掌桥专利:专业的专利平台
掌桥专利
首页

一种含耦合电感的双开关管高增益变换器及控制方法

文献发布时间:2024-01-17 01:27:33


一种含耦合电感的双开关管高增益变换器及控制方法

技术领域

本发明涉及电力电子技术领域,更具体地说,涉及一种含耦合电感的双开关管高增益变换器及控制方法。

背景技术

随着传统能源的存储量急剧减少,人类将目光转向了以太阳能、风能为代表的新能源上。但太阳能会随着昼夜交替呈现出间歇性,风能则会随着四季变换呈现周期性,这就导致电能质量低下无法满足用户所需,为解决此问题就在新能源发电系统中引入了蓄电池、超级电容等储能装置,而DC/DC变换器则是作为储能设备与直流母线之间连接的“桥梁”,是实现两者能量流通的关键装置。且新能源与直流母线电压之间需要具有高增益特性的DC/DC变换器。

从目前的研究成果来看,根据是否引入隔离变压器,高增益DC/DC变换器通常可分为隔离型和非隔离型。其中隔离型直流变换器可以分为正激(Forward)、反激(Flyback)、推挽(Push-pull)、半桥(Half-bridge)和全桥(Full-bridge)等结构。隔离型变换器相比于非隔离型变换器其自身带有变压器,可以通过调节匝数比来实现高增益。但在功率较大场合中变压器匝数过大会导致设计困难且漏感较大,无法降低二极管电压应力,导致损耗增大,从而影响变换器性能。因此非隔离型高增益变换器具有很高的研究价值。

现有的多种非隔离型高增益直流变换器按照其构成的原理不同大致可以分为:基于二端口网络级联型升压变换器、三电平高增益变换器、带开关电容高增益变换器、交错并联型高增益变换器、以及耦合电感型高增益变换器。相同输入电压的情况下,级联型电路的输出电压更高。但是级联型变换器电路中后级开关器件的电压应力高于前级,且随串联电路的增多,电压应力将更大。同时所需开关元件数量更多,电路的成本更高且可靠性降低。除了运用级联方式,也常利用储能电容元件来实现高增益的目的,主要有加入开关电容的方式和加入开关电感的方式。但是,为了提高功率等级,通常需要采用大容量的电解电容,这就增加了电路的体积,同时随着额定电流增大,电路的开关损耗与EMI问题严重。而在应用耦合电感技术变换器的电路中存在两个问题:一是耦合电感的漏感会带来损耗、寄生振荡和电磁干扰,使得电路工作效率较低;二是电路中二极管电压应力较高,较大的电压应力使得对二极管性能要求较高,增加了设计的成本。

发明内容

1.发明要解决的技术问题

为了解决功率失衡和控制复杂以及耦合电感的漏感对电路产生损耗等一系列问题,提高输出电压增益,降低开关管的电压应力,减小输入电流纹波,扩大输入电压范围,本发明提供了一种含耦合电感的双开关管高增益变换器及控制方法,本发明采用耦合电感倍压技术实现了更高电压增益,并且构造漏感能量回收单元,为耦合电感的漏感提供回收再利用的通道,工作效率得到提升且控制方式简单,工作可靠性增强。

2.技术方案

为达到上述目的,本发明提供的技术方案为:

本发明的一种含耦合电感的双开关管高增益变换器,该变换器的电源V

本发明的一种含耦合电感的双开关管高增益变换器的控制方法,在电感电流连续的模式下,所述高增益直流变换器采用两个开关管的控制信号同步,两个开关管同时导通、同时关断的控制方式,包括第一至第六工作模态,所述第一至第六工作模态依次执行,其中,

所述第一工作模态:控制第一开关管S1和第二开关管S2同时导通,二极管D

所述第二工作模态:控制第一开关管S1和第二开关管S2继续同时导通,二极管D

所述第三工作模态:控制第一开关管S1和第二开关管S2继续同时导通,二极管D

所述第四工作模态:控制第一开关管S1和第二开关管S2同时关断,二极管D

所述第五工作模态:控制第一开关管S1和第二开关管S2继续关断,二极管D

所述第六工作模态与所述第五工作模态具有相同的开关状态。

3.有益效果

采用本发明提供的技术方案,与已有的公知技术相比,具有如下显著效果:

(1)本发明的一种含耦合电感的双开关管高增益变换器,具有高输出电压增益特性。如公式(6)与图10所示,变换器具有两个自由度(占空比D和匝比n),即相比于传统升压变换器,本发明引入耦合电感,可通过调整占空比与耦合电感匝比,两者共同作用可得到期望的电压增益,电压增益进一步提高,灵活度进一步提升,当占空比值在0.6,匝数比取2的情况下,转换器的电压增益高达19,通过简单地调整匝比率,可以进一步扩展电压增益。

(2)本发明的一种含耦合电感的双开关管高增益变换器,如公式(7)与图11所示,当占空比D取0.6,耦合电感匝比n取2,耦合系数k取1时,开关和二极管上的电压应力仅为输出电压的0.13与0.26倍,大大降低了器件的电压应力,较低的电压应力可以采用具有低导通电阻和低额定电压的开关管与二极管,这也使得变换器的损耗和净成本最小化。

(3)本发明通过输入端构造谐振腔,开关管与二极管工作于软开关条件下,如图13(b)、(c),图14(b)所示,开关管在ZVS条件下开通,功率二极管实现了平滑的接通和ZCS关闭,解决了二极管的反向恢复问题,所有的开关和二极管都可以自然地实现软开关。漏感回收单元还可以回收耦合电感中存储的能量,提高增益,功率密度。

(4)本发明的一种含耦合电感的双开关管高增益变换器,具有通用性,可以应用到储能系统、燃料电池发电系统以及开关电源等多种需要高电压增益的场合。

附图说明

图1为本发明的一种含耦合电感的双开关管高增益变换器的电路结构图;

图2为本发明的一种含耦合电感的双开关管高增益变换器的等效电路结构图;

图3为本发明的变换器在CCM模式下主要工作波形示意图;

图4为本发明的变换器在CCM模式下第一工作模态的等效电路示意图;

图5为本发明的变换器在CCM模式下第二工作模态的等效电路示意图;

图6为本发明的变换器在CCM模式下第三工作模态的等效电路示意图;

图7为本发明的变换器在CCM模式下第四工作模态的等效电路示意图;

图8为本发明的变换器在CCM模式下第五工作模态的等效电路示意图;

图9为本发明的变换器在CCM模式下第六工作模态的等效电路示意图;

图10为本发明的变换器在耦合系数k=1的情况下,变换器电压增益M随占空比D和匝比n变化的曲线图;

图11为本发明的变换器在耦合系数k=1的情况下,功率器件的电压应力与耦合电感匝比n之间的关系图;

图12中的(a)为本发明的变换器的输入电流、独立电感电流仿真波形;图12中的(b)为独立电感电流的实验波形示意图;

图13中的(a)为本发明的变换器的二极管D

图14中的(a)为本发明的变换器的开关管S1、S2电压和电流仿真波形;图14中的(b)为开关管S1与S2电压、电流实验波形示意图;

图15中的(a)为本发明的变换器的输入电压、输出电压仿真波形;图15中的(b)为变换器的输入电压、输出电压实验波形;图15中的(c)为开环状态下变换器的暂态响应和稳态响应实验波形示意图。

具体实施方式

下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。

实施例1

结合图1,本实施例的含耦合电感的双开关管高增益变换器,包括:双开关管输入端、耦合电感升压单元和输出端。所述双开关管输入端包括电源V

双开关管输入端中,电源V

所述耦合电感升压单元中,二极管D

所述输出端中,二极管D

本实施例的含耦合电感的双开关管高增益变换器,在CCM下,采用两个开关管的控制信号同步,即两个开关管同时导通、同时关断的控制方式,在一个开关周期内包括工作模态1、工作模态2、工作模态3、工作模态4、工作模态5、工作模态6。图3为图2所示变换器等效电路的理论工作波形图,图4-图9是图2所示变换器等效电路的各个工作模态图,定义耦合电感的耦合系数

工作模态1[t

在t

工作模态2[t

在t

工作模态3[t

在t

工作模态4[t

在t

工作模态5[t

在t

工作模态6[t

在t

本实施例的含耦合电感的双开关管高增益变换器,在电感电流连续的模式下,所述第一开关管S

本实施例的变换器在耦合系数k=1的情况下,变换器电压增益随占空比D和匝比n变化的曲线如图10所示,此外该变换器开关管的电压应力为:

本实施例的变换器在耦合系数k=1的情况下,变换器功率器件的电压应力与耦合电感匝比n之间的关系如图11所示。

进一步地考虑到实际情况,因为耦合电感中存在漏感,所以在本实施例的变换器中耦合电感的匝比n为2、耦合系数k为0.95且第一开关管S

可见,本实施例的变换器具有拓扑结构简单、输出电压增益超高、开关管电压应力超低、开关控制便捷、工作效率高的优点,依托这些优点该变换器适用于宽输入电压范围、低电压输入以及需要高电压增益的应用场合。

为了验证本实施例的含耦合电感的双开关管高增益变换器的理论分析,根据下表1中的变换器仿真参数搭建仿真平台。

表1变换器仿真参数表

本实施例的变换器在表1仿真参数下的输入电流和独立电感电流的仿真波形如图12所示,二极管D

开关管电压和电流的仿真波形如图14所示,从图14中可以观察到第一和第二开关管S

输入输出电压仿真波形如图15所示,可以观察到输入电压为12V时,输出电压高达220V,与理论推导出的电压增益表达式计算结果相符。

根据表1所列参数而搭建的仿真平台的仿真结果验证了理论分析结果的正确性,进一步有力地证明了含耦合电感的双开关管高增益变换器所具备的超高电压增益、超低器件电压应力的优势。因此在本实施例中,基于双开关管输入端、耦合电感升压单元和输出端电路所提出的变换器及控制方法,具有超高电压增益,电压增益为

值得说明的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。

技术分类

06120116223008