掌桥专利:专业的专利平台
掌桥专利
首页

检测块状多晶硅杂质的装置及其用途、检测方法

文献发布时间:2023-06-19 16:09:34



技术领域

本发明属于电子级多晶硅技术领域,具体而言,涉及检测块状多晶硅杂质的装置及其用途、检测方法。

背景技术

电子级多晶硅是制造太阳能电池、电子芯片等高纯硅制品的主要原料。在电子级多晶硅的产业中,决定其价格和等级最关键的参数是其杂质浓度,即元素周期表中三族(硼B,铝Al,镓Ga和铟In)、五族(磷P,砷As和锑Sb)和碳氧杂质的含量。当电子级多晶硅中杂质含量过高时,会出现电阻降低进而影响单晶电阻率及少数载流子寿命等问题。因此要尽可能地减少电子级多晶硅产品中杂质的含量。

要实现微量杂质的脱除,首先就有必要对其中所含的微量杂质进行检测分析,确定杂质的组成和含量。目前有将电子级多晶硅棒区熔拉制成单晶硅棒,再进行切片,通过检测单晶硅片的三五族杂质和碳氧杂质的含量来表征多晶硅棒的杂质含量。此方法检测基础为多晶硅棒,多晶硅棒是通过西门子法得到的,而西门子法相对较高的能耗在一定程度上限制了生产成本的降低。目前在国外相对成熟但在国内处于发展阶段的多晶硅生产工艺是流化床法,在此工艺中,硅烷气体在600~800℃的流化床中分解沉积在籽晶颗粒上,得到的是多晶硅颗粒;此外,当有对块状多晶硅料杂质含量的检测需求时,通常也需要将其先转化为多晶硅棒来检测。因此将块状多晶硅转化为单晶硅是需要解决的主要技术问题。

发明内容

本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的一个目的在于提出检测块状多晶硅杂质的装置及其用途、检测方法。该装置不仅结构简单、操作方便,能够实现块状多晶硅向多晶硅棒的转变,进而通过对多晶硅棒杂质含量进行检测能获得块状多晶硅的杂质含量,具有检测结果准确度高且易于实现的优点。

在本发明的一个方面,本发明提出了一种检测块状多晶硅杂质的装置,根据本发明的实施例,该装置包括区熔炉,所述区熔炉包括:

硅棒基底,所述硅棒基底上部设有凹槽;

硅棒底座,所述硅棒底座设在所述硅棒基底下部并支撑所述硅棒基底;

第一籽晶旋转固定件,所述第一籽晶旋转固定件设在所述区熔炉上部,所述第一籽晶旋转固定件包括第一螺杆和第一籽晶夹头,所述第一籽晶夹头与所述第一螺杆下部相连;

加热线圈,所述加热线圈设在所述第一籽晶旋转固定件与所述硅棒基底之间,且所述加热线圈在水平面上的投影位于所述硅棒基底在水平面上的投影区域外;

旋转支撑部,所述旋转支撑部设在所述区熔炉底部并支撑所述硅棒底座。

本发明的上述实施例的检测块状多晶硅杂质的装置实际上是基于对传统区熔炉改良得到的,其至少具有以下有益效果:1)改进方法简单易得,仅需要在现有区熔炉的基础上增加一个硅棒基底和硅棒底座即可,具有结构简单、易于实现且方便操作等优点;2)以硅棒基底作为块状多晶硅的区熔容器,可以避免块状多晶硅在其它容器(如石英管)中熔融时可能引入的外来杂质,保证检测结果的准确性;3)通过装配第一籽晶旋转固定件和旋转支撑部,可以实现位于硅棒基底凹槽内的块状多晶硅和不断生长的多晶硅棒的旋转,有利于通过转速的调整来避免或降低多晶硅棒生长过程中出现缺陷的风险,提高检测结果的准确性;4)利用加热线圈对块状硅料进行加热,不仅可以实现块状硅料的区熔,还有利于结合第一籽晶旋转固定件和旋转支撑部来获得适宜的温度场,从而更有利于控制块状硅料的区熔程度和多晶硅棒生长品质,避免出现区熔滴液以及多晶硅棒存在生长缺陷等问题;5)可实现对块状多晶硅三五族杂质和碳氧杂质的检测,且在检测过程中不会引入其它杂质,检测结果更准确可靠。

另外,根据本发明上述实施例的检测块状多晶硅杂质的装置还可以具有如下附加的技术特征:

在本发明的一些实施例中,检测块状多晶硅杂质的装置还包括:第二籽晶旋转固定件,所述第二籽晶旋转固定件包括第二螺杆和第二籽晶夹头,所述第二籽晶夹头与所述第二螺杆上部相连,所述第二螺杆下部与所述旋转支撑部可拆卸相连。

在本发明的一些实施例中,所述凹槽的深度为0.5~1.5cm,所述凹槽的内径为5.5~8.5cm。

在本发明的一些实施例中,所述凹槽内壁与所述硅棒基底外壁之间的距离为0.5~1.5cm;和/或,所述硅棒基底的外径为7~9cm。

在本发明的一些实施例中,所述加热线圈内表面与所述硅棒基底外表面之间的水平间距为1~2cm,所述加热线圈与所述硅棒基底之间的竖直间距为0.5~1.5cm。

在本发明的一些实施例中,在竖直方向上,远离所述加热线圈一侧的温度梯度为7~13℃/mm;和/或,所述区熔炉还包括:硅制加料管,所述硅制加料管伸入所述区熔炉内并延伸至所述凹槽上部。

发明的一些实施例中,所述硅棒基底的转速为10~18转/分,所述第一籽晶旋转固定件的转速为5~10转/分。

在本发明的再一个方面,本发明提出了上述装置在检测块状多晶硅杂质中的用途。与现有技术相比,该用途具有上述检测块状多晶硅杂质的装置的全部特征及效果,此处不再赘述。总的来说,可以通过对现有设备区熔炉的改进,实现对块状多晶硅三五族杂质和碳氧杂质的检测,并且在检测过程中不会引入其它杂质,测试结果准确可靠。

在本发明的又一个方面,本发明提出了利用上述装置检测块状多晶硅杂质的方法。根据本发明的实施例,该方法包括:

(1)将块状多晶硅置于硅棒基底的凹槽中,将加热线圈设在所述硅棒基底上部;在第一籽晶夹头上固定第一籽晶,利用第一籽晶旋转固定件带动所述第一籽晶旋转,并利用旋转支撑部通过硅棒底座带动所述硅棒基底旋转;

(2)利用所述加热线圈对所述块状多晶硅进行加热,以便通过所述第一籽晶区熔拉制得到多晶硅棒。

与现有技术相比,该方法具有上述检测块状多晶硅杂质的装置的全部特征及效果,此处不再赘述。总的来说,该方法不仅工艺简单、易于实现,还能更好的实现对(电子级)块状多晶硅料中三五族杂质和碳氧杂质含量的检测,且在检测过程中不会引入其它杂质,检测结果更准确可靠。

在本发明的一些实施例中,上述装置检测块状多晶硅杂质的方法还包括:(3)将加热线圈设在所述多晶硅棒下部;利用第一籽晶旋转固定件带动所述多晶硅棒旋转,并采用第二籽晶旋转固定件替换所述硅棒底座和硅棒基底,在第二籽晶夹头上固定第二籽晶,利用旋转支撑部通过第二螺杆带动所述第二籽晶旋转;(4)利用所述加热线圈对所述多晶硅棒进行加热,以便通过所述第二籽晶区熔拉制得到单晶硅棒;(5)以所述单晶硅棒具有第二籽晶的一侧为头部,在所述单晶硅棒上距离所述头部的距离为单晶硅棒长度80%的区域进行切片取样,得到待测片;(6)利用红外检测仪对所述待测样片进行杂质检测。

本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。

附图说明

本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:

图1是根据本发明一个实施例的检测块状多晶硅杂质的装置结构示意图;

图2是根据本发明再一个实施例的检测块状多晶硅杂质的装置结构示意图;

图3是根据本发明一个实施例的硅棒基底剖视图及其与线圈位置关系图;

图4是根据本发明一个实施例的检测块状多晶硅杂质的装置部分结构示意图;

图5是根据本发明一个实施例的截取样片位置示意图。

具体实施方式

下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。

在本发明的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明中,除非另有明确的规定和限定,“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。

在本发明的一个方面,本发明提出了一种检测块状多晶硅杂质的装置,根据本发明的实施例,结合图1和图3理解,该装置包括区熔炉10,区熔炉10包括:硅棒基底11、硅棒底座12、第一籽晶旋转固定件13、加热线圈14和旋转支撑部15。其中硅棒基底11上部设有凹槽11a;硅棒底座12设在硅棒基底11下部并支撑硅棒基底11;第一籽晶旋转固定件13设在区熔炉10上部,第一籽晶旋转固定件13包括第一螺杆13a和第一籽晶夹头13b,第一籽晶夹头13b与第一螺杆13a下部相连;加热线圈14设在第一籽晶旋转固定件13与硅棒基底11之间,且加热线圈14在水平面上的投影位于硅棒基底11在水平面上的投影区域外;旋转支撑部15设在区熔炉10底部并支撑硅棒底座12。其中,在实际操作中,旋转支撑部15用于支撑硅棒底座12并通过硅棒底座12带动硅棒基底11旋转,进而带动置于硅棒基底凹槽11a中的块状多晶硅料旋转,第一籽晶旋转固定件13用于在第一籽晶夹头13b上固定第一籽晶,当第一螺杆13a旋转时带动籽晶旋转,由此可以将加热线圈14设在硅棒基底11上部,在块状多晶硅料旋转和籽晶旋转过程中利用加热线圈14对块状多晶硅料进行加热,通过籽晶区熔拉制得到多晶硅棒A。另外,硅棒基底11的材质可以为多晶硅或单晶硅,由此可以降低引入外来杂质的风险,另外选择多晶硅材质还能进一步降低原料成本。

本发明的上述实施例的检测块状多晶硅杂质的装置实际上是基于对传统区熔炉改良得到的,其至少具有以下有益效果:1)改进方法简单易得,仅需要在现有区熔炉的基础上增加一个硅棒基底和硅棒底座即可,具有结构简单、易于实现且方便操作等优点;2)以硅棒基底作为块状多晶硅的区熔容器,可以避免块状多晶硅在其它容器(如石英管)中熔融时可能引入的外来杂质,保证检测结果的准确性;3)通过装配第一籽晶旋转固定件和旋转支撑部,可以实现位于硅棒基底凹槽内的块状多晶硅和不断生长的多晶硅棒的旋转,有利于通过转速的调整来避免或降低多晶硅棒生长过程中出现缺陷的风险,提高检测结果的准确性;4)利用加热线圈对块状硅料进行加热,不仅可以实现块状硅料的区熔,还有利于结合第一籽晶旋转固定件和旋转支撑部来获得适宜的温度场,从而更有利于控制块状硅料的区熔程度和多晶硅棒生长品质,避免出现区熔滴液以及多晶硅棒存在生长缺陷等问题;5)可实现对块状多晶硅三五族杂质和碳氧杂质的检测,且在检测过程中不会引入其它杂质,检测结果更准确可靠。下面参考图1~5对本发明上述实施例的检测块状多晶硅杂质的装置进行详细描述。

根据本发明的实施例,参考图2理解,检测块状多晶硅杂质的装置还包括:第二籽晶旋转固定件16,第二籽晶旋转固定件16包括第二螺杆16a和第二籽晶夹头16b,第二籽晶夹头16b与第二螺杆16a上部相连,第二螺杆16a下部与旋转支撑部15可拆卸相连。当将块状多晶硅料区熔拉制得到多晶硅棒后,还需要进一步将多晶硅棒拉制成单晶硅棒,并对单晶硅棒进行切片、检测,才能获得块状多晶硅料的杂质含量。本发明中通过进一步设置第二籽晶旋转固定件,可以在得到多晶硅棒A后,将图1中硅棒底座12及与硅棒底座12相连的硅棒基底11从旋转支撑部15上拆卸下来,将第二籽晶旋转固定件16安装到旋转支撑部15之上,并在第二籽晶夹头16b上固定第二籽晶,对多晶硅棒A继续进行区熔拉制,进而可以在第二籽晶上区熔生长单晶硅,得到单晶硅棒B。需要说明的是,对多晶硅棒A进行区熔时,加热线圈14应置于多晶硅棒A下部且高于第二籽晶或单晶硅棒B,且加热线圈与多晶硅棒A之间的竖直距离优选其与硅棒基底之间控制的竖直距离相同。可以理解的是,在多晶硅棒A或单晶硅棒B的生长过程中,加热线圈与硅棒基底之间的竖直距离或加热线圈与多晶硅棒A之间的竖直距离可以始终维持一致,由此更有利于维持区熔部位的温度场稳定,例如,在将块状多晶硅料区熔拉制成多晶硅棒A时,随着多晶硅棒A的长度增加,旋转支撑部的高度可以逐渐降低(旋转支撑部可升降设置),进而带动硅棒基底逐渐下降,此过程中,加热线圈也可以逐渐下降,并维持加热线圈与硅棒基底顶部之间的竖直距离不变。相应地,将多晶硅棒A区熔拉制为单晶硅棒B时,随着单晶硅棒B长度逐渐增加,多晶硅棒A的长度逐渐缩短,加热线圈也可以逐渐升高,并维持加热线圈与多晶硅棒A底部之间的竖直距离不变。

可以理解的是,本发明中的检测块状多晶硅杂质的装置可以对现有区熔炉进行改进,无需改变区熔炉的整体结构,仅需在现有区熔炉的基础上增加一个硅棒基底11和硅棒底座12,用于替换原有区熔炉底部的第二籽晶旋转固定件16即可,由此,在将块状多晶硅料区熔拉制成多晶硅棒时,可以用硅棒基底11和硅棒底座12替换第二籽晶旋转固定件16,当将区熔拉制得到的多晶硅棒进一步区熔拉制成单晶硅棒时,可以移去硅棒基底11和硅棒底座12,重新将第二籽晶旋转固定件16固定于旋转支撑部15上进行区熔操作,与现有技术相比,不仅改进方法简单、易得,而且方便实际操作。

根据本发明的实施例,参考图3理解,硅棒基底11内凹槽11a的深度h

根据本发明的实施例,参考图3理解,凹槽内壁与硅棒基底外壁之间的距离d

根据本发明的实施例,参考图3理解,加热线圈14内表面与硅棒基底11外表面之间的水平间距d

根据本发明的实施例,在竖直方向上,远离加热线圈14一侧的温度梯度可以为7~13℃/mm,例如可以为8℃/mm、10℃/mm或12℃/mm等,发明人发现,当温度梯度过小时,晶体生长产生的结晶潜热不能及时散掉,导致多晶硅棒或单晶硅棒温度增高,结晶界面温度随之增高,熔体表面过冷度减少,影响晶体的正常生长,导致其生长速度缓慢,限制生产效率;而当温度梯度过大时,硅棒生长过程中可能产生新的不规则的晶核,使单晶变为多晶,同时,熔体表面过冷度增大,单晶可能产生大量的结构缺陷,影响检测结果的准确性。因此,通过控制区熔腔室在竖直方向上的温度梯度为上述范围,可以有效避免上述情况的发生,使得生产效率和晶体结构都获得较佳效果。另外,还需要说明的是,上述温度梯度可以通过同时控制加热线圈与硅棒基底之间的竖直间距和水平间距,以及硅棒基底的转速和第一籽晶旋转固定件的转速实现。此外,区熔操作是在惰性气氛下进行的,区熔腔室在实际操作中优选保持密闭状态,由此更有利于维持腔室内的温度场和惰性气氛稳定。

根据本发明的实施例,参考图4理解,区熔炉还可以包括:硅制加料管17,硅制加料管17可以穿过区熔炉10的炉壁18伸入区熔炉10内并延伸至凹槽11a上部,由此可以在不打开区熔炉的情况下,在硅棒生长间歇过程中,通过硅制加料管将块状多晶硅料加入到凹槽内熔区内,使其继续生长为多晶硅棒。需要说明的是,此硅制加料管可以为可拆卸设置,且在硅制加料管穿过区熔炉炉壁的开口处可以配备有炉盖,不设加料管时,将炉盖关闭,保持炉内为密闭环境,其中选择硅制加料管可以进一步避免引入外来杂质。

根据本发明的实施例,参考图1理解,硅棒基底11的转速可以为10~18转/分,例如可以为12转/分、14转/分或16转/分,第一籽晶旋转固定件13的转速可以为5~10转/分,例如可以为6转/分、7转/分或9转/分。发明人发现,如果二者旋转速度过快或二者转速差过大,会导致晶体生长出现缺陷,影响检测结果的准确性;如果二者旋转速度过慢或者二者转速差过小,又会导致无法生长为等径晶棒,影响分凝效果,最终导致检测结果产生偏差。本发明中通过控制硅棒基底和第一籽晶旋转固定件的转速分别为上述范围,可以提高硅棒的完整性,从而提高检测结果的准确性;另外,基于上述加热线圈内表面与硅棒基底外表面之间的水平间距范围以及加热线圈与硅棒基底之间的竖直间距范围,通过控制硅棒基底和第一籽晶旋转固定件的转速分别为上述范围,还可以进一步确保在竖直方向上远离加热线圈一侧的温度梯度为7~13℃/mm,由此可以进一步提高区熔拉制长晶效率并降低硅棒的晶体缺陷,从而提高检测结果的准确性。

在本发明的再一个方面,本发明提出了上述装置在检测块状多晶硅杂质中的用途。与现有技术相比,该用途具有上述检测块状多晶硅杂质的装置的全部特征及效果,此处不再赘述。总的来说,可以对现有设备区熔炉的改进,实现对块状多晶硅三五族杂质和碳氧杂质的检测,并且在检测过程中不会引入其他杂质,测试结果准确可靠。

在本发明的又一个方面,本发明提出了一种利用上述装置检测块状多晶硅杂质的方法。根据本发明的实施例,该方法包括:

(1)将块状多晶硅置于硅棒基底的凹槽中,将加热线圈设在硅棒基底上部;在第一籽晶夹头上固定第一籽晶,利用第一籽晶旋转固定件带动第一籽晶旋转,并利用旋转支撑部通过硅棒底座带动硅棒基底旋转;

(2)利用加热线圈对块状多晶硅进行加热,以便通过第一籽晶区熔拉制得到多晶硅棒。

与现有技术相比,该方法不仅工艺简单,还可以通过控制硅棒或硅棒基底旋转速度以及加热线圈温度,得到目标直径或目标长度的多晶硅棒,有效避免硅棒生长过程中产生缺陷等问题。需要说明的是,针对上述检测块状多晶硅杂质的装置所描述的特征及效果同样适用于该检测块状多晶硅杂质的方法,此处不再一一赘述。

根据本发明的一些实施例,上述装置检测块状多晶硅杂质的方法还包括:(3)将加热线圈设在多晶硅棒下部;利用第一籽晶旋转固定件带动多晶硅棒旋转,并采用第二籽晶旋转固定件替换硅棒底座和硅棒基底,在第二籽晶夹头上固定第二籽晶,利用旋转支撑部通过第二螺杆带动第二籽晶旋转;(4)利用加热线圈对多晶硅棒进行加热,以便通过第二籽晶区熔拉制得到单晶硅棒;(5)以单晶硅棒具有第二籽晶的一侧为头部,在单晶硅棒上距离头部的距离为单晶硅棒长度(L)的80%的区域进行切片取样,得到待测片。切片取样的位置示意图如图5所示;(6)利用红外检测仪对待测样片进行杂质检测。由此可以最终获得块状多晶硅料的杂质含量。

在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。

尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

技术分类

06120114727543