掌桥专利:专业的专利平台
掌桥专利
首页

一种碲锌镉单晶圆片制备工艺

文献发布时间:2023-06-19 16:12:48



技术领域

本发明涉及半导体技术领域,特别是涉及一种碲锌镉单晶圆片制备工艺。

背景技术

半导体产业的第一步是制备人工晶体。经过100多年的研究,晶体的生长方法多种多样。其中,布里奇曼法(Bridgeman)和垂直梯度凝固法(Vertical Gradient Freeze,VGF)为代表的一类方法得到广泛使用。这类方法将原料的熔体置于一个可控温场中,通过调节温场本身,或者使容器和温场相对运动,来获得晶体生长所需要的温度条件。对于这类熔体到晶体的生长方法来讲,生长过程中,生长界面的状态直接决定了生长进度,晶体质量。

碲锌镉(CZT)是一种含有少量Zn元素的II-VI族化合物半导体,碲锌镉原子数高(约为50)、密度高(6g/cm

碲锌镉晶体及其熔体的导热性都很差,固化潜热难以散发,熔体对流不畅,导致固液界面不易控制。碲锌镉晶体的堆垛缺陷能(层错)很低,在晶体生长过程中,细微的温度波动和界面波动都能引起孪晶产生。为了克服晶体生长过程中的困难,相关研究者开发了多种碲锌镉晶体生长方法,包括VB法、VGF法、THM法等多种,但均无法解决熔体对流不畅导致的晶体生长缺陷。同时,现有方法中由于制备温度较高,仍然不可避免引入来自石英管壁等的钠等杂质元素,造成污染。基于此,如何提供一种能在晶体生长过程中减少杂质元素、进一步提升晶体质量是本领域技术人员亟需解决的技术问题。

发明内容

(1)要解决的技术问题

本发明实施例提供了一种碲锌镉单晶圆片制备工艺,包括制备多晶棒、富碲合金;将籽晶、多晶棒、富碲合金放入石英管中高温加热得到碲锌镉单晶晶棒;再对对得到的单晶晶棒经切片、腐蚀、抛光和清洗处理,得到碲锌镉单晶圆片。本发明实施例制备工艺过程简单,所需温度低,便于实施,得到的碲锌镉单晶圆片纯度高,因此应用价值高。

(2)技术方案

本发明的实施例提出了一种碲锌镉单晶圆片制备工艺,包括如下步骤:

步骤一:按照化学计量比将满足Cd

步骤二:按照化学计量比将满足Cd

步骤三:另取一个石英管,在其内部放入籽晶,再依次放入上述得到的多晶棒、富碲合金,抽真空并充入保护气后封闭石英管;

步骤四:对步骤三的石英管中放置富碲合金的区域施加不超过1000℃的高温,使富碲合金完全熔融成为饱和溶液;继续保温5-100h后以0.02-2mm/h的速度朝向籽晶一侧移动热源,直至热源高度低于步骤三的步骤三的最低端为止,同时待多晶棒与熔融的富碲合金熔体脱离后,以0.001-1mm/min的速度向上提拉多晶棒;

步骤五:降温,得到碲锌镉单晶晶棒;

步骤六:对得到的碲锌镉单晶晶棒经切片、腐蚀、抛光和清洗处理,即得到所述碲锌镉单晶圆片。

进一步地,步骤一和步骤二中x的范围为0.01-0.95。

进一步地,步骤一和步骤二中镉、锌、碲原料的纯度不低于99.999999%。

进一步地,所述步骤一、所述步骤二以及所述步骤三中还包括抽真空检测,抽真空过程中进行真空度检测,当石英管内气压低于1.0×10

进一步地,所述步骤一、所述步骤二以及所述步骤三中在进行封闭石英管以后需要进行检漏,检漏合格以后才可以进行加热处理。

进一步地,所述保护气为惰性气体。

进一步地,在进行步骤四时,步骤三的石英管始终放置在温度为300-800℃的整体环境中。

进一步地,所述籽晶的成分与所述多晶棒的成分相同。

进一步地,步骤一和步骤二采用摇摆炉进行加热熔融。

进一步地,步骤四中石英管应进行振动旋转。

(3)有益效果

本发明先利用高纯度的镉、锌、碲原料制备多晶棒、富碲合金,在此过程中对石英管进行抽真空,可以降低空气中的含杂量对制备过程的影响,在充入保护气体一方面可以避免空气受外界空气影响,继续纯化制备的碲锌镉单晶圆片,另一方面可以提高石英管内部压强,避免真空的石英管在高温处理中发生损坏,影响制备过程。

此外,在步骤四中采用不超过1000℃的高温进行热处理,与现有方法在1150℃左右进行热处理相比,温度明显下降,从而可以降低石英管中钠元素等杂质的析出对制备碲锌镉单晶圆片的影响。

同时,本发明步骤四在制备时,以一定速度朝向籽晶一侧移动热源,直至热源高度低于步骤三的步骤三的最低端为止,同时待多晶棒与熔融的富碲合金熔体脱离后,以一定速度向上提拉多晶棒,可以有利于杂质的分离。

综上所述,本发明实施例制备工艺过程简单,所需温度低,便于实施,得到的碲锌镉单晶圆片纯度高,因此应用价值高。

本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。

附图说明

为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1是本发明一实施例的一种碲锌镉单晶圆片制备工艺流程图。

具体实施方式

下面结合附图和实施例对本发明的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本发明的原理,但不能用来限制本发明的范围,即本发明不限于所描述的实施例,在不脱离本发明的精神的前提下覆盖了零件、部件和连接方式的任何修改、替换和改进。

需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。

下面将参照附图1并结合实施例来详细说明本申请。

参阅附图1所示,根据本发明实施例一种碲锌镉单晶圆片制备工艺,包括如下步骤:

步骤一:按照化学计量比将满足Cd

步骤二:按照化学计量比将满足Cd

步骤三:另取一个石英管,在其内部放入籽晶,再依次放入上述得到的多晶棒、富碲合金,抽真空并充入保护气后封闭石英管;

步骤四:对步骤三的石英管中放置富碲合金的区域施加不超过1000℃的高温,使富碲合金完全熔融成为饱和溶液;继续保温5-100h后以0.02-2mm/h的速度朝向籽晶一侧移动热源,直至热源高度低于步骤三的步骤三的最低端为止,同时待多晶棒与熔融的富碲合金熔体脱离后,以0.001-1mm/min的速度向上提拉多晶棒;

步骤五:降温,得到碲锌镉单晶晶棒;

步骤六:对得到的碲锌镉单晶晶棒经切片、腐蚀、抛光和清洗处理,即得到所述碲锌镉单晶圆片。

具体地,步骤一和步骤二中x的范围为0.01-0.95,例如x的取值可以为0.01、0.02、0.1、0.2、0.3、0.6、0.8、0.85、0.9以及0.95。具体的取值数量以根据制备的碲锌镉单晶圆片的探测参数来定,其不应构成对本申请的限制。

具体地,步骤一和步骤二中镉、锌、碲原料的纯度不低于99.999999%,当镉、锌、碲原料的纯度不低于99.999999%时,有利于降低制备的碲锌镉单晶圆片中的杂质含量,进而提高制备的碲锌镉单晶圆片的纯度。在本发明实施例中镉、锌、碲原料的纯度可以为99.999999%,也可以为99.9999998%等,经试验发现,只要镉、锌、碲原料的纯度低于99.999999%时,得到的碲锌镉单晶圆片的探测参数会大幅度提高。

具体地,所述步骤一、所述步骤二以及所述步骤三中还包括抽真空检测,抽真空过程中进行真空度检测,当石英管内气压低于1.0×10

具体地,所述步骤一、所述步骤二以及所述步骤三中在进行封闭石英管以后需要进行检漏,检漏合格以后才可以进行加热处理。进行捡漏有利于确保内部的气体不发生泄漏且外部的空气不会溢入进去,进而确保不会与外界空气发生交换而引入空气中的杂质。

具体地,所述保护气为惰性气体,例如可以为氦气、氖气、氩气等,惰性气体一般比较稳定,不会发生与碲、锌、镉等元素的化学反应。

具体地,在进行步骤四时,步骤三的石英管始终放置在温度为300-800℃的整体环境中。通过300-800℃的整体环境进行保温,使得步骤四进行加工操作时,碲、锌、镉等元素始终处于较高温度,再经过不超过1000℃的高温的熔融,可以确保温度不会发生骤降,有利于确保加热区域温度梯度不发生大的变化,保证温度均匀性,进而提高制备效果。

具体地,所述籽晶的成分与所述多晶棒的成分相同,设置的籽晶主要用于与多晶棒一起形成碲锌镉单晶晶棒,因此,籽晶的成分与多晶棒的成分相同才可以形成碲锌镉单晶晶棒,进而提高制备效率。

具体地,步骤一和步骤二采用摇摆炉进行加热熔融,摇摆炉在加热时会进行振动摇摆,从而有利于确保各元素之间充分混合,有利于得到混合均匀的多晶棒单体。

具体地,步骤四中石英管应进行振动旋转,加热熔融时进行振动旋转,有利于确保熔融以后各元素之间充分混合,有利于元素之间的流动,进而得到的碲锌镉单晶晶棒元素混合均匀。

下面以几个具体的实施例在说明本发明实施例的碲锌镉单晶圆片制备过程。

实施例一:

参阅附图1所示,根据本发明实施例一种碲锌镉单晶圆片制备工艺,包括如下步骤:

步骤一:按照化学计量比将满足Cd

步骤二:按照化学计量比将满足Cd

步骤三:另取一个石英管,在其内部放入籽晶,再依次放入上述得到的多晶棒、富碲合金,抽真空并充入保护气后封闭石英管;

步骤四:对步骤三的石英管中放置富碲合金的区域施加1000℃的高温,使富碲合金完全熔融成为饱和溶液;继续保温5h后以0.02mm/h的速度朝向籽晶一侧移动热源,直至热源高度低于步骤三的步骤三的最低端为止,同时待多晶棒与熔融的富碲合金熔体脱离后,以0.001mm/min的速度向上提拉多晶棒;

步骤五:降温,得到碲锌镉单晶晶棒;

步骤六:对得到的碲锌镉单晶晶棒经切片、腐蚀、抛光和清洗处理,即得到所述碲锌镉单晶圆片。

步骤一和步骤二中镉、锌、碲原料的纯度为99.999999%,步骤一、所述步骤二以及步骤三中还包括抽真空检测,抽真空过程中进行真空度检测,当石英管内气压低于1.0×10

实施例二

参阅附图1所示,根据本发明实施例一种碲锌镉单晶圆片制备工艺,包括如下步骤:

步骤一:按照化学计量比将满足Cd

步骤二:按照化学计量比将满足Cd

步骤三:另取一个石英管,在其内部放入籽晶,再依次放入上述得到的多晶棒、富碲合金,抽真空并充入保护气后封闭石英管;

步骤四:对步骤三的石英管中放置富碲合金的区域施加900℃的高温,使富碲合金完全熔融成为饱和溶液;继续保温20h后以0.1mm/h的速度朝向籽晶一侧移动热源,直至热源高度低于步骤三的步骤三的最低端为止,同时待多晶棒与熔融的富碲合金熔体脱离后,以0.01mm/min的速度向上提拉多晶棒;

步骤五:降温,得到碲锌镉单晶晶棒;

步骤六:对得到的碲锌镉单晶晶棒经切片、腐蚀、抛光和清洗处理,即得到所述碲锌镉单晶圆片。

具体地,步骤一和步骤二中镉、锌、碲原料的纯度为99.9999995%。所述步骤一、所述步骤二以及所述步骤三中还包括抽真空检测,抽真空过程中进行真空度检测,当石英管内气压低于0.8×10

实施例三

参阅附图1所示,根据本发明实施例一种碲锌镉单晶圆片制备工艺,包括如下步骤:

步骤一:按照化学计量比将满足Cd

步骤二:按照化学计量比将满足Cd

步骤三:另取一个石英管,在其内部放入籽晶,再依次放入上述得到的多晶棒、富碲合金,抽真空并充入保护气后封闭石英管;

步骤四:对步骤三的石英管中放置富碲合金的区域施加800℃的高温,使富碲合金完全熔融成为饱和溶液;继续保温50h后以1mm/h的速度朝向籽晶一侧移动热源,直至热源高度低于步骤三的步骤三的最低端为止,同时待多晶棒与熔融的富碲合金熔体脱离后,以0.5mm/min的速度向上提拉多晶棒;

步骤五:降温,得到碲锌镉单晶晶棒;

步骤六:对得到的碲锌镉单晶晶棒经切片、腐蚀、抛光和清洗处理,即得到所述碲锌镉单晶圆片。

具体地,步骤一和步骤二中镉、锌、碲原料的纯度为99.9999999%。所述步骤一、所述步骤二以及所述步骤三中还包括抽真空检测,抽真空过程中进行真空度检测,当石英管内气压低于0.4×10

实施例四

参阅附图1所示,根据本发明实施例一种碲锌镉单晶圆片制备工艺,包括如下步骤:

步骤一:按照化学计量比将满足Cd

步骤二:按照化学计量比将满足Cd

步骤三:另取一个石英管,在其内部放入籽晶,再依次放入上述得到的多晶棒、富碲合金,抽真空并充入保护气后封闭石英管;

步骤四:对步骤三的石英管中放置富碲合金的区域施加为600℃的高温,使富碲合金完全熔融成为饱和溶液;继续保温100h后以2mm/h的速度朝向籽晶一侧移动热源,直至热源高度低于步骤三的步骤三的最低端为止,同时待多晶棒与熔融的富碲合金熔体脱离后,以1mm/min的速度向上提拉多晶棒;

步骤五:降温,得到碲锌镉单晶晶棒;

步骤六:对得到的碲锌镉单晶晶棒经切片、腐蚀、抛光和清洗处理,即得到所述碲锌镉单晶圆片。

具体地,步骤一和步骤二中镉、锌、碲原料的纯度为99.99999999%,所述步骤一、所述步骤二以及所述步骤三中还包括抽真空检测,抽真空过程中进行真空度检测,当石英管内气压为0.1×10

对于上述实施例,本发明先利用高纯度的镉、锌、碲原料制备多晶棒、富碲合金,在此过程中对石英管进行抽真空,可以降低空气中的含杂量对制备过程的影响,在充入保护气体一方面可以避免空气受外界空气影响,继续纯化制备的碲锌镉单晶圆片,另一方面可以提高石英管内部压强,避免真空的石英管在高温处理中发生损坏,影响制备过程。此外,在步骤四中采用不超过1000℃的高温进行热处理,与现有的布里奇曼法生长碲锌镉晶体方法在1150℃左右进行热处理相比,温度明显下降,从而可以降低石英管中钠元素等杂质的析出对制备碲锌镉单晶圆片的影响,本发明实施例的制备温度始终处于在1000℃以下。

除此之外,本发明步骤四在制备时,以一定速度朝向籽晶一侧移动热源,直至热源高度低于步骤三的步骤三的最低端为止,同时待多晶棒与熔融的富碲合金熔体脱离后,以一定速度向上提拉多晶棒,可以有利于杂质的分离(这是因为杂质进行分层,逐渐向籽晶一侧移动热源以及向上提拉多晶棒,这样杂质向下,也就是向籽晶一侧沉淀),上侧的得到碲锌镉单晶晶棒中能极大地降低杂质的浓度,如Na,Ag等(Na和Ag在碲锌镉中的分凝系数分别为0.001和0.05)。最后,降温,得到碲锌镉单晶晶棒,并对得到的碲锌镉单晶晶棒经切片、腐蚀、抛光和清洗处理,即得到碲锌镉单晶圆片。可见,本发明实施例制备工艺过程简单,便于实施,得到的碲锌镉单晶圆片纯度高,因此应用价值高。

需要明确的是,本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同或相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。对于方法的实施例而言,相关之处可参见设备实施例的部分说明。本发明并不局限于上文所描述并在图中示出的特定步骤和结构。并且,为了简明起见,这里省略对已知方法技术的详细描述。

以上所述仅为本申请的实施例而已,并不限制于本申请。在不脱离本发明的范围的情况下对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围内。

技术分类

06120114740713