点的内部结构图;

图4是HE-STF由M序列构建的示意图;

图5a~图5g是80MHz带宽下OFDMA资源块分布的示意图;

图6是本申请实施例提供的传输物理层协议数据单元的方法的示意性流程图;

图7是本申请实施例提供的传输物理层协议数据单元的装置的示意性框图;

图8是本申请实施例提供的传输物理层协议数据单元的装置的另一示意性框图;

图9是本申请实施例提供的传输物理层协议数据单元的装置的又一示意性框图。

具体实施方式

下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。

本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。

本申请实施例的说明书和权利要求书中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述对象的特定顺序。例如,第一目标对象和第二目标对象等是用于区别不同的目标对象,而不是用于描述目标对象的特定顺序。

在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。

在本申请实施例的描述中,除非另有说明,“多个”的含义是指两个或两个以上。例如,多个处理单元是指两个或两个以上的处理单元;多个系统是指两个或两个以上的系统。

下面将结合附图,对本申请中的技术方案进行描述。

本申请实施例的技术方案可以应用于各种通信系统,例如:无线局域网(wirelesslocal area network,WLAN)通信系统,全球移动通讯(global system of mobilecommunication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。

以下作为示例性说明,仅以WLAN系统为例,描述本申请实施例的应用场景以及本申请实施例的方法。

具体而言,本申请实施例可以应用于无线局域网(wireless local areanetwork,WLAN),并且本申请实施例可以适用于WLAN当前采用的电气与电子工程师协会(institute of electrical and electronics engineers,IEEE)802.11系列协议中的任意一种协议,比如IEEE802.11be(又称为Wi-Fi 7协议)。WLAN可以包括一个或多个基本服务集(basic service set,BSS),基本服务集中的网络节点包括接入点(access point,AP)和站点(station,STA)。

具体地,本申请实施例中发送端或接收端可以是WLAN中用户站点(STA),还可以是用户站点中的芯片或处理系统,该用户站点也可以称为系统、用户单元、接入终端、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理、用户装置或用户设备(user equipment,UE)。该STA可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线局域网(例如Wi-Fi)通信功能的手持设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。

另外,本申请实施例中的发送端或接收端也可以是WLAN中AP或AP中的芯片或处理系统,AP可用于与接入终端通过无线局域网进行通信,并将接入终端的数据传输至网络侧,或将来自网络侧的数据传输至接入终端。

为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请实施例的通信系统。如图1所示的场景系统可以是WLAN系统,图1的WLAN系统可以包括一个或者多个AP,和一个或者多个STA,图1以一个AP和三个STA为例。AP和STA之间可以通过各种标准进行无线通信。例如,AP和STA之间可以采用单用户多入多出(single-usermultiple-input multiple-output,SU-MIMO)技术或多用户多入多出(multi-usersmultiple-input multiple-output,MU-MIMO)技术进行无线通信。

其中,AP也称为无线访问接入点或热点等。AP是移动用户进入有线网络的接入点,主要部署于家庭、大楼内部以及园区内部,也可以部署于户外。AP相当于一个连接有线网和无线网的桥梁,其主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。具体地,AP可以是带有无线保真(wireless fidelity,WiFi)芯片的终端设备或者网络设备。可选地,AP可以为支持802.11等多种WLAN制式的设备。图2示出了AP产品的内部结构图,其中,AP可以是多天线的,也可以是单天线的。图2中,AP包括物理层(physicallayer,PHY)处理电路和媒体接入控制(media access control,MAC)处理电路,物理层处理电路可以用于处理物理层信号,MAC层处理电路可以用于处理MAC层信号。802.11标准关注PHY和MAC部分,本申请实施例关注在MAC和PHY上的协议设计。

其中,STA产品通常为支持802.11系列标准的终端产品,如手机、笔记本电脑等,图3示出了单个天线的STA结构图,实际场景中,STA也可以是多天线的,并且可以是两个以上天线的设备。图3中,STA可以包括物理层(physical layer,PHY)处理电路和媒体接入控制(media access control,MAC)处理电路,物理层处理电路可以用于处理物理层信号,MAC层处理电路可以用于处理MAC层信号。

WLAN系统可以提供高速率低时延的传输,随着WLAN应用场景的不断演进,WLAN系统将会应用于更多场景或产业中,比如,应用于物联网产业,应用于车联网产业或应用于银行业,应用于企业办公,体育场馆展馆,音乐厅,酒店客房,宿舍,病房,教室,商超,广场,街道,生成车间和仓储等。当然,支持WLAN通信的设备(比如接入点或站点)可以是智慧城市中的传感器节点(比如,智能水表,智能电表,智能空气检测节点),智慧家居中的智能设备(比如智能摄像头,投影仪,显示屏,电视机,音响,电冰箱,洗衣机等),物联网中的节点,娱乐终端(比如AR,VR等可穿戴设备),智能办公中的智能设备(比如,打印机,投影仪,扩音器,音响等),车联网中的车联网设备,日常生活场景中的基础设施(比如自动售货机,商超的自助导航台,自助收银设备,自助点餐机等),以及大型体育或音乐场馆的设备等。本申请实施例中对于STA和AP的具体形式不做特殊限制,在此仅是示例性说明。

为了大幅提升WLAN系统的业务传输速率,IEEE 802.11ax标准在现有正交频分复用(orthogonal frequency division multiplexing,OFDM)技术的基础上,进一步采用正交频分多址(orthogonal frequency division multiple access,OFDMA)技术。OFDMA技术支持多个节点同时发送和接收数据,从而实现多站点分集增益。

从802.11a经802.11g、802.11n、802.11ac到802.11ax的演进过程中,可用频段包括2.4吉赫(GHz)和5GHz。随着开放的频段越来越多,802.11所支持的最大信道带宽从20兆赫(MHz)扩展到40MHz再扩展到160MHz。2017年,美国联邦通信委员会(federalcommunications commission,FCC)开放了一段新的免费频段6GHz(5925-7125MHz),802.11ax标准工作者在802.11ax项目授权申请书(project authorization requests,PAR)中把802.11ax设备工作范围从2.4GHz,5GHz拓展到2.4GHz,5GHz和6GHz。由于新开放的6GHz频段可用带宽更大,可以预见,在802.11ax之后的下一代标准(比如802.11be或Wi-Fi7)演进中,会支持大于160MHz的信道带宽。

每一代主流802.11协议都是兼容传统站点的。比如最早一代主流WiFi的802.11a帧结构以前导码开始,包括传统短训练字段(legacy-short training field,L-STF)、传统长训练字段(legacy-long training field,L-LTF)、传统信令域(legacy-signal field,L-SIG)。在之后的802.11及802.11ax,为了兼容传统站点,其帧结构都以传统前导码开始。在传统前导码之后,是每一代新定义的信令字段、短训练字段和长训练字段。其中,将传统前导码之后的短训练字段(short training field,STF)简称为极高吞吐量短训练字段(extremely high throughput-STF,EHT-STF),以区别L-STF。当传输大于20MHz信道带宽时,L-STF是在每20MHz的信道带宽上复制再传输,而这些802.11a之后引入的EHT-STF则针对大于20MHz的信道带宽分别定义为新的序列。例如,802.11ac所定义的STF,即非常高吞吐率-短训练字段(very high throughput-STF,VHT-STF),分别定义有20MHz、40MHz、80MHz和160MHz的序列。同样,802.11ax所定义的高效-短训练字段(high efficiency-STF,HE-STF)也支持最大为160MHz的信道带宽。需要说明的是,本申请实施例中,字段还可以称为域,比如短训练字段还称为短训练域。

协议规定,HE-STF的时域波形包含5个重复周期,主要用来增强多输入多输出(multiple-input multiple-output,MIMO)传输下自动增益控制电路(automatic gaincontrol,AGC)的估计,所以要求序列的峰均功率比(peak to average power ratio,PAPR)越小越好。

如上所述,在802.11ax之后的下一代标准(比如IEEE 802.11be)演进中,会支持大于160MHz的信道带宽,例如240MHz和320MHz,以实现超高传输速率和支持超密用户的场景。在802.11be中,还新增了打孔以及多个RU合并的新特性。因此,需要针对更大的信道带宽以及新的打孔和多RU合并的新特性,设计新的短训练域序列。有鉴于此,本申请实施例提供了一种传输物理层协议数据单元的方法和装置,能够针对更大的信道带宽,新的打孔和多RU合并的新特性,设计短训练域序列。

为便于理解本申请实施例,下面先对本申请涉及到的几个名词或术语进行简单介绍。

1、子载波

无线通信信号都是有限带宽的,利用OFDM技术可以在信道带宽内按照一定频率间隔将带宽分成多个频率分量,这些分量被称为子载波(subcarrier)或tone。子载波的下标为连续的整数,其中,下标为0的子载波对应直流分量,下标为负数的子载波对应低于直流的频率分量,下标为正数的子载波对应高于直流的频率分量。

2、短训练序列

短训练序列的主要用途是进行信号检测、自动增益控制(automatic gaincontrol,AGC)、符号定时和粗频率偏差估计等。针对不同的最大信道带宽,可以定义不同的序列。例如,802.11ax所定义的HE-STF支持最大为160MHz的信道带宽。本申请针对的信道带宽大于160MHz,当然也可以支持160MHz的带宽,可以应用于支持802.11be协议的无线局域网中,因此,为区分,在本申请实施例中,称为EHT-STF。应理解,EHT-STF用于表示应用于802.11be的的短训练字段或短训练域,其具体名称不对本申请实施例的保护范围造成限定。可选的,EHT-STF可以用于改善MIMO传输中的自动增益控制估计。

短训练序列可以基于M序列构建而成。例如,根据标准802.11ax可知,HE-STF的高效短训练序列(high efficiency sequence,HES)是基于M序列,通过复用、相位旋转和拼接构建而成。M序列是目前CDMA系统中采用的最基本的伪噪声序列(pseudo-noise sequence,PN序列)。M序列是最长线性反馈移位寄存器序列的简称。M序列在802.11ax标准中定义为M={-1,-1,-1,1,1,1,-1,1,1,1,-1,1,1,-1,1}。

应理解,当未来标准定义M序列有其它形式时,也适用于本申请。

需要说明的是,M序列具体名称不对本申请实施例的保护范围造成限定。例如,也可以称为频域序列等。

首先简单介绍一下802.11ax关于HE-STF的短训练序列HES

图4示出了HE-STF由M序列构建的示意图。图4中的图(1)是重复结构。具体来说,20MHz的HE-STF由一个M序列构成;40MHz的HE-STF由2个20MHz的HE-STF(即,2个M序列)拼接而成;同样的,80MHz的HE-STF由4个20MHz的HE-STF拼接而成的。为了保证HE-STF在时域上包含5个重复周期,以及使得HE-STF的PAPR尽可能的小,可以采用额外的参数值和旋转因子来调整优化,如图4中的图(2)。具体来说,20MHz的HE-STF由一个M序列构成;40MHz的HE-STF由2个20MHz的HE-STF(即,2个M序列)乘以旋转因子C之后拼接而成;同样的,80MHz的HE-STF由4个20MHz的HE-STF乘以旋转因子之后拼接而成的。同时,每2个M序列之间需要插入一个参数值A,以保证HE-STF在时域上包含5个重复周期。例外的是,OFDM调制方式要求直流子载波必须为0。因此,通过优化这些A和C可以使得HE-STF的PAPR达到最小。如图4中的图(2),旋转因子C可以包括{c

802.11ax定义了四种帧结构,包括:高效率单用户物理层协议数据单元(highefficiency single-user physical layer protocol data unit,HE SU PPDU)、高效率多用户物理层协议数据单元(high efficiency multi-user physical layer protocoldata unit,HE SU PPDU)、高效率扩展范围单用户物理层协议数据单元(high efficiencyextended range single-user physical layer protocol data unit,HE ER SU PPDU)、高效率触发物理层协议数据单元(high efficiency trigger based physical layerprotocol data unit,HE TB PPDU)。具体的,上述帧结构可以进一步分为两类,一类称为非HE TB PPDU,另一类即为HE TB PPDU。802.11ax根据不同帧结构,定义有两种周期长度的HE-STF,分别是0.8μs和1.6μs,其中,用于非HE TB PPDU的HE-STF的周期长度为0.8μs,子载波间隔为16个,用于HE TB PPDU的HE-STF的周期长度为1.6μs,子载波间隔为8个。另外,802.11ax支持的信道带宽有20MHz,40MHz,80MHz和160MHz一共4种。每一种带宽和长度对应一个HE-STF,所以HE-STF的频域值HES

下面分别从长度为0.8μs和1.6μs两种情形下,介绍优化后的不同信道带宽的频域序列。

情形一、0.8μs的HE-STF的频域序列

(1)信道带宽为20MHz,0.8μs的HE-STF,也可以称为STF1x20MHz,一共有256个子载波,下标(或索引index)范围从-127到128。其中,下标为0的子载波对应直流分量,下标为负数和正数的子载波分别对应低于和高于直流的频率分量。

其中,STF1x20MHz可以用如下公式表示:

其中,HES

上述公式展开为:

因此,下标为-112、-96、-80、-64、-48、-32、-16、0、16、32、48、64、80、96、112的子载波在频域上的值分别为:

需要说明的是,在本文中,公式中涉及到类似于HES

还需要说明的是,在本文中,此后的公式描述中,如未明确标出,其它下标的子载波在频域上的值均为0,为简洁,后续不再赘述。

需要说明的是,下标还可以称为子载波索引,比如下标为0的子载波,还可以称为索引为0的子载波。

(2)信道带宽为40MHz,0.8μs的HE-STF,也可以称为STF1x40MHz,一共有512个子载波,下标范围从-255到256,

其中,STF1x40MHz可以用如下公式表示:

其中,HES

(3)信道带宽为80MHz,0.8μs的HE-STF,也可以称为STF1x80MHz,一共有1024个子载波,下标范围从-511到512,

其中,STF1x80MHz可以用如下公式表示:

其中,HES

(4)信道带宽为160MHz,0.8μs的HE-STF,也可以称为STF1x160MHz,一共有2048个子载波,下标范围从-1023到1024,

其中,STF1x160MHz可以用如下公式表示:

其中,HES

情形二、1.6μs的HE-STF的频域序列

(1)信道带宽为20MHz,1.6μs的HE-STF,也可以称为STF2x20MHz,一共有256个子载波,下标范围从-127到128,

其中,STF2x20MHz可以用如下公式表示:

HES

(2)信道带宽为40MHz,1.6μs的HE-STF,也可以称为STF2x40MHz,一共有512个子载波,下标范围从-255到256,

其中,STF2x40MHz可以用如下公式表示:

HES

其中,HES

(3)信道带宽为80MHz,1.6μs的HE-STF,也可以称为STF2x80MHz,一共有1024个子载波,下标范围从-511到512,

其中,STF2x80MHz可以用如下公式表示:

HES

其中,HES

(4)信道带宽为160MHz,1.6μs的HE-STF,也可以称为STF2x160MHz,一共有2048个子载波,下标范围从-1023到1024,

其中,STF2x160MHz可以用如下公式表示:

HES

其中,HES

以上公式中,

3、峰均功率比

峰均功率比(peak to average power ratio,PAPR),可以指一个符号内,连续信号瞬间功率峰值与信号功率平均值之比。可以用如下公式表示:

其中,X

OFDM系统具有高PAPR的缺点,尤其是在大带宽下,更多的子载波导致更为严重的PAPR,高PAPR将会导致信号非线性失真,降低系统性能,所以在设计序列时,要求序列的PAPR越小越好。

4、信道打孔

随着信道带宽越来越大,例如,在802.11ax标准中最大支持160MHz,但是,在实际部署中,由于部分信道收到干扰或有其他设备占用等原因,160MHz信道可能存在部分信道不可用,在实际传输中,很难采用完整的160MHz信道进行通信,为此,802.11ax提出了打孔模式,具体是以信道带宽为20MHz为粒度的信道打孔技术来缓解该问题,从而可以利用160MHz信道中的可用信道来进行通信,提高信道的利用率。

下面对802.11be或者是未来任一代WLAN标准(比如Wi-Fi 8)中可能的信道打孔方式进行举例说明,需要说明的是,在下面的举例中,以一个“1”表示一个20MHz的信道带宽,未被打孔,对应256个子载波未被打孔,以及,一个“0”表示一个20MHz的信道被打孔,被打开的20MHz信道可以简称打孔信道,也可以理解为被占用的信道。

(1)240MHz信道带宽的信道打孔方式,240MHz信道包括12个20MHz信道,12个“0”或“1”的取值依次对应这12个20MHz信道。可选的,这12个20MHz信道频率从低到高依次对应从左到右的12个“0”或“1”。

方式1:[1 1 1 1 1 1 1 1 1 1 1 1],对应的信道带宽为240MHz,对应有3072个子载波。

方式2:[0 0 1 1 1 1 1 1 1 1 1 1],对应的可用信道带宽为200MHz,也可以理解剩余的信道带宽为200MHz。

方式3:[1 1 0 0 1 1 1 1 1 1 1 1],对应的可用信道带宽为200MHz。

方式4:[1 1 1 1 0 0 1 1 1 1 1 1],对应的可用信道带宽为200MHz。

方式5:[1 1 1 1 1 1 0 0 1 1 1 1],对应的可用信道带宽为200MHz。

方式6:[1 1 1 1 1 1 1 1 0 0 1 1],对应的可用信道带宽为200MHz。

方式7:[1 1 1 1 1 1 1 1 1 1 0 0],对应的可用信道带宽为200MHz。

方式8:[0 0 0 0 1 1 1 1 1 1 1 1],对应的可用信道带宽为160MHz。

方式9:[1 1 1 1 0 0 0 0 1 1 1 1],对应的可用信道带宽为160MHz。

方式10:[1 1 1 1 1 1 1 1 0 0 0 0],对应的可用信道带宽为160MHz。

(2)320MHz信道带宽的信道打孔方式,320MHz信道包括16个20MHz信道,16个“0”或“1”的取值依次对应这16个20MHz信道。可选的,这16个20MHz信道频率从低到高依次对应从左到右的16个“0”或“1”。

具体的,320MHz信道带宽的信道打孔方式可以分为两种:一种为兼容240MHz信道打孔模式,另一种为不兼容240MHz信道打孔模式。其中,“兼容”是指将320MHz信道带宽通过信道打孔形成240MHz后,再基于可用信道带宽,即打孔后形成的240MHz信道继续打孔。

A.320MHz信道带宽兼容240MHz信道打孔模式。

方式1:[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1],对应的信道带宽为320MHz,对应有4096个子载波。

方式2:[0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1],对应的可用信道带宽为280MHz。

方式3:[1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1],对应的可用信道带宽为280MHz。

方式4:[1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1],对应的可用信道带宽为280MHz。

方式5:[1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1],对应的可用信道带宽为280MHz。

方式6:[1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1],对应的可用信道带宽为280MHz。

方式7:[1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1],对应的可用信道带宽为280MHz。

方式8:[1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1],对应的可用信道带宽为280MHz。

方式9:[1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0],对应的可用信道带宽为280MHz。

方式10:[1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1],对应的可用信道带宽为240MHz。

方式11:[1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1],对应的可用信道带宽为240MHz。

方式12:[1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0],对应的可用信道带宽为240MHz。

方式13:[0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1],对应的可用信道带宽为240MHz。

基于方式10形成的240MHz的可用信道带宽进一步打孔,得到打孔方式14~方式22:方式14:[0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1],对应的可用信道带宽为200MHz。

方式15:[1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1],对应的可用信道带宽为200MHz。

方式16:[1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1],对应的可用信道带宽为200MHz。

方式17:[1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 1],对应的可用信道带宽为200MHz。

方式18:[1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1],对应的可用信道带宽为200MHz。

方式19:[1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0],对应的可用信道带宽为200MHz。

方式20:[0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1],对应的可用信道带宽为160MHz。

方式21:[1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1],对应的可用信道带宽为160MHz。

方式22:[1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0],对应的可用信道带宽为160MHz。

基于方式11形成的240MHz的可用信道带宽进一步打孔,得到打孔方式23~方式31:方式23:[0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1],对应的可用信道带宽为200MHz。

方式24:[1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1],对应的可用信道带宽为200MHz。

方式25:[1 1 1 1 0 0 1 1 0 0 0 0 1 1 1 1],对应的可用信道带宽为200MHz。

方式26:[1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1],对应的可用信道带宽为200MHz。

方式27:[1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1],对应的可用信道带宽为200MHz。

方式28:[1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0],对应的可用信道带宽为200MHz。

方式29:[0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1],对应的可用信道带宽为160MHz。

方式30:[1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1],对应的可用信道带宽为160MHz。

方式31:[1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0],对应的可用信道带宽为160MHz。

基于方式12形成的240MHz的可用信道带宽进一步打孔,得到打孔方式32~方式40:方式32:[0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0],对应的可用信道带宽为200MHz。

方式33:[1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0],对应的可用信道带宽为200MHz。

方式34:[1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0],对应的可用信道带宽为200MHz。

方式35:[1 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0],对应的可用信道带宽为200MHz。

方式36:[1 1 1 1 1 1 1 1 0 0 1 1 0 0 0 0],对应的可用信道带宽为200MHz。

方式37:[1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0],对应的可用信道带宽为200MHz。

方式38:[0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0],对应的可用信道带宽为160MHz。

方式39:[1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0],对应的可用信道带宽为160MHz。

方式40:[1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0],对应的可用信道带宽为160MHz。

基于方式13形成的240MHz的可用信道带宽进一步打孔,打孔方式方式32~方式40:

方式41:[0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1],对应的可用信道带宽为200MHz。

方式42:[0 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1],对应的可用信道带宽为200MHz。

方式43:[0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1],对应的可用信道带宽为200MHz。

方式44:[0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1],对应的可用信道带宽为200MHz。

方式45:[0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1],对应的可用信道带宽为200MHz。

方式46:[0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0],对应的可用信道带宽为200MHz。

方式47:[0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1],对应的可用信道带宽为160MHz。

方式48:[0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1],对应的可用信道带宽为160MHz。

方式49:[0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0],对应的可用信道带宽为160MHz。

B.320MHz信道带宽不兼容240MHz信道打孔模式。

方式1:320MHz[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1],对应的信道带宽为320MHz,对应有4096个子载波。

方式2:280MHz[0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1],对应的可用信道带宽为280MHz。

方式3:280MHz[1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1],对应的可用信道带宽为280MHz。

方式4:280MHz[1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1],对应的可用信道带宽为280MHz。

方式5:280MHz[1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1],对应的可用信道带宽为280MHz。

方式6:280MHz[1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1],对应的可用信道带宽为280MHz。

方式7:280MHz[1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1],对应的可用信道带宽为280MHz。

方式8:280MHz[1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1],对应的可用信道带宽为280MHz。

方式9:280MHz[1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0],对应的可用信道带宽为280MHz。

方式10:240MHz[1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1],对应的可用信道带宽为240MHz。

方式11:240MHz[1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1],对应的可用信道带宽为240MHz。

方式12:240MHz[1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0],对应的可用信道带宽为240MHz。

方式13:240MHz[0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1],对应的可用信道带宽为240MHz。

需要说明的是,本申请所述的打孔模式仅为针对目前的可使用打孔方式的举例,本申请并未穷尽所有打孔方式,对于其它未在本申请中说明的打孔方式,本申请的技术方案同样适用。

5、资源块分布(RU allocation)

资源块分布也可以理解为信道带宽中的子载波分布(tone plan),不同的信道带宽可以对应的不同的tone plan。在应用OFDMA及多用户多入多出(multiple usermultiple input multiple output,MU-MIMO)技术时,IEEE 802.11ax协议规定信道带宽中的子载波划分为若干个资源块(resource unit,RU)。IEEE 802.11ax协议规定对于20MHz、40MHz、80MHz和160MHz的信道带宽划分成多种类型资源块,其中包括26子载波资源块、52子载波资源块、106子载波资源块、242子载波资源块(20MHz带宽内最大资源块)、484子载波资源块(40MHz带宽内最大资源块)、996子载波资源块(80MHz带宽内最大资源块)、和1992子载波资源块(160MHz带宽内最大资源块)。每个RU由连续的子载波组成,比如26子载波资源块是由26个连续的子载波资源块组成。需要说明的是,不同的总带宽所能支持的RU的种类和数量不相同,但是在同一带宽下,可以支持混合类型的资源块。

图5a示例性示出了802.11be中80MHz带宽下的tone plan的示意图。其中,左边带子载波以及右边带子载波位于传输频带的边缘处,其作为防护子载波,以减轻传输滤波对数据和导频子载波的影响。各带宽中的子载波包括:数据子载波,导频子载波,以及未使用的子载波(unused subcarriers)。未使用的子载波既不用于传输数据也不用于传输导频信号,未使用的子载波包括:直流子载波(DC subcarriers),保护子载波(guardsubcarriers)以及空子载波(null subcarriers)。保护子载波还可以包括左边带子载波和右边带子载波。直流子载波是内容为空(empty)的子载波(即不携带数据或信息的子载波),移动设备用之以定位OFDM频带的中心。。左边带子载波、右边带子载波、直流子载波、空子载波还可以统称为RU间残留子载波(leftover tone),大的RU子载波个数和对应其中可容纳的多个小RU以及小RU间残留子载波个数总和相同。

OFDMA系统中,RU可以包括但不限于:

(1)连续26个子载波组成的RU,包括:24个数据子载波和2个pilot导频子载波;

(2)连续52个子载波组成的RU,包括:48个数据子载波和4个pilot导频子载波;

(3)连续106个子载波组成的RU,包括:102个数据子载波和4个pilot导频子载波;

(4)连续242个子载波组成的RU,包括:234个数据子载波和8个pilot导频子载波;

(5)连续484个子载波组成的RU,包括:468个数据子载波和16个pilot导频子载波;

(6)连续996个子载波组成的RU,包括:980个数据子载波和16个pilot导频子载波。

示例性的,在802.11ax中,一个用户可以被分配(1)至(6)中的一个RU,在802.11be或者是未来的标准中支持多RU模式,也就是说,一个用户可以被分配多个RU(MultipleResource units,MRU),MRU模式包括但不限于如下几种:

(7)RU52+RU26:该分配方式可以理解为将连续26个子载波组成的RU(记为26-toneRU)和连续52个子载波组成的RU(记为52-tone RU)分配给用户,如图5b所示为RU52+RU26的tone plan示意图(其中,阴影部分即为用户分配的RU)。可选的,RU52+RU26中的52-tone RU和26-tone RU位于同一个20MHz信道中,比如图5b所示的从左往右的第一个20MHz信道中的,第三个52-tone RU与第一行的第8个26-tone RU合并为MRU分配给一个用户。

(8)RU106+RU26:该分配方式可以理解为将连续26个子载波组成的RU(记为26-tone RU)和连续106个子载波组成的RU(记为106-tone RU)分配给用户,如图5c所示为RU106+RU26的tone plan示意图。可选的,RU106+RU26中的106-tone RU和26-tone RU位于同一个20MHz信道中,比如图5c所示的从左往右的第一个20MHz信道中的,第一个106-toneRU与第一行的第五个26-tone RU合并为MRU分配给一个用户。

(9)RU242+RU484:该分配方式可以理解为将连续242个子载波组成的RU(记为242-tone RU)和484个子载波组成的RU(记为484-tone RU)分配给用户,如图5d~5g所示为RU242+RU484的tone plan示意图。

应理解,160MHz的tone plan可以看作2个80MHz的tone plan组成。240MHz的toneplan可以看作3个80MHz的tone plan组成。320MHz的tone plan可以看作4个80MHz的toneplan组成,此处不再赘述。需要说明的是,如果在一个80MHz分段中,使用了信道打孔模式,那么就使用OFDMA的tone plan,如果是非穿孔的80MHz的分段,那么就使用Non-OFDMA的tone plan。

示例性的,320MHz的信道划分的可分配的资源单元,可以包括:RU26,RU52,RU52+RU26,RU106,RU106+RU26,RU242,RU 484,RU242+RU242,RU242+RU484,RU996,RU484+RU996,RU484+RU242+RU996,2·RU996,RU484+2·RU996,3·RU996。其中,2·RU996指的是2个996-tone的RU。

示例性的,240MHz的信道划分的可分配的资源单元,可以包括:RU26,RU52,RU52+RU26,RU106,RU106+RU26,RU242,RU 484,RU242+RU242,RU242+RU484,RU996,RU484+RU996,RU484+RU242+RU996,2·RU996,RU484+2·RU996,3·RU996,RU484+3·RU996,4·RU996。

“+”是指合并或聚合,即将多个RU合并(或聚合)分配给同一个用户,例如,RU52+RU26是指将52-tone RU和26-tone RU按照图5b的方式分配给同一个用户。

需要说明的是,在本申请实施中,“协议”可以指通信领域的标准协议,例如可以包括WLAN协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。

还需要说明的是,本申请实施例中,“预先获取”可包括由设备信令指示或者预先定义,例如,协议定义。其中,“预先定义”可以通过在设备(例如,包括站点和接入点)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预先定义可以是指协议中定义的。

还需要说明的是,本申请实施例中涉及的“保存”,可以是指的保存在一个或者多个存储器中。所述一个或者多个存储器,可以是单独的设置,也可以是集成在编码器或者译码器,处理器、或通信装置中。所述一个或者多个存储器,也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。

还需要说明的是,本申请实施例中,“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。

还需要说明的是,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。“至少一个”是指一个或一个以上;“A和B中的至少一个”,类似于“A和/或B”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和B中的至少一个,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。

下面将结合附图详细说明本申请提供的技术方案。本申请实施例可以应用于多个不同的场景下,包括图1所示的场景,但并不限于该场景。示例性地,对于上行传输,STA可以作为发送端,AP可以作为接收端;对于下行传输,AP可以作为发送端,STA可以作为接收端;对于其他传输场景,例如,AP和AP之间的数据传输,其中一个AP可以作为发送端,另一个AP可以作为接收端;又例如,STA和STA之间的上行传输,其中一个STA可以作为发送端,另一个STA可以作为接收端。因此,下面按照发送端和接收端对本申请实施例进行描述。

图6是本申请实施例提供的传输物理层协议数据单元的方法的示意性流程图。图6所示的方法可以包括如下步骤。

步骤101,发送端生成物理层协议数据单元PPDU,该PPDU包括短训练域,该短训练域的频域序列的长度大于第一长度,该第一长度为在带宽为160MHz的信道上传输的PPDU的短训练域的频域序列的长度。

步骤102,发送端在目标信道上发送该PPDU,其中,该目标信道的带宽大于或等于160MHz。

相应地,接收端在目标信道上接收PPDU。

步骤103,接收端解析PPDU。

接收端可基于PPDU中的短训练域进行信号检测、自动增益控制(automatic gaincontrol estimation,AGC)估计、符号定时和粗频率偏差估计等,关于具体的解析方式和应用可参考现有描述,对此不做限定。

上述短训练域也可以称为短训练字段,下文统一用短训练域表示。

在本申请实施例中,为区分传统短训练字段,将目标信道的带宽对应的短训练字段用(extremely high throughput-STF,EHT-STF)表示。应理解,EHT-STF用于应用于802.11be协议中的短训练字段,其具体名称不对本申请实施例的保护范围造成限定。

EHT-STF是通过EHT-STF的频域序列获得的,如EHT-STF由EHT-STF的频域序列或者说频域值经过IFFT变换后得到的,本申请中为描述方便,将EHT-STF的频域序列简称为EHTS。应理解,EHTS仅是一种命名,并不对本申请实施例的保护范围造成限定,例如也可称为频域序列。

在本申请实施例中,用第一长度表示带宽为160MHz对应的频域序列的长度。短训练域的频域序列长度大于第一长度,换句话说,EHT-STF的频域序列的长度大于信道带宽为160MHz的HE-STF的频域序列的长度。例如,160MHz的HE-STF可以由2个80MHz的HE-STF乘以旋转因子之后拼接而成的,240MHz的EHT-STF可以由3个80MHz的HE-STF乘以旋转因子之后拼接而成的,或者,240MHz的EHT-STF也可以由320MHz的EHT-STF穿孔而成的(例如,可以将320MHz的EHT-STF打掉80MHz的EHT-STF从而形成240MHz的EHT-STF),320MHz的EHT-STF可以由4个80MHz的HE-STF乘以旋转因子之后拼接而成的,故EHT-STF的频域序列的长度大于信道带宽为160MHz的HE-STF的频域序列的长度。

短训练域的频域序列长度大于第一长度,或者也可以理解为,EHT-STF的频域值的数量大于160MHz的HE-STF的频域值的数量,如240MHz带宽共有3072个子载波,那么该3072个子载波对应3072个频域值,160MHz带宽共有1024个子载波,那么该1024个子载波对应1024个频域值,因此,EHT-STF的频域值的数量大于160MHz的HE-STF的频域值的数量。

短训练域的频域序列长度大于第一长度,或者也可以理解为,EHT-STF对应的子载波标号的数量大于160MHz的HE-STF对应的子载波标号的数量,如240MHz的EHT-STF对应的短训练序列可以表示为EHTS

在本申请实施例中,序列长度表示序列中元素组成的长度,例如,序列1为:{0,1,-1,1},那么该序列1的长度为4;又如,序列2为:{0,1,-1,1,1,1,1},那么该序列2的长度为7,且可以看出,序列2的长度大于序列1的长度。又如,假设160MHz的HE-STF对应的频域序列长度为2048,那么第一长度为2048,换句话说,EHT-STF的频域序列长度大于2048。

目标信道的带宽大于或等于160MHz。

可选的,目标信道的带宽也可以为大于或等于160MHz的任何带宽,例如,目标信道的带宽为160MHz、200MHz、240MHz、280MHz、或320MHz等等。

本申请实施例的针对目标信道的EHT-STF,可以是通过仿真计算得到。例如,发送端可以基于协议规定的序列(例如IEEE 802.11ax中的HE-LTF序列),采用相应公式计算得到。又如,发送端可以基于已存储的或者新生成的序列,采用相应公式计算得到,本申请实施例对此不做限定。

根据本申请实施例,考虑到向后兼容,以现有信道带宽的STF对应的短训练序列HES,如,HE-STF对应的短训练序列HES为基础,设计更大信道带宽的短训练序列,如EHT-STF对应的短训练序列EHTS。

本申请实施例的传输PPDU的方法,能够确定更大信道带宽所对应的短训练序列或者说频域序列,可以支持接收端对在更大信道带宽上传输的数据进行自动增益控制。该短训练序列可以基于现有信道带宽的短训练序列得到,并且,通过仿真计算,例如调节参数,可以获得性能较好的短训练序列。短训练域可以基于该短训练序列得到。根据本申请实施例,不仅可以满足实际中的更大信道带宽,且向后兼容,而且通过对参数进行穷举仿真验证了本申请实施例提供的短训练序列,峰均功率值PAPR较小,性能较优,进而提高接收端的自动增益控制电路的估计效果,从而降低接收误码率。

并且,本申请实施例提供的EHTS,还考虑了更大信道带宽中的打孔模式,且验证了本申请实施例EHTS在打孔模式下的性能较好,PAPR较小。针对上行传输,本申请实施例提供的EHTS,还考虑了更大带宽下的多RU合并等情况的性能,在更大带宽下的多RU合并传输的情况下,其PAPR也较小。因此,本申请实施例提供的EHTS,能够适应802.11be协议中更大的信道带宽,新的打孔模式和多RU合并等新特性,且性能较优,可以支持802.11be中的上行或下行传输。下文以目标信道的带宽为240MHz、320MHz这两个示例为例,进行示例性说明。此外,EHT-STF可以包括多个周期,每个周期的时间长度可以为0.8μs或1.6μs。其中,非EHT TBPPDU的EHT STF,也可以称为STF1x,其频域序列的周期长度为0.8μs。EHT TB PPDU的EHTSTF,也可以称为STF2x,其频域序列的周期长度为1.6μs。

为简洁,在本申请实施例中,将每个周期的时间长度记为周期长度。在本申请实施例中,以周期长度为0.8μs、1.6μs这两种场景,说明目标信道的带宽的EHT-STF的频域序列。在本申请实施例中,参考信道的周期长度,即表示在参考信道上传输短训练域的频域序列的周期长度,下文不再赘述。

考虑到针对不同的目标信道的带宽和不同的周期长度,可以分别设计对应的EHT-LTF。因此,下面分不同情况详细介绍本申请实施例的方法。

情况一和情况二是针对240MHz信道带宽的EHT-STF。在阐述240MHz信道带宽的EHT-STF之前,首先介绍240MHz的子载波分配图样(tone plane)。如前所述,802.11ax规定的80MHz信道带宽的tone plane为一共有1024个子载波,下标范围从-511到512,其中,在带宽左右边缘分别有12和11个保护子载波(guard tone)。一个示例中,本申请实施例所设计的240MHz的信道带宽的tone plan为3个80MHz的tone plane拼接在一起,即3个80MHz的左右边缘子载波和各自中间的自流子载波均保留。这样,240MHz带宽共有1024×3=3072个子载波,左右边缘分别有12个和11个保护子载波,带宽中间有5个直流子载波。

情况一、目标信道的带宽为240MHz、参考信道的周期长度为0.8μs。

本申请实施例将240MHz带宽、周期长度为0.8μs的EHT-STF的频域序列记作STF1x240MHz,其中,记STF1x240MHz为EHTS

1、利用IEEE 802.11ax中20MHz的序列进行构造STF1x240MHz。

本申请实施例将IEEE 802.11ax中20MHz带宽、周期长度为0.8μs的HE-STF的频域序列记作STF1x20MHz,本申请实施例设计的EHTS如下:

STF1x240MHz=[STF1x80MHz_1,0,STF1x80MHz_2,0,STF1x80MHz_3],

其中,STF1x80MHz_1=[c

STF1x80MHz_2=[c

STF1x80MHz_3=[c

示例性的,基于上式,STF1x240MHz可以表示为:

STF1x240MHz=[c

示例性的,记

EHTS

EHTS

其中,a

对不同的a

当IFFTsize取3072时,参照表1-1为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于240MHz的信道打孔方式(方式2~方式10)及其它未列出的信道打孔方式,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于方式5的信道打孔方式,其所取值所对应EHTS的PAPR值为6.3874dB。序号2的EHTS序列设计,考虑了打孔模式下的PAPR最小化。

另一个示例中,打孔和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自方式5,其PAPR为6.3874dB。

在本文的所有表格中,PAPR表示经过4倍的上采样的序列的PAPR取值,后续不再赘述。

表1-1

当IFFTsize取4096时,参照表1-2为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于240MHz的信道打孔方式(方式2~方式10)及其它未列出的信道打孔方式,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于方式2的信道打孔方式,其所取值所对应EHTS的PAPR值为6.4877dB。序号2的EHTS序列设计,考虑了打孔模式下的PAPR最小化。

另一个示例中,打孔和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自方式2的信道打孔方式,其PAPR为6.4877dB。

在本文的所有表格中,PAPR表示经过4倍的上采样的序列的PAPR取值,后续不再赘述。

表1-2

2、利用IEEE 802.11ax中80MHz的序列进行构造STF1x240MHz。

本申请实施例将IEEE 802.11ax中80MHz带宽、周期长度为0.8μs的HE-STF的频域序列记作STF1x80M,设计公式如下:

STF1x240MHz=[STF1x80MHz,0,c

示例性的,记

EHTS

其中,c

对不同的c

当IFFTsize取3072时,参照表2-1为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于240MHz的信道打孔方式(方式2~方式10)及其它未列出的信道打孔方式,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于方式8的信道打孔方式,其所取值所对应EHTS的PAPR值为7.5390dB。序号2的EHTS序列设计,考虑了打孔模式下的PAPR最小化。

另一个示例中,打孔和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自方式8的信道打孔方式,其PAPR为7.5390dB。

表2-1

当IFFTsize取4096时,参照表2-2为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于240MHz的信道打孔方式(方式2~方式10)及其它未列出的信道打孔方式,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于方式8的信道打孔方式,其所取值所对应EHTS的PAPR值为7.5390dB。序号2的EHTS序列设计,考虑了打孔模式下的PAPR最小化。

另一个示例中,打孔和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自方式8,其PAPR为7.5390dB。

表2-2

3、利用IEEE 802.11ax中160MHz的序列和80MHz的序列进行构造STF1x240MHz。

本申请实施例将IEEE 802.11ax中160MHz带宽、周期长度为0.8μs的HE-STF的频域序列记作STF1x160MHz,将IEEE 802.11ax中80MHz带宽、周期长度为0.8μs的HE-STF的频域序列记作STF1x80MHz。

在一种可能的实现方式中,设计公式如下:

STF1x240MHz=[STF1x160MHz,0,c

示例性的,记

EHTS

其中,c

对不同的a

当IFFTsize取3072时,参照表3-1为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于240MHz的信道打孔方式(方式2~方式10)及其它未列出的信道打孔方式,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于方式1的信道打孔方式,其所取值所对应EHTS的PAPR值为7.3318dB。序号2的EHTS序列设计,考虑了打孔模式下的PAPR最小化。

另一个示例中,打孔和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自方式1的信道打孔方式,其PAPR为7.4136dB。

表3-1

当IFFTsize取4096时,参照表3-2为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于240MHz的信道打孔方式(方式2~方式10)及其它未列出的信道打孔方式,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于方式1的信道打孔方式,其所取值所对应EHTS的PAPR值为7.3318dB。序号2的EHTS序列设计,考虑了打孔模式下的PAPR最小化。

另一个示例中,打孔和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自方式1,其PAPR为7.4136dB。

表3-2

在另一种可能的实现方式中,80MHz的序列可进一步利用20MHz的序列构造,设计公式如下:

STF1x240MHz=[STF1x160MHz,0,STF1x80MHz_1]

其中,STF1x80MHz_1=[c

示例性的,基于上式,STF1x240MHz可以表示为:

STF1x240MHz=[STF1x160MHz,0,c

示例性的,记

EHTS

其中,a

对不同的a

当IFFTsize取3072时,参照表4-1为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于240MHz的信道打孔方式(方式2~方式10)及其它未列出的信道打孔方式,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于方式4的信道打孔方式,其所取值所对应EHTS的PAPR值为7.5525dB。序号2的EHTS序列设计,考虑了打孔模式下的PAPR最小化。

另一个示例中,打孔和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自方式4的信道打孔方式,其PAPR为7.5525dB。

表4-1

当IFFTsize取4096时,参照表4-2为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于240MHz的信道打孔方式(方式2~方式10)及其它未列出的信道打孔方式,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于方式2的信道打孔方式,其所取值所对应EHTS的PAPR值为7.6672dB。序号2的EHTS序列设计,考虑了打孔模式下的PAPR最小化。

另一个示例中,打孔和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自方式2的信道打孔方式,其PAPR为7.6672dB。

表4-2

在另一种可能的实现方式中,80MHz的序列可进一步利用40MHz的序列构造,本申请实施例将IEEE 802.11ax中40MHz带宽、周期长度为0.8μs的HE-STF的频域序列记作STF1x40MHz,设计公式如下:

STF1x240MHz=[STF1x160MHz,0,STF1x80MHz_1],

其中,STF1x80MHz_1=[c

示例性的,基于上式,STF1x240MHz可以表示为:

STF1x240MHz=[STF1x160MHz,0,c

示例性的,记

EHTS

其中,c

对不同的a

当IFFTsize取3072时,参照表5-1为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于240MHz的信道打孔方式(方式2~方式10)及其它未列出的信道打孔方式,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于方式4的信道打孔方式,其所取值所对应EHTS的PAPR值为7.6702dB。序号2的EHTS序列设计,考虑了打孔模式下的PAPR最小化。

另一个示例中,打孔和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自方式4的信道打孔方式,其PAPR为7.6702dB。

表5-1

当IFFTsize取4096时,参照表5-2为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于240MHz的信道打孔方式(方式2~方式10)及其它未列出的信道打孔方式,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于方式4的信道打孔方式,其所取值所对应EHTS的PAPR值为7.6187dB。序号2的EHTS序列设计,考虑了打孔模式下的PAPR最小化。

另一个示例中,打孔和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自方式4的信道打孔方式,其PAPR为7.6187dB。

表5-2

情况二、目标信道的带宽为240MHz、参考信道的周期长度为1.6μs。

本申请实施例将240MHz带宽、周期长度为1.6μs的EHT-STF的频域序列记作STF2x240MHz,其中,记STF2x240MHz为EHTS

1、利用IEEE 802.11ax中20MHz的序列进行构造STF2x240MHz。

本申请实施例将IEEE 802.11ax中20MHz带宽、周期长度为1.6μs的HE-STF的频域序列STF2x20MHz,设计公式如下:

STF2x240MHz=[STF2x80MHz_1,0,STF2x80MHz_2,0,STF2x80MHz_3]

其中,STF2x80MHz_1=[c

STF2x80MHz_2=[c

STF2x80MHz_3=[c

STF2x240MHz

示例性的,基于上式,STF2x240MHz可以表示为:

STF2x240MHz=[c

示例性的,记

EHTS

STF2x240MHz

其中,a

对不同的a

当IFFTsize取3072时,参照表6-1为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于240MHz的信道打孔方式(方式2~方式10)及其它未列出的信道打孔方式,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于采用RU242+RU484的RU分配方式,其所取值所对应EHTS的PAPR值为9.6074dB。序号2的EHTS序列设计,考虑了打孔模式且多RU分配方式下的PAPR最小化。

另一个示例中,打孔和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自采用RU242+RU484的RU分配方式,其PAPR为9.6074dB。

表6-1

/>

当IFFTsize取3072时,参照表6-2为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于240MHz的信道打孔方式(方式2~方式10)及其它未列出的信道打孔方式,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于方式8的信道打孔方式或者RU996的RU分配方式,其所取值所对应EHTS的PAPR值为9.3189dB。序号2的EHTS序列设计,考虑了打孔模式且多RU分配方式下的PAPR最小化。

另一个示例中,打孔和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自方式8的信道打孔方式或者RU996的RU分配方式,其PAPR为9.3189dB。

表6-2

当IFFTsize取4096时,参照表6-3为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于240MHz的信道打孔方式(方式2~方式10)及其它未列出的信道打孔方式,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于采用RU242+RU484的RU分配方式,其所取值所对应EHTS的PAPR值为9.3160dB。序号2的EHTS序列设计,考虑了打孔模式且多RU分配方式下的PAPR最小化。

另一个示例中,打孔和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自采用RU242+RU484的RU分配方式,其PAPR为9.3160dB。

表6-3

当IFFTsize取4096时,参照表6-4为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于240MHz的信道打孔方式(方式2~方式10)及其它未列出的信道打孔方式,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于采用方式8的打孔方式或者是RU996的RU分配方式,其所取值所对应EHTS的PAPR值为9.3504dB。序号2的EHTS序列设计,考虑了打孔模式且多RU分配方式下的PAPR最小化。

另一个示例中,打孔和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自采用方式8的打孔方式或者是RU996的RU分配方式,其PAPR为9.3504dB。

表6-4

2、利用IEEE 802.11ax中80MHz的序列进行构造STF2x240MHz。

本申请实施例将IEEE 802.11ax中80MHz带宽、周期长度为1.6μs的HE-STF的频域序列记作STF2x80MHz,设计公式如下:

STF2x240MHz=[STF2x80MHz,0,c

示例性的,记

EHTS

其中,STF2x240MHz

c

对不同的c

当IFFTsize取3072时,参照表7-1为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于240MHz的信道打孔方式(方式2~方式10)及其它未列出的信道打孔方式,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于采用RU242+RU484+RU996的RU分配方式,其所取值所对应EHTS的PAPR值为9.0692dB。序号2的EHTS序列设计,考虑了打孔模式且多RU分配方式下的PAPR最小化。

另一个示例中,打孔和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自采用RU242+RU484+RU996的RU分配方式,其PAPR为9.0692dB。

表7-1

当IFFTsize取3072时,参照表7-2为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于240MHz的信道打孔方式(方式2~方式10)及其它未列出的信道打孔方式,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于采方式4的信道打孔方式,其所取值所对应EHTS的PAPR值为9.0245dB。序号2的EHTS序列设计,考虑了打孔模式且多RU分配方式下的PAPR最小化。

另一个示例中,打孔和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自采用方式4的信道打孔方式,其PAPR为9.0245dB。

表7-2

当IFFTsize取4096时,参照表7-3为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于240MHz的信道打孔方式(方式2~方式10)及其它未列出的信道打孔方式,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于采用RU242+RU484+RU996的RU分配方式,其所取值所对应EHTS的PAPR值为9.0692dB。序号2的EHTS序列设计,考虑了打孔模式且多RU分配方式下的PAPR最小化。

另一个示例中,打孔和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自采用RU242+RU484+RU996的RU分配方式,其PAPR为9.0692dB。

表7-3

当IFFTsize取4096时,参照表7-4为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于240MHz的信道打孔方式(方式2~方式10)及其它未列出的信道打孔方式,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于采用方式5的信道打孔方式,其所取值所对应EHTS的PAPR值为9.0245dB。序号2的EHTS序列设计,考虑了打孔模式且多RU分配方式下的PAPR最小化。

另一个示例中,打孔和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自采用方式5的信道打孔方式,其PAPR为9.0245dB。

表7-4

3、利用IEEE 802.11ax中160MHz的序列和80MHz的序列进行构造STF2x240MHz。

本申请实施例将IEEE 802.11ax中160MHz带宽、周期长度为1.6μs的HE-STF的频域序列记作STF2x160MHz,将IEEE 802.11ax中80MHz带宽、周期长度为1.6μs的HE-STF的频域序列记作STF2x80MHz。

在一种可能的实现方式中,设计公式如下:

STF2x240MHz=[STF2x160MHz,0,c

示例性的,记

EHTS

STF2x240MHz

其中,c

对不同的a

当IFFTsize取3072时,参照表8-1为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于240MHz的信道打孔方式(方式2~方式10)及其它未列出的信道打孔方式,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于采用RU484+RU996的RU分配方式,其所取值所对应EHTS的PAPR值为9.1317dB。序号2的EHTS序列设计,考虑了打孔模式且多RU分配方式下的PAPR最小化。

另一个示例中,打孔和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自采用RU484+RU996的RU分配方式,其PAPR为9.1317dB。

表8-1

当IFFTsize取3072时,参照表8-2为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于240MHz的信道打孔方式(方式2~方式10)及其它未列出的信道打孔方式,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于采用方式5的信道打孔方式,其所取值所对应EHTS的PAPR值为9.0245dB。序号2的EHTS序列设计,考虑了打孔模式且多RU分配方式下的PAPR最小化。

另一个示例中,打孔和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自采用方式5的信道打孔方式,其PAPR为9.0245dB。

表8-2

当IFFTsize取4096时,参照表8-3为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于240MHz的信道打孔方式(方式2~方式10)及其它未列出的信道打孔方式,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于采用RU484+RU996的RU分配方式,其所取值所对应EHTS的PAPR值为9.1317dB。序号2的EHTS序列设计,考虑了打孔模式且多RU分配方式下的PAPR最小化。

另一个示例中,打孔和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自采用RU484+RU996的RU分配方式,其PAPR为9.1317dB。

表8-3

当IFFTsize取4096时,参照表8-4为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于240MHz的信道打孔方式(方式2~方式10)及其它未列出的信道打孔方式,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于采用方式5的信道打孔方式,其所取值所对应EHTS的PAPR值为9.0245dB。序号2的EHTS序列设计,考虑了打孔模式且多RU分配方式下的PAPR最小化。

另一个示例中,打孔和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自采用方式5的信道打孔方式,其PAPR为9.0245dB。

表8-4

在另一种可能的实现方式中,80MHz的序列可进一步利用20MHz的序列构造,设计公式如下:

STF2x240MHz=[STF2x160MHz,0,STF2x80MHz_1],

其中,STF1x80MHz_1=[c

STF2x240MHz

示例性的,基于上式,STF2x240MHz可以表示为:

STF2x240MHz=[STF2x160MHz,0,c

示例性的,记

EHTS

STF2x240MHz

其中,a

对不同的a

当IFFTsize取3072时,参照表9-1为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于240MHz的信道打孔方式(方式2~方式10)及其它未列出的信道打孔方式,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于采用RU242+RU484的RU分配方式,其所取值所对应EHTS的PAPR值为9.6402dB。序号2的EHTS序列设计,考虑了打孔模式且多RU分配方式下的PAPR最小化。

另一个示例中,打孔和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自采用RU242+RU484的RU分配方式,其PAPR为9.6402dB。

表9-1

当IFFTsize取3072时,参照表9-2为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于240MHz的信道打孔方式(方式2~方式10)及其它未列出的信道打孔方式,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于采用方式3的信道打孔方式,其所取值所对应EHTS的PAPR值为9.4043dB。序号2的EHTS序列设计,考虑了打孔模式且多RU分配方式下的PAPR最小化。

另一个示例中,打孔和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自采用方式3的信道打孔方式,其PAPR为9.4043dB。

表9-2

当IFFTsize取4096时,参照表9-3为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于240MHz的信道打孔方式(方式2~方式10)及其它未列出的信道打孔方式,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于采用RU484+RU996的RU分配方式,其所取值所对应EHTS的PAPR值为9.6481dB。序号2的EHTS序列设计,考虑了打孔模式且多RU分配方式下的PAPR最小化。

另一个示例中,打孔和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自采用RU484+RU996的RU分配方式,其PAPR为9.6481dB。

表9-3

当IFFTsize取4096时,参照表9-4为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于240MHz的信道打孔方式(方式2~方式10)及其它未列出的信道打孔方式,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于采用方式3的信道打孔方式,其所取值所对应EHTS的PAPR值为9.3153dB。序号2的EHTS序列设计,考虑了打孔模式且多RU分配方式下的PAPR最小化。

另一个示例中,打孔和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自采用方式3的信道打孔方式,其PAPR为9.3153dB。

表9-4

在另一种可能的实现方式中,80MHz的序列可进一步利用40MHz的序列构造,本申请实施例将IEEE 802.11ax中40MHz带宽、周期长度为1.6μs的HE-STF的频域序列记作STF2x40MHz,设计公式如下:

STF2x240MHz=[STF2x160MHz,0,STF2x80MHz_1],

其中,STF2x80MHz_1=[c

示例性的,基于上式,STF2x240MHz可以表示为:

TF2x240MHz=[STF2x160MHz,0,c

示例性的,记

EHTS

STF2x240MHz

其中,c

对不同的a

当IFFTsize取3072时,参照表10-1为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于240MHz的信道打孔方式(方式2~方式10)及其它未列出的信道打孔方式,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于采用方式2的信道打孔方式,其所取值所对应EHTS的PAPR值为9.4529dB。序号2的EHTS序列设计,考虑了打孔模式且多RU分配方式下的PAPR最小化。

另一个示例中,打孔和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自采用方式2的信道打孔方式,其PAPR为9.4529dB。

表10-1

当IFFTsize取3072时,参照表10-2为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于240MHz的信道打孔方式(方式2~方式10)及其它未列出的信道打孔方式,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于采用方式2的信道打孔方式,其所取值所对应EHTS的PAPR值为9.4529dB。序号2的EHTS序列设计,考虑了打孔模式且多RU分配方式下的PAPR最小化。

另一个示例中,打孔和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自采用方式2的信道打孔方式,其PAPR为9.4529dB。

表10-2

当IFFTsize取4096时,参照表10-3为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于240MHz的信道打孔方式(方式2~方式10)及其它未列出的信道打孔方式,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于采用方式2的信道打孔方式,其所取值所对应EHTS的PAPR值为9.4529dB。序号2的EHTS序列设计,考虑了打孔模式且多RU分配方式下的PAPR最小化。

另一个示例中,打孔和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自采用方式2的信道打孔方式,其PAPR为9.4529dB。

表10-3

当IFFTsize取4096时,参照表10-4为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于240MHz的信道打孔方式(方式2~方式10)及其它未列出的信道打孔方式,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于采用方式2的信道打孔方式,其所取值所对应EHTS的PAPR值为9.4529dB。序号2的EHTS序列设计,考虑了打孔模式且多RU分配方式下的PAPR最小化。

另一个示例中,打孔和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自采用方式2的信道打孔方式,其PAPR为9.4529dB。

表10-4

情况三和情况四是针对320MHz信道带宽的EHT-STF。在阐述320MHz信道带宽的EHT-STF之前,首先介绍320MHz的子载波分配图样(tone plane)。如前所述,802.11ax规定的80MHz信道带宽的tone plane为一共有1024个子载波,下标范围从-511到512,其中,在带宽左右边缘分别有12和11个保护子载波(guard tone),在带宽中间有5个直流子载波。本申请实施例所设计的320MHz的信道带宽的tone plan为4个80MHz的tone plane拼接在一起,即4个80MHz的左右边缘子载波和各自中间的自流子载波均保留。这样,320MHz带宽共有1024×4=4096个子载波,左右边缘分别有12个和11个保护子载波,带宽中间有23个直流子载波。

情况三、目标信道的带宽为320MHz、参考信道的周期长度为0.8μs。

本申请实施例将320MHz带宽、周期长度为0.8μs的EHT-STF的频域序列记作STF1x320MHz,其中,记STF1x320MHz为EHTS

1、利用IEEE 802.11ax中20MHz的序列进行构造STF1x320MHz。

本申请实施例将IEEE 802.11ax中20MHz带宽、周期长度为0.8μs的HE-STF的频域序列记作STF1x20MHz,设计公式如下:

STF1x320MHz=[STF1x80MHz_1,0,STF1x80MHz_2,0,STF1x80MHz_3,0,STF1x80MHz_4],

其中,STF1x80MHz_1=[c

STF1x80MHz_2=[c

STF1x80MHz_3=[c

STF1x80MHz_4=[c

示例性的,基于上式,STF1x320MHz可以表示为:

STF1x320MHz=[c

示例性的,记

EHTS

其中,a

对不同的a

参照表11为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于320MHz的信道打孔方式(包括320MHz下的打孔方式A和打孔方式B)及其它未列出的信道打孔方式,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于方式10的信道打孔方式,其所取值所对应EHTS的PAPR值为6.4230dB。序号2的EHTS序列设计,考虑了打孔模式下的PAPR最小化。

另一个示例中,打孔和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自采用方式10的信道打孔方式,其PAPR为6.4230dB

表11

2、利用IEEE 802.11ax中80MHz的序列进行构造STF1x320MHz。

本申请实施例将IEEE 802.11ax中80MHz带宽、周期长度为0.8μs的HE-STF的频域序列记作STF1x80MHz,设计公式如下:

STF1x320MHz=[STF1x80MHz,0,c

示例性的,记

EHTS

其中,c

对不同的a

参照表12为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于320MHz的信道打孔方式(包括320MHz下的信道打孔方式A和信道打孔方式B)及其它未列出的信道打孔方式,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于信道打孔方式A和信道打孔方式B中的方式4的信道打孔方式,其所取值所对应EHTS的PAPR值为8.2020dB。序号2的EHTS序列设计,考虑了打孔模式下的PAPR最小化。

另一个示例中,打孔(包括320MHz下的信道打孔方式A和信道打孔方式B)和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自采用信道打孔方式A和信道打孔方式B中的方式4的信道打孔方式,其PAPR为8.2020dB。

表12

3、利用IEEE 802.11ax中160MHz的序列进行构造STF1x320MHz。

本申请实施例将IEEE 802.11ax中160MHz带宽、周期长度为0.8μs的HE-STF的频域序列记作STF1x160MHz。

在一种可能的实现方式中,设计公式如下:

STF1x320MHz=[STF1x160MHz,0,c

示例性的,记

EHTS

其中,c

对不同的a

参照表13为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于320MHz的信道打孔方式(包括320MHz下的信道打孔方式A和信道打孔方式B)及其它未列出的信道打孔方式,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于信道打孔方式A和信道打孔方式B中的方式8的信道打孔方式,其所取值所对应EHTS的PAPR值为8.1648dB。序号2的EHTS序列设计,考虑了打孔模式下的PAPR最小化。

另一个示例中,打孔(包括320MHz下的信道打孔方式A和信道打孔方式B)和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自采用方式8的信道打孔方式,其PAPR为8.1648dB。

表13

在一种可能的实现方式中,160MHz的序列可进一步利用20MHz的序列构造,设计公式如下:

STF1x320MHz=[STF1x160MHz,0,STF1x80MHz_1,0,STF1x80MHz_2],

STF1x80MHz_1=[c

STF1x80MHz_2=[c

示例性的,基于上式,STF1x320MHz可以表示为:

STF1x320MHz=[STF1x160MHz,0,c

示例性的,记

EHTS

其中,a

对不同的a

参照表14-1为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于320MHz的信道打孔方式下的方式A,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于信道打孔方式A中的方式23的信道打孔方式,其所取值所对应EHTS的PAPR值为7.6672dB。序号2的EHTS序列设计,考虑了打孔模式下的PAPR最小化。

另一个示例中,打孔(对应于320MHz的信道打孔方式下的方式A)和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自采用信道打孔方式A中的方式23的信道打孔方式,其PAPR为7.6672dB。

表14-1

参照表14-2为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于320MHz的信道打孔方式下的方式B,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于信道打孔方式A中的方式5的信道打孔方式,其所取值所对应EHTS的PAPR值为6.8656dB。序号2的EHTS序列设计,考虑了打孔模式下的PAPR最小化。

另一个示例中,打孔(对应于320MHz的信道打孔方式下的方式B)和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自采用信道打孔方式A中的方式5的信道打孔方式,其PAPR为6.8656dB。

表14-2

在一种可能的实现方式中,160MHz的序列可进一步利用40MHz的序列构造,本申请实施例将IEEE 802.11ax中40MHz带宽、周期长度为0.8μs的HE-STF的频域序列记作STF1x40MHz,设计公式如下:

STF1x320MHz=[STF1x160MHz,0,STF1x80MHz_1,0,STF1x80MHz_2],

STF1x80MHz_1=[c

STF1x80MHz_2=[c

示例性的,基于上式,STF1x320MHz可以表示为:

STF1x320MHz=[STF1x160MHz,0,c

示例性的,记

EHTS

其中,c

对不同的a

参照表15为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于320MHz的信道打孔方式(包括320MHz下的打孔方式A和打孔方式B)及其它未列出的信道打孔方式,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于方式3的信道打孔方式,其所取值所对应EHTS的PAPR值为7.8512dB。序号2的EHTS序列设计,考虑了打孔模式下的PAPR最小化。

另一个示例中,打孔和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自采用方式3的信道打孔方式,其PAPR为7.8512dB。

表16

情况四、目标信道的带宽为320MHz、参考信道的周期长度为1.6μs

本申请实施例将320MHz带宽、周期长度为1.6μs的EHT-STF的频域序列记作STF2x320MHz,其中,记STF2x320MHz为EHTS

1、利用IEEE 802.11ax中20MHz的序列进行构造STF2x320MHz。

本申请实施例将IEEE 802.11ax中20MHz带宽、周期长度为1.6μs的HE-STF的频域序列记作STF2x20MHz,设计公式如下:

STF2x320MHz=[STF2x80MHz_1,0,STF2x80MHz_2,0,STF2x80MHz_3,0,STF2x80MHz_4],

其中,STF2x80MHz_1=[c

STF2x80MHz_2=[c

STF2x80MHz_3=[c

STF2x80MHz_4=[c

STF2x240MHz

示例性的,基于上式,STF2x320MHz可以表示为:

STF2x320MHz=[STF2x80MHz_1,0,c

示例性的,记

EHTS

STF2x240MHz

其中,a

对不同的a

参照表16为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于320MHz的信道打孔方式(包括320MHz下的打孔方式A和打孔方式B)及其它未列出的信道打孔方式,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于方式5的信道打孔方式,其所取值所对应EHTS的PAPR值为6.3874dB。序号2的EHTS序列设计,考虑了打孔模式且多RU分配方式下的PAPR最小化。

另一个示例中,打孔和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自采用方式5的信道打孔方式,其PAPR为6.3874dB。

表16

2、利用IEEE 802.11ax中80MHz的序列进行构造STF2x320MHz。

本申请实施例将IEEE 802.11ax中80MHz带宽、周期长度为1.6μs的HE-STF的频域序列STF2x80MHz,设计公式如下:

STF2x320MHz=[STF2x80MHz,0,c

示例性的,记

EHTS

STF2x240MHz

其中,c

对不同的a

参照表17-1为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于320MHz的信道打孔方式(包括320MHz下的信道打孔方式A和信道打孔方式B)及其它未列出的信道打孔方式,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于信道打孔方式A和信道打孔方式B中的方式7的信道打孔方式,其所取值所对应EHTS的PAPR值为9.8171dB。序号2的EHTS序列设计,考虑了打孔模式且多RU分配方式下的PAPR最小化。

另一个示例中,打孔(包括320MHz下的信道打孔方式A和信道打孔方式B)和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自采用道打孔方式A和信道打孔方式B中的方式7的信道打孔方式,其PAPR为9.8171dB。

表17-1

参照表17-2为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于320MHz的信道打孔方式(包括320MHz下的信道打孔方式A和信道打孔方式B)及其它未列出的信道打孔方式,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于信道打孔方式A和信道打孔方式B中的方式11的信道打孔方式,其所取值所对应EHTS的PAPR值为9.8171dB。序号2的EHTS序列设计,考虑了打孔模式且多RU分配方式下的PAPR最小化。

另一个示例中,打孔(包括320MHz下的信道打孔方式A和信道打孔方式B)和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自采用信道打孔方式A和信道打孔方式B中的方式11的信道打孔方式,其PAPR为9.8171dB。

表17-2

/>

3、利用IEEE 802.11ax中160MHz的序列进行构造STF2x320MHz。

本申请实施例将IEEE 802.11ax中160MHz带宽、周期长度为1.6μs的HE-STF的频域序列记作STF2x160MHz。

在一种可能的实现方式中,设计公式如下:

STF2x320MHz=[STF2x160MHz,0,c

示例性的,记

EHTS

STF2x240MHz

其中,c

对不同的a

参照表18-1为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于320MHz的信道打孔方式(包括320MHz下的信道打孔方式A和信道打孔方式B)及其它未列出的信道打孔方式,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于信道打孔方式A和信道打孔方式B中的方式8的信道打孔方式,其所取值所对应EHTS的PAPR值为9.7824dB。序号2的EHTS序列设计,考虑了打孔模式且多RU分配方式下的PAPR最小化。

另一个示例中,打孔(包括320MHz下的信道打孔方式A和信道打孔方式B)和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自采用打孔方式A和信道打孔方式B中的方式8的信道打孔方式,其PAPR为9.7824dB。

表18-1

/>

参照表18-2为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于320MHz的信道打孔方式(包括320MHz下的信道打孔方式A和信道打孔方式B)及其它未列出的信道打孔方式,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于信道打孔方式A和信道打孔方式B中的方式3的信道打孔方式,其所取值所对应EHTS的PAPR值为9.7824dB。序号2的EHTS序列设计,考虑了打孔模且多RU分配方式式下的PAPR最小化。

另一个示例中,打孔(包括320MHz下的信道打孔方式A和信道打孔方式B)和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自采用信道打孔方式A和信道打孔方式B中的方式3的信道打孔方式,其PAPR为9.7824dB。

表18-2

在一种可能的实现方式中,160MHz的序列可进一步利用20MHz的序列构造,设计公式如下:

STF2x320MHz=[STF2x160MHz,0,STF2x80MHz_1,0,STF2x80MHz_2]

STF2x80MHz_1=[c

STF2x80MHz_2=[c

STF2x240MHz

示例性的,基于上式,STF2x320MHz可以表示为:

STF2x320MHz=[STF2x160MHz,0,c

示例性的,记

EHTS

STF2x240MHz

其中,a

对不同的a

参照表19-1为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于320MHz的信道打孔方式A,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于采用RU242+RU484+RU996的RU分配方式,其所取值所对应EHTS的PAPR值为9.8876dB。序号2的EHTS序列设计,考虑了打孔模式且多RU分配方式下的PAPR最小化。

另一个示例中,打孔(对应于320Mhz的信道打孔方式A)和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自采用RU242+RU484+RU996的RU分配方式,其PAPR为9.8876dB。

表19-1

参照表19-2为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于320MHz的信道打孔方式B,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于采用RU242+RU484的RU分配方式,其所取值所对应EHTS的PAPR值为9.6130dB。序号2的EHTS序列设计,考虑了打孔模式且多RU分配方式下的PAPR最小化。

另一个示例中,打孔(对应于320Mhz的信道打孔方式B)和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自采用RU242+RU484的RU分配方式,其PAPR为9.6130dB。

表19-2

参照表19-3为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于320MHz的信道打孔方式A,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于采用RU242+RU484+RU996的RU分配方式,其所取值所对应EHTS的PAPR值为9.8186dB。序号2的EHTS序列设计,考虑了打孔模式且多RU分配方式下的PAPR最小化。

另一个示例中,打孔(对应于320Mhz的信道打孔方式A)和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自采用RU242+RU484+RU996的RU分配方式,其PAPR为9.8186dB。

表19-3

参照表19-4为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于320MHz的信道打孔方式B,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于采用信道打孔方式B的方式10的信道打孔方式,其所取值所对应EHTS的PAPR值为9.4496dB。序号2的EHTS序列设计,考虑了打孔模式且多RU分配方式下的PAPR最小化。

另一个示例中,打孔(对应于320Mhz的信道打孔方式B)和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自采用信道打孔方式B方式10的信道打孔方式,其PAPR为9.4496dB。

表19-4

在一种可能的实现方式中,160MHz的序列可进一步利用80MHz的序列构造,设计公式如下:

STF2x320MHz=[STF2x160MHz,0,c

示例性的,记

EHTS

STF2x240MHz

其中,c

对不同的a

参照表20-1为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于320MHz的信道打孔方A,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于信道打孔方A的方式41的信道打孔方式,其所取值所对应EHTS的PAPR值为10.0133dB。序号2的EHTS序列设计,考虑了打孔模式下的PAPR最小化。

另一个示例中,打孔(对应于320MHz的信道打孔方式A)和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自采用信道打孔方A的方式41的信道打孔方式,其PAPR为10.0133dB。

表20-1

参照表20-2为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于320MHz的信道打孔方B,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于信道打孔方B的方式4的信道打孔方式,其所取值所对应EHTS的PAPR值为9.8171dB。序号2的EHTS序列设计,考虑了打孔模式下的PAPR最小化。

另一个示例中,打孔(对应于320MHz的信道打孔方式B)和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自采用信道打孔方B的方式4的信道打孔方式,其PAPR为9.8171dB。

表20-2

参照表20-3为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于320MHz的信道打孔方A,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于信道打孔方A的方式41的信道打孔方式,其所取值所对应EHTS的PAPR值为10.0133dB。序号2的EHTS序列设计,考虑了打孔模式下的PAPR最小化。

另一个示例中,打孔(对应于320MHz的信道打孔方式A)和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自采用信道打孔方A的方式41的信道打孔方式,其PAPR为10.0133dB。

表20-3

参照表20-4为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于320MHz的信道打孔方B,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于信道打孔方B的方式4的信道打孔方式,其所取值所对应EHTS的PAPR值为9.8171dB。序号2的EHTS序列设计,考虑了打孔模式下的PAPR最小化。

另一个示例中,打孔(对应于320MHz的信道打孔方式B)和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自采用信道打孔方B的方式4的信道打孔方式,其PAPR为9.8171dB。

表20-4

在一种可能的实现方式中,160MHz的序列可进一步利用40MHz的序列构造,本申请实施例将IEEE 802.11ax中40MHz带宽、周期长度为1.6μs的HE-STF的频域序列记作STF2x40MHz,设计公式如下:

STF2x320MHz=[STF2x160MHz,0,STF2x80MHz_1,0,STF2x80MHz_2],

其中,STF2x80MHz_1=[c

STF2x80MHz_2=[c

STF2x240MHz

示例性的,基于上式,STF2x320MHz可以表示为:

STF2x320MHz=[STF2x160MHz,0,c

示例性的,记

EHTS

STF2x240MHz

其中,c

对不同的a

参照表21-1为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于320MHz的信道打孔方式A和信道打孔方式B及其它未列出的信道打孔方式,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于采用RU242+RU484+RU996的RU分配方式,其所取值所对应EHTS的PAPR值为9.3340dB。序号2的EHTS序列设计,考虑了打孔模式且多RU分配方式下的PAPR最小化。

另一个示例中,打孔和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自采用RU242+RU484+RU996的RU分配方式,其PAPR为9.3340dB。

表21-1

参照表21-2为EHTS

另一个示例中,若存在打孔信道,例如上文中所述的对应于320MHz的信道打孔方式A和信道打孔方式B及其它未列出的信道打孔方式,序号2的参数集取值所对应打孔方式的EHTS的最大PAPR值为所有可能的参数集中对应打孔方式的最大PAPR中的最小值。需要说明的是,当采用序号2的参数集取值所对应EHTS的最大PAPR值来自于信道打孔方式A的方式15或者是信道打孔方式B的方式10的信道打孔方式,其所取值所对应EHTS的PAPR值为9.1294dB。序号2的EHTS序列设计,考虑了打孔模式且多RU分配方式下的PAPR最小化。

另一个示例中,打孔(320MHz的信道打孔方式A和B)和不打孔信道均可采用序号3所对应的参数集取值,以获得所有可能的参数集中对应打孔和不打孔方式的最大PAPR值中的最小值。序号3的EHTS的序列其最大的PAPR值来自采用信道打孔方式A的方式15或者是信道打孔方式B的方式10的信道打孔方式,其PAPR为9.1294dB。

表21-2

应理解,在上述表1至表21-2中,参数集取值全部取反对应的序列能够获得与原参数集取值对应的序列相同的PAPR,本申请实施例不再一一列举。这里的“取反”具体可以为:1取反后为-1,0取反后仍为0,-1取反后为1。

根据本申请实施例,不仅可以满足实际中的更大信道带宽,且向后兼容,而且通过对参数进行穷举仿真验证了本申请实施例提供的短训练序列,峰均功率值PAPR较小,性能较优,进而提高接收端的自动增益控制电路的估计效果,从而降低接收误码率。

以上,结合图1至图6,详细说明了本申请实施例提供的传输物理层协议数据单元的方法。

本申请实施例提供了一种传输物理层协议数据单元的装置。在一种可能的实现方式中,该装置用于实现上述方法实施例中的接收端对应的步骤或流程。在另一种可能的实现方式中,该装置用于实现上述方法实施例中的发送端对应的步骤或流程。

以下,结合图7至图9,详细说明本申请实施例提供的传输物理层协议数据单元的装置。

图7是本申请实施例提供的传输物理层协议数据单元的装置的示意性框图。如图7所示,该装置700可以包括通信单元710和处理单元720。通信单元710可以与外部进行通信,处理单元720用于进行数据处理。通信单元710还可以称为通信接口或收发单元。

在一种可能的设计中,该装置700可实现对应于上文方法实施例中的发送端执行的步骤或者流程,其中,处理单元720用于执行上文方法实施例中发送端的处理相关的操作,通信单元710用于执行上文方法实施例中发送端的收发相关的操作。

示例性地,处理单元720用于:生成物理层协议数据单元PPDU,所述PPDU包括短训练域,所述短训练域的频域序列长度大于第一长度,所述第一长度为在带宽为160MHz的信道上传输的短训练域的频域序列的长度;通信单元710用于:在目标信道上发送所述PPDU,其中,所述目标信道的带宽大于160MHz。

在又一种可能的设计中,该装置700可实现对应于上文方法实施例中的接收端执行的步骤或者流程,其中,通信单元710用于执行上文方法实施例中接收端的收发相关的操作,处理单元720用于执行上文方法实施例中接收端的处理相关的操作。

示例性地,通信单元710用于:在目标信道上接收物理层协议数据单元PPDU,所述PPDU包括短训练域,所述短训练域的频域序列长度大于第一长度,所述第一长度为在带宽为160MHz的信道上传输的短训练域的频域序列的长度,其中,所述目标信道的带宽大于或等于160MHz;处理单元720用于:解析所述PPDU。

在上述两种可能的设计中,可选地,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:

在一种可能的实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

{HES

{HES

其中,

在一种可能的实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

其中,

在一种可能的实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

其中,

在一种可能的实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

{HES

其中,

在一种可能的实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

{HES

其中,

在一种可能的实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

{HES

{HES

{HES

其中,

在一种可能的实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

其中,

在一种可能的实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

其中,

在一种可能的实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

{HES

{HES

{HES

{HES

{HES

{HES

其中,

在一种可能的实现方式中,所述目标信道的带宽为240MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

{HES

其中,

在一种可能的实现方式中,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

其中,

在一种可能的实现方式中,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

其中,

在一种可能的实现方式中,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

{HES

其中,

在一种可能的实现方式中,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

其中,

在一种可能的实现方式中,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

其中,

在一种可能的实现方式中,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

其中,

在一种可能的实现方式中,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

{HES

{HES

{HES

{HES

{HES

其中,

在一种可能的实现方式中,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

{HES

其中,

在一种可能的实现方式中,所述目标信道的带宽为320MHz,所述短训练域的频域序列为以下任意一项:

{HES

{HES

其中,

应理解,这里的装置700以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置700可以具体为上述实施例中的发送端,可以用于执行上述方法实施例中与发送端对应的各个流程和/或步骤,或者,装置700可以具体为上述实施例中的接收端,可以用于执行上述方法实施例中与接收端对应的各个流程和/或步骤,为避免重复,在此不再赘述。

上述各个方案的装置700具有实现上述方法中发送端所执行的相应步骤的功能,或者,上述各个方案的装置700具有实现上述方法中接收端所执行的相应步骤的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如通信单元可以由收发机替代(例如,通信单元中的发送单元可以由发送机替代,通信单元中的接收单元可以由接收机替代),其它单元,如处理单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。

此外,上述通信单元还可以是收发电路(例如可以包括接收电路和发送电路),处理单元可以是处理电路。在本申请的实施例,图7中的装置可以是前述实施例中的接收端或发送端,也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。其中,通信单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。在此不做限定。

图8示出了本申请实施例提供的传输物理层协议数据单元的装置800。该装置800包括处理器810和收发器820。其中,处理器810和收发器820通过内部连接通路互相通信,该处理器810用于执行指令,以控制该收发器820发送信号和/或接收信号。

可选地,该装置800还可以包括存储器830,该存储器830与处理器810、收发器820通过内部连接通路互相通信。该存储器830用于存储指令,该处理器810可以执行该存储器830中存储的指令。在一种可能的实现方式中,装置800用于实现上述方法实施例中的发送端对应的各个流程和步骤。在另一种可能的实现方式中,装置800用于实现上述方法实施例中的接收端对应的各个流程和步骤。

应理解,装置800可以具体为上述实施例中的发送端或接收端,也可以是芯片或者芯片系统。对应的,该收发器820可以是该芯片的收发电路,在此不做限定。具体地,该装置800可以用于执行上述方法实施例中与发送端或接收端对应的各个步骤和/或流程。可选地,该存储器830可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。该处理器810可以用于执行存储器中存储的指令,并且当该处理器810执行存储器中存储的指令时,该处理器810用于执行上述与发送端或接收端对应的方法实施例的各个步骤和/或流程。

在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。

应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。本申请实施例中的处理器可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。

可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rateSDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(directrambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。

图9示出了本申请实施例提供的传输物理层协议数据单元的装置900。该装置900包括处理电路910和收发电路920。其中,处理电路910和收发电路920通过内部连接通路互相通信,该处理电路910用于执行指令,以控制该收发电路920发送信号和/或接收信号。

可选地,该装置900还可以包括存储介质930,该存储介质930与处理电路910、收发电路920通过内部连接通路互相通信。该存储介质930用于存储指令,该处理电路910可以执行该存储介质930中存储的指令。在一种可能的实现方式中,装置900用于实现上述方法实施例中的发送端对应的各个流程和步骤。在另一种可能的实现方式中,装置900用于实现上述方法实施例中的接收端对应的各个流程和步骤。

根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图6所示实施例中的方法。

根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图6所示实施例中的方法。

根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的一个或多个站点以及一个或多个接入点。

本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。

所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。

在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。

所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。

另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。

所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。

上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

技术分类

06120115928245