掌桥专利:专业的专利平台
掌桥专利
首页

一种二维单晶四氧化三铁纳米材料及制备方法

文献发布时间:2023-06-19 16:11:11



技术领域

本发明涉及纳米材料制备技术领域,具体涉及一种二维单晶四氧化三铁纳米材料及制备方法。

背景技术

二维材料以其原子层平面结构、独特的电子结构(半导体、金属、超导)以及丰富的应用场景(高迁移率晶体管,超敏光电探测器,高效能量转换)等特点,引起了人们极大的研究兴趣。新兴的二维铁磁材料将自旋与二维材料独特的电子结构结合起来,表现出新颖的磁电性质,促进了自旋电子学的兴起。四氧化三铁环境稳定性好,是最常见的铁磁性材料。常见四氧化三铁纳米材料多以纳米颗粒和纳米片的形状最为常见,具有良好的物理化学性质、资源丰富、成本低等优点,在能源储存、生物医药和化学催化等方面应用广泛。

目前有关二维四氧化三铁的制备方法报道较少,已经公开的国家发明专利CN110846716A展示了一种制备二维四氧化三铁单晶的方法,该方法首先通过电镀获得具有铁镀层的铜箔,然后高温1100度将铜箔液化再降温进行四氧化三铁的生长,可以得到尺寸大于200um的单晶四氧化三铁。整个实验过程周期较长,而且由于使用了化学电镀,会引入污染,反应结束后衬底表面会比较脏且材料分布不均匀,单晶四氧化三铁的表面高度起伏可达到10纳米,不利于实际应用。通过分子束外延、磁控溅射等方法可以得到四氧化三铁薄膜,但是分子束外延设备昂贵,不适宜大面积批量生产;磁控溅射制备的薄膜属于多晶材料并且表面不均匀。

发明内容

针对上述问题,本发明通过化学气相沉积的方法直接使用铁的卤化物作为铁源,与一定量氧气反应得到均匀分布的二维

实现本发明的技术方案是:

一种二维单晶四氧化三铁纳米材料的制备方法,步骤如下:

(1)将生长衬底水平放置于高温管式炉中,将铁源与分子筛混合放置于生长衬底下方;

(2)在一定压力和载气条件下,将管式炉升温并维持一定温度,然后通入氧气并保持一定时间,使挥发至衬底表面的铁源与氧源反应生长得到二维单晶四氧化三铁纳米片。

所述步骤(1)中生长衬底为(0001)晶相单晶蓝宝石衬底、氧化镁衬底和云母衬底中的任一种;衬底清洗方式为:依次用丙酮、异丙醇超声清洗15min,然后乙醇冲洗再使用氮气枪吹干。

铁源为铁的卤化物;铁源与分子筛的质量比为(1-10):(10-200)。

所述铁的卤化物为碘化亚铁、溴化亚铁和氯化亚铁中的任一种,规格超干纯度99.99%。

步骤(2)中压力为常压或低压,载气为惰性气体或氮气,载气流速为20sccm-1000sccm。

低压为38-210Pa,低压是使用机械泵将系统抽至38-210Pa,载气流速为50-500sccm。

所述步骤(2)将管式炉升温至450-800℃,在所述铁源转化为气态到达生长衬底后,调节保护气与氧源的比例为20-1000:1并维持一段时间,反应结束停止通入氧源。

所述步骤(2)中氧气为氧气含量1%的氩氧混合气,氧气流速为1-5sccm,调节氩气与氧气比例为(50-900):1,并维持5-30分钟,反应结束停止通入氧气。

所述升温时间为10-15min,通入氧气后反应时间为10-30min。

所述二维单晶四氧化三铁纳米材料为纳米片,横向尺寸为0.2-60μm,厚度2-30nm。

本发明的有益效果是:本发明制备方法简单、耗时短、可批量化、厚度尺寸均匀可控制备等优点。通过光学显微镜、拉曼光谱表征、扫描电子显微镜以及原子力显微镜等数据确定样品是高质量的二维四氧化三铁纳米片。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为加热区间中样品放置示意图:1、石英管,2、衬底,3、载舟。

图2为本发明方法在低压下制备的二维单晶四氧化三铁纳米材料的典型光学照片,可以看到分布均匀的三角形样品。

图3为本发明方法通过低压制备样品的扫描电子显微镜检测结果:a、实例一条件下制备得到的样品,四氧化三铁是将整个衬底覆盖的;b、同样条件550℃制备得到的样品,可以看到均匀分布的单晶三角形样品。

图4为本发明方法制备实施例2中的Fe

图5为本发明方法制备的Fe

具体实施方式

下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

实施例1

二维单晶四氧化三铁纳米材料的方法,步骤如下:

步骤1:将蓝宝石衬底切成1×1cm大小,依次用丙酮、异丙醇超声清洗15min,然后乙醇冲洗再使用氮气枪吹干,放入管式炉中,称取10mg分子筛,2mg碘化亚铁混合放在衬底下方。

步骤2:将管式炉抽低压,在通入50sccm氩气后压力为38Pa,用12分钟将管式炉升温至450℃,然后通入1sccm氧源并保持5min,反应结束停止氧源通入开始降温。得到覆盖衬底的Fe

实施例2

二维单晶四氧化三铁纳米材料的方法,步骤如下:

步骤1:将蓝宝石衬底切成1×1cm大小,依次用丙酮、异丙醇超声清洗15min,然后乙醇冲洗再使用氮气枪吹干,放入管式炉中,称取10mg分子筛,4mg碘化亚铁混合放在衬底下方。

步骤2:首先向管式炉中通入500sccm的氩气15分钟洗气,然后在900sccm氩气存在的情况下,16分钟将管式炉升温至800℃,然后通入2sccm氧源并保持15min,反应结束停止氧源通入开始降温,由于温度较高,得到分形生长的二维四氧化三铁纳米片。

实施例3

二维单晶四氧化三铁纳米材料的方法,步骤如下:

步骤1:使用1×1cm的云母片作为衬底直接放在反应中心,称取100mg分子筛、10mg碘化亚铁混合后放置在衬底下方。

步骤2:首先向管式炉中通入500sccm的氩气15分钟洗气,然后在1000sccm氩气存在的情况下,12分钟将管式炉升温至550℃,然后通入1sccm氧源并保持20min,反应结束停止氧源通入开始降温,得到二维四氧化三铁纳米片。

实施例4

二维单晶四氧化三铁纳米材料的方法,步骤如下:

步骤1:使用1×1cm的云母片作为衬底直接放在反应中心,称取200mg分子筛、40mg碘化亚铁混合后放置在衬底下方。

步骤2:首先向管式炉中通入500sccm的氩气15分钟洗气,然后在1000sccm氩气存在的情况下,15分钟将管式炉升温至700℃,然后通入1sccm氧源并保持30min,反应结束停止氧源通入开始降温,得到二维四氧化三铁纳米片。

实施例5

二维单晶四氧化三铁纳米材料的方法,步骤如下:

步骤1:将蓝宝石衬底切成1×1cm大小,依次用丙酮、异丙醇超声清洗15min,然后乙醇冲洗再使用氮气枪吹干,放入管式炉中,称取50mg分子筛,10mg氯化亚铁混合放在衬底下方。

步骤2:首先向管式炉中通入500sccm的氩气15分钟洗气,然后在1000sccm氩气存在的情况下,16分钟将管式炉升温至800℃,然后通入2sccm氧源并保持15min,反应结束停止氧源通入开始降温,得到二维四氧化三铁纳米片。

实施例6

二维单晶四氧化三铁纳米材料的方法,步骤如下:

步骤1:将蓝宝石衬底切成1×1cm大小,依次用丙酮、异丙醇超声清洗15min,然后乙醇冲洗再使用氮气枪吹干,放入管式炉中,称取50mg分子筛,10mg溴化亚铁混合放在衬底下方。

步骤2:首先向管式炉中通入500sccm的氩气15分钟洗气,然后在1000sccm氩气存在的情况下,16分钟将管式炉升温至800℃,然后通入2sccm氧源并保持15min,反应结束停止氧源通入开始降温,得到二维四氧化三铁纳米片。

通过拉曼数据、原子力显微镜数据等表征,证明所得材料为高质量Fe

以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

技术分类

06120114732102