掌桥专利:专业的专利平台
掌桥专利
首页

一种衣物处理装置及控制方法

文献发布时间:2024-04-18 19:53:33


一种衣物处理装置及控制方法

技术领域

本发明涉及洗涤设备技术领域,尤其涉及一种衣物处理装置及控制方法。

背景技术

随着生活水平的提高,人们更追求安全舒适的衣物烘干体验,但目前市场上主流的单独烘干功能的衣物处理装置或者是洗干一体的衣物处理装置,其主要烘干方式均为电加热方式,电加热烘干存在耗电多,烘干效果差的问题;故市场主流正日渐由电加热烘干转向热泵烘干的研究。

热泵烘干不但节能,而且可以不损伤衣物;但热泵烘干系统依然存在一个不可回避的问题,那就是热泵烘干模块势必会导致整机尺寸偏大;整机尺寸规格异于常规洗衣机尺寸,就会使家庭中常用的衣物处理装置的放置位置与空间无法做到通用化,这是当前消费者普遍头疼的问题。

因此,本发明旨在解决在现有常规衣物处理装置的尺寸规格的前提下,如何将热泵烘干系统放入衣物处理装置实现热泵烘干的效果?而且,不能影响到烘干的效率与效果,这就需要解决现有常规衣物处理装置内的空间利用问题。

有鉴于此,特提出本发明。

发明内容

鉴于此,本发明旨在解决电烘干方式的洗衣机烘干效果差,热泵式烘干方式的洗衣机空间利用率低,整机高度无法有效控制的问题,提供一种洗衣机、衣物处理装置及控制方法。

本发明为实现上述的目标,采用的技术方案是:

一种具有热泵烘干功能的衣物处理装置,其特征在于:包括:

壳体和设置在所述壳体内的外筒;

热泵模块,包括压缩机、蒸发器、冷凝器,所述蒸发器和/或冷凝器被布置在所述壳体与所述外筒之间的左上方空间和/或者右上方空间,所述压缩机布置在所述壳体与所述外筒之间的左下方空间和/或者右下方空间,所述冷凝器和压缩机在所述筒体的同侧布置。

进一步可选地:

改进2:一种具有热泵烘干功能的衣物处理装置,包括:

壳体,其形成一内部空间;

外筒,设置在所述壳体的内部空间;

热泵模块,包括两器组件,所述两器组件包括蒸发器和冷凝器,所述的蒸发器和/或冷凝器设置在所述壳体内外筒的左上方空间或者右上方空间内,所述蒸发器和/或冷凝器的换热主体具有适配于其所在的所述左上方空间或者右上方空间的外部轮廓。

改进3:一种具有热泵烘干功能的滚筒洗衣机,包括:

外筒,顶部具有出风口;

壳体,所述外筒设置在壳体的内部空间;

热泵模块,包括设置在外筒上方与壳体之间空间内的蒸发器、冷凝器、换热风道及风机组件,所述的蒸发器、冷凝器设置在换热风道内,所述风机组件的风机进风口与所述外筒上的出风口连通,所述风机组件的风机出风口与所述换热风道的风道进风口固定连接构成一体式连接结构,所述换热风道的风道出风口连通外筒内部。

改进4:一种具有热泵烘干功能的衣物处理装置,包括:

外筒;

壳体,所述外筒设置在壳体的内部空间;

及热泵模块,包括两器盒和设置在两器盒内由冷凝器和蒸发器集成一体构成的两器模块,所述的两器盒具有两器盒进风口,所述的两器盒进风口相对于水平方向倾斜设置;

所述两器盒进风口的倾斜方向为朝着靠近所述两器模块的迎风换热面上距离最远的两个点之间的连线方向倾斜。

改进5:一种具有热泵烘干功能的衣物处理装置,包括:

外筒;

框架组件,所述外筒设置在框架组件内部空间;

及热泵模块,包括蒸发器、冷凝器和压缩机,所述的蒸发器和冷凝器设置在外筒上方,所述的压缩机设置在框架组件上;

所述的压缩机连接有第一热泵介质管路和第二热泵介质管路,所述的蒸发器连接有与所述第一热泵介质管路可拆卸连接的第三热泵介质管路,所述的冷凝器连接有与所述第二热泵介质管路可拆卸连接的第四热泵介质管路。

改进6:一种具有烘干功能的滚筒洗衣机,包括:

外筒,所述外筒的筒壁上设置第一出风口;

第一出风风道,其一端连通所述的第一出风口;

烘干机构,所述第一出风风道连通至烘干机构,所述的烘干机构还通过进风风道连通外筒;

所述第一出风口上设置第一过滤网,所述第一出风口的至少部分设置在外筒的最低水位线以下,使得所述第一过滤网上的线屑在洗涤或者漂洗过程中可被外筒内的洗涤水冲刷清理。

改进7:一种具有热泵烘干功能的滚筒洗衣机,包括:

壳体,其形成一内部空间;

外筒,设置在所述壳体的内部空间,所述的外筒包括外筒底壁和环绕在外筒底壁一周的外筒周壁,所述的外筒底壁上开设出风口;

热泵模块,包括两器组件、烘干风道及风机组件,所述的风机组件设置在所述壳体内外筒的左上方空间或者右上方空间内,所述烘干风道连通出风口和风机组件,所述的两器组件包括蒸发器和冷凝器,所述的蒸发器和/或冷凝器设置在所述烘干风道位于外筒底壁后方的部分内。

改进8:一种热泵衣物处理装置两器盒,包括:

两器盒体,具有容纳所述热泵衣物处理装置冷凝器和蒸发器的容纳空间,所述两器盒体上方设有开口,所述两器盒体两侧设有两器盒进风口和两器盒出风口,所述两器盒进风口用于将所述热泵衣物处理装置烘干时从热泵衣物处理装置外筒排出的湿热风吹入所述蒸发器一侧进行冷凝干燥,所述两器盒出风口用于将蒸发器干燥后经过冷凝器加热的热风排入所述外筒内;

两器盒盖,与所述两器盒体的开口盖合在一起,所述两器盒盖设有位于所述蒸发器迎风一侧的喷淋装置,所述喷淋装置的喷淋口与所述蒸发器迎风面相对设置。

改进9:一种热泵衣物处理装置上的两器盒,包括:

两器盒体,其顶部设有开口,所述两器盒体在所述开口一侧设有与所述开口方向相同的过线槽;

两器盒盖,与所述两器盒体的开口盖合在一起,且所述两器盒盖压在所述过线槽上。

改进10:一种热泵洗衣机烘干装置,所述烘干装置具有烘干风道,所述烘干风道的第一风道进气口和第二风道排气口分别用于与所述热泵洗衣机的外筒内部空间连通,所述烘干风道的内壁上设有连通所述烘干风道与所述外筒外部环境的透气孔,所述透气孔与所述外筒的外部环境相通。

改进11:一种具有烘干功能的衣物处理设备,其特征在于,包括外筒、过滤网和喷淋装置;所述外筒的顶部的一端形成有外筒出风口,所述过滤网为凸向所述外筒的洗涤腔的曲面结构且设置在所述外筒出风口处;所述喷淋装置设置在所述过滤网的上方且包括喷淋件,所述喷淋件被构造为水由所述喷淋件发散式喷向所述过滤网。

改进12:一种具有烘干功能的衣物处理设备,包括外筒、设置在所述外筒的上方的烘干风机组件、两器组件和风道,所述外筒的侧壁上形成有外筒出风口、外筒进风口;所述两器组件包括形成有换热腔的两器盒和设置于所述换热腔内的蒸发器和冷凝器,所述风道包括第一风道和第二风道;

所述外筒出风口、第一风道、烘干风机组件、两器盒、第二风道和外筒进风口依次密封连接并连通形成沿着所述外筒长度方向延伸的烘干流路;

在所述烘干风机组件作用下,烘干气流沿所述烘干流路循环流动,流经所述换热腔时先流经所述蒸发器后流经所述冷凝器并完成热交换,流经所述外筒时与衣物完成热交换而烘干衣物。

改进13:一种热泵洗衣机,包括:

两器盒,设有两器盒进风口,所述两器盒在所述两器盒进风口位置设有第一连接部;

风机组件,包括电机、上蜗壳和下蜗壳,所述电机固定在上蜗壳上,所述上蜗壳与下蜗壳可拆卸连接地扣合在一起形成具有蜗壳风道的蜗壳;

连接件,具有排风口的通风风道,所述连接件在所述排风口的位置设有第二连接部,所述第一连接部和所述第二连接部可拆卸连接,且所述两器盒进风口与所述排风口对接,所述连接件部分嵌入所述上蜗壳内表面,所述蜗壳风道与所述通风风道相贯通。

改进14:一种具有烘干功能的衣物处理设备,包括框架、设置在所述框架中的外筒和设置在所述框架与外筒之间的烘干风道;所述外筒的侧壁分别形成有外筒出风口和外筒进风口;所述烘干风道包括设置在所述外筒出风口和外筒进风口之间且依次连接在一起的第一风道、烘干风机组件、两器组件和第二风道;

所述第二风道的出风端与外筒进风口之间设有用于临时将所述烘干风道与外筒进风口固定连接的硬连接结构,以在装配所述衣物处理设备时先利用所述硬连接结构使所述烘干风道与外筒固定连接并随所述外筒一起装配在所述框架中;待所述烘干风道与外筒装配在所述框架中后,再拆开所述硬连接结构的固定连接,后将所述第二风道的出风端与外筒进风口柔性密封连接在一起。

改进15:一种连接件,所述连接件具有两相对设置的连接端口,所述两连接端口之间连接有环形柔性结构;

所述环形柔性结构围成一贯通所述两连接端口的通道;

且所述环形柔性结构在所述两连接端口之间形成有至少一个向外围突出的折叠部:

所述两连接端口偏心设置,所述折叠部具有超出所述两连接端口的最外边缘。

改进16:一种衣物处理设备,包括:壳体、门体、桶组件以及配重组件;其中,

所述桶组件包括外桶和内桶;所述外桶包括前桶和后桶;所述配重组件包括上配重件和下配重件;所述上配重件固定在所述外桶顶部,所述下配重件固定在所述前桶底部且靠近所述门体一侧。

改进17:一种减震器座,用于衣物处理设备的减震器与壳体的连接,所述衣物处理设备的壳体设置有安装板,所述减震器座安装在所述安装板上,

所述减震器座包括:固定部,和设置在所述固定部上的两个支撑部;

两个所述支撑部之间形成用于安装所述减震器的空间,

所述固定部上设置有卡接结构和固定孔,用于与所述安装板卡装配合并固定连接。

改进18:一种衣物处理设备,包括:壳体、桶组件、热泵组件以及悬撑组件;其中,

所述桶组件包括外桶和内桶;所述外桶包括前桶和后桶;

所述热泵组件包括两器组件,所述两器组件设置在所述壳体与所述外桶之间的右上角空间或左上角空间;

所述悬撑组件包括悬挂件和支撑件;所述悬挂件倾斜设置在所述壳体与所述前桶之间的上方空间并与所述两器组件设置的位置相错;所述支撑件倾斜设置在所述壳体与所述外桶之间,且位于所述外桶下方;所述悬挂件为对所述外筒进行悬挂的弹性件,所述支撑件为对所述外筒进行支撑的阻尼件,且所述悬挂件和所述支撑件设置的位置相错。

改进19:一种蒸汽发生器,包括:

壳体,所述壳体内部形成有储水腔,所述壳体上设置有用于向所述储水腔内供水的进水管接头,用于排气的蒸汽管接头,和用于排水的出水结构;

开关机构,设置在所述壳体上,所述开关机构随所述储水腔的水位动作,用于开启或关闭所述蒸汽管接头。

改进20:一种蒸汽发生器,包括:

壳体,所述壳体内部形成有储水腔,所述壳体上设置有用于向所述储水腔内供水的进水管接头,用于排气的蒸汽管接头,和用于排水的出水结构;

双金属片,设置在所述壳体上,所述双金属片可随温度变化发生形变,并在温度高于阈值温度时开启所述蒸汽管接头,温度低于所述阈值温度时关闭所述蒸汽管接头。

改进21:一种蒸汽发生器,包括:

壳体,所述壳体内部形成有储水腔,所述壳体上设置有用于向所述储水腔内供水的进水管接头、用于排气的蒸汽管接头和用于排水的出水结构,所述进水管接头设有进水阀;

开关机构,设置在所述储水腔内,所述开关机构随所述储水腔的水位动作,用于开启或关闭所述蒸汽管接头;

液位检测检测装置,用于检测所述储水腔内水位信息;

控制器,用于根据所述水位信息,控制接设在所述进水管接头上的进水阀使所述储水腔内的水位处于产生蒸汽时的水位区间内;

其中所述水位区间的下限值高于所述出水结构出口的水位线,所述水位区间的上限低于所述开关机构执行关闭所述蒸汽管接头动作开始时所对应的水位线。

改进22:一种用于衣物处理装置的蒸汽发生器,所述衣物处理装置包括水盒组件,所述蒸汽发生器包括壳体,

所述壳体形成有储水腔;

所述壳体上设有文丘里管出水接头,其中所述文丘里管出水接头的进水口与所述储水腔连接,所述文丘里管出水接头的出水口与所述水盒组件连接,所述文丘里管出水接头的进气口直接或间接连通外界大气;

虹吸结构,其一端连通至所述储水腔内部,另一端连通至所述储水腔外部。

改进23:一种热泵式洗烘一体机,包括:

用于盛装衣物的内筒和容纳所述内筒于其中的外筒;

水路模块,所述水路模块包括进水阀组件,所述进水阀组件包括:

相连通的第一进水阀接头和第一进水管路,所述第一进水阀接头的出水经所述第一进水管路经过水盒组件再进入所述内筒;

相连通的第二进水阀接头和第二进水管路,所述第二进水阀接头的出水经所述第二进水管路经过蒸汽发生模块再进入所述内筒或所述外筒。

改进24:一种热泵式洗烘一体机,包括:

用于盛装衣物的内筒和容纳所述内筒于其中的外筒;

热泵模块,其包括两器组件,且所述两器组件包括蒸发器、冷凝器、两器盒体和两器盒盖,所述蒸发器和所述冷凝器安装在由所述两器盒体和所述两器盒盖相固定所形成的容纳空间中;

烘干风机组件,其包括驱动烘干气流流动的驱动风机,且所述驱动风机驱动所述烘干气流从所述容纳空间中流出;

所述两器盒体设有用于排出冷凝水的排水接头,所述排水接头位于所述烘干气流相对于所述容纳空间的流出方向的下游;

水路模块,其包括导水管组件,所述导水管组件的进水端和排水端分别与所述排水接头和所述外筒相连通。

改进25:一种用于热泵式衣物处理设备的支架,所述支架用于固定压缩机的散热风机和卡接管线,包括:

安装底板;

与所述安装底板一侧固定连接的安装框架,所述安装底板和所述安装框架之间形成固定所述散热风机的安装空间;

管夹,设于所述安装框架的远离所述安装底板的侧部上方,所述管夹用于卡接管线于其上。

改进26:一种带有烘干功能的衣物处理装置,其包括筒体、烘干风道、滤网和喷淋清洗单元、控制装置;其中,

所述烘干风道与筒体形成烘干空气循环流路,用于烘干空气;

所述滤网设置在所述烘干空气循环流路中,用于过滤烘干空气;

所述喷淋清洗单元包括用于向所述滤网喷淋的喷淋装置,所述喷淋装置包括多个朝向所述滤网不同区域的喷水口;

所述控制装置控制所述喷水口实现多种喷淋方式,所述多种喷淋方式包括持续性喷淋和间歇性喷淋;

所述多种喷淋方式可被控制根据滤网脏堵需要以其中的一种方式运行或其中的多种方式交替运行;

所述间歇性冲洗为使所述喷淋装置的喷水口间歇性喷出冲洗介质;

所述持续性冲洗为使所述喷淋装置的喷水口持续性喷出冲洗介质。

改进27:一种用于烘干滤网冲洗的控制方法,所述烘干滤网用于对洗衣机烘干系统的烘干气流进行过滤,所述烘干气流由烘干风机提供动力,所述滤网的清理采用喷淋方式冲洗,在所述洗衣机运行烘干程序前,所述控制方法包括如下控制步骤:

S1、启动烘干风机;

S2、确定烘干系统的当前静压值K;

S3、根据所确定的当前静压值K判断所述烘干滤网是否需要清理;若确定所述滤网需要清理时,执行步骤S4;

S4、停止烘干风机,先执行滤网冲洗清理程序。

改进28:一种烘干设备,包括

烘干系统,所述烘干系统包括烘干风道,所述烘干风道内设有风机,所述烘干风道的流路内还设有滤网;

滤网清洗单元,所述滤网清洗单元包括喷淋装置,所述喷淋装置用于对所述滤网进行喷淋清洗;

控制系统,所述控制系统在滤网冲洗程序中通过获取所述风机的运行功率来计算衰减系数,并根据所述衰减系数来判断是否达到滤网清洗条件;当达到滤网清洗条件后,所述控制系统根据所述衰减系数来计算预计冲洗时长,并在所述预计冲洗时长内控制所述喷淋装置对所述滤网进行喷淋清洗。

改进29:一种带热泵烘干功能的衣物处理设备,所述衣物处理设备包括外筒和可转动的设置在所述外筒中的内筒,所述外筒的底部设有加热装置;

所述衣物处理设备还包括烘干系统,所述烘干系统包括热泵模块、烘干风机和冷凝水通道,所述热泵模块包括冷凝器,所述冷凝水通道的一端与所述衣物处理设备的进水阀连通,另一端沿所述外筒的筒壁延伸至与所述外筒的底部连通;

所述衣物处理设备还包括控制系统,所述衣物处理设备在执行蒸汽护理程序时,所述控制系统控制所述进水阀进水,所述进水阀流出的水由所述冷凝水通道进入所述外筒的底部,当所述外筒底部的水位达到加热水位后所述控制系统控制所述进水阀停止进水;当所述进水阀停止进水后,所述控制系统控制加热装置加热,使水温处于设定水温范围内;当水温处于设定水温范围时,所述控制系统控制热泵模块启动,控制内筒以第一转速转动,控制烘干风机以第一风机转速运行;所述控制系统还获取冷凝器温度和外筒风口温度,计算冷凝器与外筒进风口的温差下降量,当所述温差下降量达到设定温度后,控制内筒以小于第一转速的第二转速转动,控制烘干风机以大于第一风机转速的第二风机转速运行;当满足蒸汽护理的结束条件时所述控制系统控制所述加热装置停止加热,控制所述热泵模块和所述烘干风机持续运行直至达到烘干结束的条件。

改进30:一种用于衣物处理设备的衣物判干方法,包括以下步骤:

S1:当衣物处理设备进入判干阶段,以设定采样频率检测衣物处理设备中烘干风机的功率、转速;

S2:根据所述采样频率下的所述烘干风机的功率、转速来获得衣物处理设备烘干系统的静压值,并检测压缩机的频率;

S3:根据衣物处理设备内衣物重量的称重值、所述静压值和压缩机的频率,获得衣物处理设备的判干温差;

S4:当所述判干温差大于衣物处理设备进风口与出风口的温差时,确定衣物处理设备中的衣物被烘干。

改进31:一种用于衣物处理设备的衣物判干方法,包括:

S1:检测衣物处理设备中烘干风机的参数;

S2:根据所述烘干风机的参数获得衣物处理设备烘干系统的静压值,并检测压缩机的频率;

S3:根据所述静压值和压缩机的频率,获得衣物处理设备的判干温差,

S4:当所述判干温差大于衣物处理设备进风口与出风口的温差时,判断衣物处理设备中的衣物被烘干。

改进32:一种烘干除皱方法,包括以下步骤:

持续检测滚筒的进风口的气流温度、出风口的气流温度以及两者的的气流温差;

确定单位时间内,所述气流温差的最大值及最小值;

根据确定的所述单位时间内的气流温差的最大值及最小值的差值确定标定温度;

根据检测的所述单位时间内的所述气流温差以及所述标定温度确定衣物的烘干状态;

根据所述衣物的烘干状态,确定对所述衣物进行除皱的开始节点。

改进33:一种带热泵烘干功能的洗衣机,其特征在于,所述洗衣机包括外筒和可转动的设置在所述外筒中的内筒,所述外筒的底部设有加热装置;

所述洗衣机包括控制系统和热泵系统,

所述洗衣机包括低温预热程序,

所述低温预热程序包括控制加热装置启动的第一控制策略、控制脱水转速的第二控制策略和控制热泵系统启动时机的第三运行策略;所述控制系统接收到洗烘指令后控制所述洗衣机依次执行洗涤阶段和漂洗阶段;所述洗衣机运行到漂洗阶段的最后一次漂洗过程时,判断漂洗水温是否达到启动低温预热程序的设定条件。

改进34:一种带热泵烘干功能的洗衣机,所述洗衣机包括外筒和可转动的设置在所述外筒中的内筒,所述外筒的底部设有加热装置;

所述洗衣机还包括烘干系统和控制系统,所述烘干系统包括烘干风机、压缩机、蒸发器和冷凝器,所述洗衣机执行烘干程序时,所述控制系统控制获取环境温度,当环境温度低于第一设定温度时,所述控制系统控制洗衣机进入预热阶段;在所述预热阶段中,所述控制系统控制外筒的水位处于加热水位,控制加热装置启动加热;所述控制系统还通过获取外筒水温和蒸发器进风口温度,当外筒水温和蒸发器进风口温度达到启动热泵系统的设定条件时,所述控制系统控制热泵系统启动;当达到结束预热阶段的设定条件时,所述控制系统控制加热装置停止加热,控制洗衣机进入烘干阶段。

改进35:一种热泵烘干设备,包括热泵模块,所述热泵模块包括两器盒,所述两器盒内设有蒸发器和冷凝器,所述蒸发器和所述冷凝器间隙设置;所述两器盒靠近所述蒸发器侧形成两器盒进风口,所述壳体靠近所述冷凝器侧形成两器盒出风口;设有所述两器盒进风口的所述壳体侧壁上还开设有透气孔,所述两器盒上还设有开合机构,所述开合机构用于开闭所述透气孔;

所述热泵烘干设备还包括控制系统,在衣物烘干过程中所述控制系统根据所述蒸发器的温度来控制所述开合机构增大或减小所述透气孔的开度。

改进36:一种热泵衣物处理装置中压缩机的散热控制方法,所述热泵衣物处理装置包括对压缩机进行散热的散热风机,所述散热控制方法包括:

检测压缩机的排气温度和衣物处理装置中洗涤水对应的水加热温度;

根据所述排气温度和水加热温度确定当前环境温度;

根据所述排气温度、所述当前环境温度和压缩机的排气温度上限值控制散热风机对压缩机进行降温。

改进37:一种用于烘干滤网冲洗的控制方法,所述烘干滤网用于对洗衣机烘干系统的烘干气流进行过滤,所述烘干气流由烘干风机提供动力,所述滤网的清理采用喷淋方式冲洗,在所述洗衣机运行烘干程序时,所述控制方法包括如下控制步骤:

S1、运行烘干程序,使烘干风机以设定转速运行,压缩机频率以设定功率运行,并获取烘干风机初始功率P

S2、当烘干系统运行预设时间T后,控制烘干风机以第一设定转速运行;

S3、在所述烘干风机第一转速下实时检测烘干风机功率P并与所述初始功率P

S4、判断烘干系统压缩机实际运行时长t与所述预设烘干总时长t

S5、执行滤网冲洗控制;

上述S3步骤中a为影响烘干系统正常工作的功率衰减系数,上述S4步骤中所述b为烘干时长系数。

改进38:一种在烘干运行中完成烘干滤网冲洗后的控制方法,所述烘干滤网用于对洗衣机烘干系统的烘干气流进行过滤,所述烘干气流由烘干风机提供动力,所述滤网的清理采用喷淋方式冲洗,其特征在于:

在烘干运行中完成烘干滤网冲洗后,先升高烘干风机转速到预设转速,再判断烘干风机功率在设定时间内的上升值是否达到设定值,只有当烘干风机功率达到设定值,才升高压缩机频率,使其恢复到当前烘干阶段的设定频率继续运行烘干系统直至烘干程序结束。

因此,本发明的具有热泵烘干功能的滚筒洗衣机具有如下有益效果:

1.可以有效控制整机高度,有效利用整机空间;

2.有效确保烘干时间、烘干效果;

3.减少热泵烘干模块的空间占用。

附图说明

通过参照附图详细描述其示例实施例,本发明公开的上述和其它目标、特征及优点将变得更加显而易见。下面描述的附图仅仅是本发明公开的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1-1-1示出了实施例中洗衣的整机立体外观图(已拆除上台面);

图1-1-2示出了实施例中洗衣机的主视图(已拆除前面板组件);

图1-1-3示出了实施例中外筒、两器组件、风机组件之间的爆炸图;

图1-1-4示出了实施例中热泵模块与外筒间装配的爆炸图;

图1-1-5示出了实施例中热泵模块与外筒的装配图;

图1-1-6示出了实施例中热泵模块与外筒的装配的局部剖视图;

图1-1-7示出了实施例中两器组件与风机组件之间的装配图;

图1-1-8示出了实施例中两器模块的立体结构示意图;

图1-1-9示出了实施例中两器模块的主视图;

图1-1-10示出了实施例中两器模块的第三换热管的结构示意图;

图1-1-11示出了实施例中两器盒的立体结构示意图;

图1-1-12示出了实施例中两器组件与风机组件之间的装配图;

图1-1-13示出了实施例中两器组件、风机组件相对外筒的装配示意图;

图1-1-14示出了实施例中两器组件、风机组件相对外筒的爆炸图;

图1-1-15示出了实施例中两器盒体的局部立体结构示意图;

图1-1-16示出了实施例中两器盒体的主视图;

图1-1-17示出了实施例中风机组件与两器组件、外筒间的装配爆炸图;

图1-1-18示出了实施例中风机组件与两器组件间的装配爆炸图;

图1-1-19示出了实施例中风机组件、两器组件安装在框架组件上的装配图;

图1-1-20示出了实施例中风机组件与外筒间的装配爆炸图;

图1-1-21示出了实施例中风机组件的爆炸图;

图1-1-22示出了实施例中压缩机与两器组件间的装配示意图;

图1-1-23示出了实施例中压缩机与安装在框架组件上的装配示意图;

图1-1-24示出了实施例中压缩机安装在固定底板上的爆炸图;

图1-1-25示出了实施例中压缩机与两器组件间热泵介质管路的连接示意图;

图1-1-26示出了实施例中压缩机与两器组件间热泵介质管路的连接位置相对安装通孔的位置示意图;

图1-1-27示出了实施例中压缩机与两器组件间热泵介质管路通过软接橡胶管连接的示意图(方向一);

图1-1-28示出了实施例中压缩机与两器组件间热泵介质管路通过软接橡胶管连接的示意图(方向二);

图1-1-29示出了实施例中热泵模块与外筒的装配示意图;

图1-1-30示出了实施例中热泵模块与外筒的爆炸图;

图1-1-31示出了实施例中热泵模块与外筒装配的主视图;

图1-1-32示出了实施例中换热风道结构及蒸发器和冷凝器的一种布置方式;

图1-1-33示出了实施例中热泵模块与外筒的爆炸图(换热风道的另一种实现结构);

图1-1-34示出了实施例中热泵模块与外筒的装配示意图(换热风道的另一种实现结构);

图1-1-35示出了实施例中热泵模块与外筒装配的俯视图。

图1-2-1示出了实施例中热泵衣物处理装置两器盒的爆炸图,图中A箭头为为烘干气流流向;

图1-2-2示出了实施例中两器盒体两器盒进风口一侧的示意图;

图1-2-3示出了实施例中两器盒盖上表面示意图;

图1-2-4示出了实施例中两器盒盖下表面示意图,图中A箭头方向为烘干气流流向,B 箭头方向为两器盒盖厚度向下的方向;

图1-2-5示出了实施例中两器盒盖和喷淋盖的爆炸视图;

图1-2-6示出了实施例中两器盒与热泵洗衣机外筒连接的爆炸视图,图中A箭头为为烘干气流流向。

图1-2-7示出了实施例中两器盒体的俯视图;

图1-2-8示出了实施例中两器盒体的轴测图(图中只示出了部分);

图1-2-9示出了实施例中热泵洗衣机两器盒的爆炸图;

图1-2-10示出了实施例中两器盒体进风口一侧的示意图;

图1-2-11示出了实施例中两器盒盖上表面示意图;

图1-2-12示出了实施例中两器盒盖下表面示意图;

图1-2-13示出了实施例中两器盒盖和喷淋盖的爆炸视图;

图1-2-14示出了实施例中热泵洗衣机两器盒与热泵洗衣机外筒连接的爆炸视图。

图1-3-1示出了实施例中热泵衣物处理装置内部部件总装示意图;

图1-3-2示出了实施例中热泵衣物处理装置内部部件爆炸图;

图1-3-3示出了实施例中热泵衣物处理装置内部主要部件爆炸图(一);

图1-3-4示出了实施例中热泵衣物处理装置两器部件爆炸图;

图1-3-5示出了实施例中热泵衣物处理装置两器壳体示意图;

图1-3-6示出了实施例中热泵衣物处理装置主要部件安装位置示意图;

图1-3-7示出了实施例中热泵衣物处理装置热泵烘干模块示意图;

图1-3-8示出了实施例中热泵衣物处理装置内部主要部件爆炸图(二);

图1-3-9示出了实施例中热泵衣物处理装置框架模块示意图;

图1-3-10示出了实施例中热泵衣物处理装置两器盒上盖示意图;

图1-3-11示出了实施例中热泵衣物处理装置拆出后盖板示意图;

图1-3-12示出了实施例中热泵衣物处理装置压缩机组件示意图;

图1-3-13示出了实施例中压缩机的控制方法流程图;

图1-3-14示出了实施例中压缩机的控制逻辑图。

图2-2-1a示出了实施例中衣物处理设备(烘干系统爆炸)示意图;

图2-2-1b示出了实施例中衣物处理设备(烘干系统装配在一起)示意图;

图2-2-2示出了实施例中衣物处理设备(外筒与喷淋装置装配在一起)示意图;

图2-2-3示出了实施例中过滤网与喷淋装置示意图;

图2-2-4a示出了实施例中过滤网与喷淋件俯视示意图;

图2-2-4b示出了实施例中过滤网与喷淋件主视示意图;

图2-2-5a示出了实施例中过滤网与喷淋件位置关系示意图;

图2-2-5b为图2-2-5a中B方向的示意图;

图2-2-6示出了实施例中喷淋件在过滤网的喷淋区域示意图;

图2-3-1a和图2-3-1b示出了实施例中衣物处理设备(烘干系统爆炸)示意图;

图2-3-2a示出了实施例中衣物处理设备(烘干系统装配在一起)示意图;

图2-3-2b为图2-3-2a中A处的放大图;

图2-3-3a示出了实施例中衣物处理设备(外筒、烘干系统和框架爆炸)示意图;

图2-3-3b示出了实施例中衣物处理设备(外筒、烘干系统和框架装配在一起)示意图;

图2-3-4示出了实施例中两器盒与风机连接的轴测图;

图2-3-5示出了实施例中两器盒与风机连接的剖视图;

图2-3-6示出了实施例中两器盒进风口两器盒进风口一侧的轴测图;

图2-3-7示出了实施例中第二连接体的示意图;

图2-3-8示出了实施例中上蜗壳的示意图;

图2-3-9示出了实施例中下蜗壳的示意图;

图2-3-10示出了实施例中第二连接体与下蜗壳一体成型后于第一连接体可拆卸连接的示意图;

图2-3-11示出了实施例中第一连接体、第二连接体、下蜗壳一体成型的示意图;

图2-3-12示出了实施例中第一连接体和第二连接体一体成型或扣合后与下蜗壳连接的爆炸图;

图2-3-13示出了实施例中热泵洗衣机的外筒与实施例中热泵洗衣机连接结构的连接示意图。

图2-4-1示出了实施例中连接件仰视下的立体结构示意图;

图2-4-2示出了实施例中连接件俯视下的立体结构示意图;

图2-4-3示出了实施例中连接件的剖视结构示意图;

图2-4-4示出了实施例中洗干一体机的立体结构示意图;

图2-4-5示出了实施例中洗干一体机的剖视结构示意图;

图2-4-6示出了实施例中洗干一体机的爆炸图;

图2-4-7示出了实施例中连接件与外筒及蜗壳连接的结构示意图;

图2-4-8示出了实施例中筒组件与热泵组件装配连接的结构示意图;

图2-4-9示出了实施例中图2-4-8中A处的放大图;

图3-1-1示出了实施例中衣物处理设备拆除顶板后的立体结构示意图;

图3-1-2示出了实施例中衣物处理设备拆除顶板及面板后的立体结构示意图;

图3-1-3示出了实施例中衣物处理设备的侧视剖面结构示意图;

图3-1-4示出了实施例中衣物处理设备的爆炸图;

图3-1-5示出了实施例中外桶的正视结构示意图;

图3-1-6示出了实施例中上配重件的结构示意图;

图3-1-7示出了实施例中下配重件的结构示意图;

图3-1-8示出了实施例中桶组件质心、配重差仿真曲线图;

图3-1-9示出了实施例中桶组件左右最凸出位置处振幅曲线图;

图3-1-10示出了实施例中桶组件后部正对压缩机位置处振幅曲线图

图3-1-11示出了实施例中桶组件正对两器盒、前加强版位置处振幅曲线图;

图3-1-12示出了实施例中桶组件正对两器盒、顶盖位置处振幅曲线图;

图3-1-13示出了实施例中桶组件的受力分析示意图。

图3-2-1示出了实施例中减震器座的结构示意图;

图3-2-2示出了实施例中减震器座的俯视示意图;

图3-2-3示出了实施例中减震器座与安装板和减震器的连接状态示意图;

图3-2-4示出了实施例中安装板的结构示意图。

图3-3-1示出了实施例中衣物处理设备壳体内部的结构示意图;

图3-3-2示出了实施例中衣物处理设备的正视剖面结构示意图;

图3-3-3示出了实施例中衣物处理设备的侧视剖面结构示意图;

图3-3-4示出了实施例中衣物处理设备的爆炸图;

图3-3-5示出了实施例中外桶的正视结构示意图;

图3-3-6示出了实施例中加强件的结构示意图;

图3-3-7示出了实施例中外桶的立体结构示意图;

图3-3-8示出了实施例中上配重块的结构示意图;

图3-3-9示出了实施例中下配重块的结构示意图。

图4-1-1示出了实施例中蒸汽发生器的结构示意图;

图4-1-2示出了实施例中蒸汽发生器的爆炸结构示意图;

图4-1-3示出了实施例中蒸汽发生器局部剖视示意图;

图4-1-4示出了实施例中蒸汽发生器局部剖视示意图(蒸汽管接头开启);

图4-1-5示出了实施例中蒸汽发生器局部剖视示意图(蒸汽管接头关闭);

图4-2-1示出了实施例中双金属片的结构示意图;

图4-2-2示出了实施例中上盖与双金属片装配状态示意图;

图4-2-3示出了实施例中双金属片封堵蒸汽管接头状态示意图;

图4-2-4示出了实施例中双金属片未封堵蒸汽管接头状态示意图;

图4-3示出了实施例中蒸汽发生器的结构的全剖示意图;

图4-4示出了实施例中衣物处理装置系统示意图;

图5-1-1示出了实施例中热泵式洗烘一体机的进水阀组件的结构示意图;

图5-1-2、图5-1-3示出了实施例中热泵式洗烘一体机表示出了第一进水阀接头和第一进水管路形成水路的内部结构示意图;

图5-1-4示出了实施例中热泵式洗烘一体机表示出了第二进水阀接头和第二进水管路形成水路的内部结构示意图;

图5-1-5示出了实施例中热泵式洗烘一体机表示出了第三进水阀接头和第三进水管路形成水路的内部结构示意图;

图5-1-6、图5-1-7示出了实施例中热泵式洗烘一体机表示出了第四进水阀接头和第四进水管路形成水路的内部结构示意图;

图5-1-8为对应于图5-1-7的热泵式洗烘一体机的另一视角轴侧示意图;

图5-1-9示出了实施例中热泵式洗烘一体机的两器组件部分结构的爆炸示意图;

图5-1-10示出了实施例中热泵式洗烘一体机的外壳的前视图;

图5-1-11示出了实施例中热泵式洗烘一体机的外壳的后视轴侧图;

图5-1-12示出了实施例中热泵式洗烘一体机的排水结构示意图;

图5-1-13示出了实施例中热泵式洗烘一体机所包括的各种水路的布局示意图;

图5-2-1示出了实施例中热泵式洗烘一体机的内部总装结构示意图;

图5-2-2示出了实施例中热泵式洗烘一体机的两器组件部分结构的爆炸示意图;

图5-2-3示出了实施例中热泵式洗烘一体机的热泵模块部分结构的剖视图;

图5-2-4示出了实施例中热泵式洗烘一体机的连接管的主视图;

图6-1至图6-4分别为示出了实施例中用于热泵式衣物处理设备的支架的主视图、前视图、左视图和俯视图;

图6-5示出了实施例中热泵式衣物处理设备部分结构的爆炸示意图;

图6-6示出了实施例中热泵式衣物处理设备部分结构的装配示意图;

图6-7示出了实施例中热泵式衣物处理设备部分结构的局部示意图;

图6-8示出了实施例中热泵式衣物处理设备的用于热泵式衣物处理设备的支架和排水管的装配示意图;

图6-9示出了实施例中热泵式衣物处理设备的散热板的结构示意图;

图7-1-1a示出了实施例中烘干滤网间歇性冲洗的覆盖效果示意图;

图7-1-1b示出了实施例中烘干滤网持续性冲洗的覆盖效果示意图;

图7-1-1c示出了实施例中烘干滤网间歇性冲洗结合持续性冲洗的覆盖效果示意图;

图7-1-2示出了实施例中风机在设定转速下当前静压值K和功率的关系图;

图7-1-3示出了实施例中烘干前滤网冲洗的控制方法的步骤框图;

图7-2示出了实施例中烘干前滤网冲洗的控制方法的步骤框图;

图7-3-1示出了实施例中一个具体实施方式的控制流程图;

图7-3-2示出了实施例中另一个具体实施方式的控制流程图;

图7-3-3示出了实施例中又一个具体实施方式的控制流程图;

图8-1示出了实施例中衣物处理设备的结构图;

图8-2示出了实施例中控制流程图;

图8-3示出了实施例中一个具体实施方式的控制流程图;

图8-4示出了实施例中冷凝与进风温差曲线;

图9-1-1示出了实施例中用于衣物处理设备的衣物判干方法的流程图;

图9-1-2示出了实施例中用于衣物处理设备的衣物判干方法的实施流程图;

图9-1-3示出了实施例中某转速下静压K和功率关系图;

图9-2-1示出了实施例中用于衣物处理设备的衣物判干方法的流程图;

图9-2-2示出了实施例中用于衣物处理设备的衣物判干方法的实施流程图;

图9-2-3示出了实施例中某转速下静压K和功率关系图;

图9-3示出了实施例中烘干除皱方法的流程图;

图9-4-1示出了实施例9-4的控制流程图;

图9-4-2示出了实施例9-4的一个具体实施方式的控制流程图;

图9-5-1示出了实施例9-5的控制流程图;

图9-5-2示出了实施例9-5的一个具体实施方式的控制流程图

图10示出了实施例10的控制流程图。

具体实施方式

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

在本发明实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义,“多种”一般包含至少两种,但是不排除包含至少一种的情况。

应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B 这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。

还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的商品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种商品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的商品或者系统中还存在另外的相同要素。

为进一步阐述本发明中的技术方案,现结合图1-1-1至图10,提供了如下具体实施例。

【概述】

现有的热泵式衣物处理设备由于相比传统的衣物处理设备由于需要增加离心风机、电机、两器模块、两器盒和压缩机、制冷剂管线等零部件以及对热泵模块工作效率和整体能耗的顾虑,往往要在壳体内预留足够的空间安装热泵模块,因此会导致现有的热泵式衣物处理设备的整体体积变得很大,且由于增加了压缩机等设备,重量也相比传统的具有同样功能的衣物处理设备增加。尤其是集成洗烘两种功能的洗干一体式热泵洗衣机,当前市场上所销售的产品几乎都高于普通洗衣机的常规高度和具有比普通洗衣机更重的重量,不但占用空间大且运输很不方便,极大的制约了热泵式洗衣机向原有传统普通洗衣机用户的普及和推广。

因此,本申请旨在主要解决现有具有热泵烘干功能的衣物处理设备存在的如下技术问题:

1.通过优化各个模块及构成部件的空间布局及装配关系,解决热泵式衣物处理设备的整机高度和体积大、占用空间大、安装空间受限且不易运输的问题;

2.在优化空间布局保证尽量减小空间且衣物处理性能不受影响的基础上,增加洗涤容量,保证洗衣机的洗涤容量;

3、在优化空间布局保证尽量减小空间且衣物处理性能不受影响的基础上,在不造成洗衣机体积增加和重量增加的情况下显著减小整机振动及带来的噪音,提升客户体验;

4、在优化空间布局保证尽量减小空间且衣物处理性能不受影响的基础上,显著提升烘干效率和烘干效果,减少客户等待时间,提升客户体验。

市场上销售的洗衣机的常规高度通常是800mm-900mm之间,比较常见的高度大多是 850mm。本申请所提出的改进后的热泵式衣物处理设备解决了安装空间受限的问题,可以采用与市场上销售的洗衣机的常规高度一致的高度、体积设计。当然,本申请所提出的改进的技术效果并不仅限于此,在后面对实施例的具体介绍中我们将进一步阐述。

为便于介绍本申请的具体实施方式,本实施例提供的具有热泵烘干功能的衣物处理设备具体的是一种具有热泵烘干功能的滚筒洗衣机实施例,其也可以是干衣机,也可以是洗干一体机,也可以是具有热泵烘干功能的其他类型衣物处理设备。

此外,本领域技术人员可理解的,本申请的热泵烘干功能是指通过制冷系统提供衣物处理设备烘干所需的热量,具体的本发明所提供的衣物处理设备上的热泵模块,其制冷系统主要包括:压缩机、冷凝器、节流装置、蒸发器,其中冷凝器和蒸发器为衣物处理设备提供烘干功能所需的热量。作为空调领域常规理解的“热泵”,制冷系统通过四通换向阀的设置使制冷剂根据制冷制热的不同需求进行换向在本申请所应用的衣物处理设备领域并不是必要的,我们在本申请中不应将热泵系统狭义的理解为制冷剂具有换向功能既用于制热又用于制冷的空调系统通常意义上的“热泵”含义。下文的具体阐述中,我们将看到,在对热泵模块的热能利用中,我们通过利用热泵模块的蒸发器对从桶中引出的湿热蒸汽进行冷却降温获得干冷空气,然后再通过热泵模块的冷凝器对干冷空气进行加热,使冷却降温去湿后的烘干气流进一步得到加热升温后,再送回桶中,如此循环往复,便可实现衣物的烘干。此外,本申请的热泵烘干功能并不排除一些辅助加热装置的采用,制冷系统可作为烘干热能的主要供应者存在。

下面具体地,本实施例结合图以具有热泵烘干功能的滚筒式洗干一体机为例对本申请的整体构成及各个组成模块进行具体实施方式的介绍。

如图1-1-1和图1-1-2所示,本实施例的具有热泵烘干功能的衣物处理设备包括壳体1,以及设置在壳体1内的衣物处理桶,衣物处理桶包括同轴线安装的内筒3和外筒2,外筒2 通过减振模块安装在壳体1内;内筒3可转动的设置在外筒2内。衣物处理设备洗衣过程中,通过进水管路向外筒2进入洗涤水,到达设定水位后停止进水,通过驱动电机驱动内筒3在外筒2内转动,使衣物在内筒2转动的过程中被提升和摔打实现衣物的洗涤。

如图1-1-1和图1-1-2所示,衣物处理设备的壳体1前方设置面板组件8,面板组件8上设有投放口,面板组件8的投放口上安装门体组件9,用于打开/关闭投放口。参见图1 中的方位标识,对于本实施例中涉及到上、下、前、后、左、右的方向限定进行示例,用于更好的解释说明本实施例的技术方案。如附图所示的,本申请以投放口侧定义为壳体的前侧,用户面对投放口时,用户的左侧为壳体的左侧,用户的右侧为壳体的右侧,壳体的顶部方向为上,壳体的底部方向为下。

本申请的烘干功能由热泵模块4提供热量(如前所述,本申请并不限制一些辅助加热装置的采用,热泵模块被允许作为烘干热能的主要供应者存在)。具体的,如图1-1-1所示,本实施例的热泵模块4包括蒸发器441、压缩机451、冷凝器442及节流装置(图中未示出),具体的,本实施例优选的将蒸发器和冷凝器被放置在一两器盒447中作为一个整体组件44 (本申请中简称两器组件)设置在外筒2的顶部的一侧(左上方或右上方),相应的,压缩机451设置在外筒底部的一侧与冷凝器对应的位置。当需要衣物处理设备实现烘干功能时,启动热泵模块,使其制冷系统工作,由蒸发器和冷凝器提供烘干所需的热量。

与热泵模块的蒸发器441、冷凝器442配合在一起构成烘干系统的,还有烘干风机组件 43以及第一连接风道41、第二连接风道42。当进行烘干工作时,烘干风机组件通过第一连接风道将外筒内引出的湿热空气输送至蒸发器处,蒸发器与湿热空气进行换热将湿热空气中的水分冷凝使湿热空气变成干冷的空气,干冷的空气被输送至冷凝器处进行热量交换加热变成干热的空气,干热的空气再通过第二连接风道导入外筒内进行衣物烘干再次变成湿热的空气,再次进行循环,如此实现对衣物的烘干功能。

下面结合附图及具体实施例详细阐述,需要说明的是,我们所给出的单独实施例并不意味着排斥其他实施例特征的存在,只要本领域技术人员认为是可允许的,可以基于整个大的带有烘干功能的衣物处理装置的存在。本申请所描述的洗衣机,其含义应广义理解为具有衣物处理功能。

本实施例提供一种具有热泵烘干功能的滚筒洗衣机,包括壳体1,壳体1内设置同轴安装的内筒3和外筒2,外筒2通过减振模块安装在壳体1内;内筒3通过驱动电机驱动,可转动的设置在外筒2内。

滚筒洗衣机洗衣过程中,通过进水管路向外筒2进入洗涤水,到达设定水位后停止进水,通过驱动电机驱动内筒3在外筒2内转动,在内筒2转动的过程中通过提升摔打衣物实现衣物的洗涤。

如图1-1-1所示,将滚筒洗衣机竖直放置在水平地面上,滚筒洗衣机的壳体1前方设置面板组件8,面板组件8上开设投放口,面板组件8的投放口上安装门体组件9,用于打开/ 关闭投放口。参见图1-1中的方位标识,对于本发明中涉及到上、下、前、后、左、右的方向限定进行示例,用于更好的解释说明本发明的技术方案。

进一步地,本实施例的滚筒洗衣机具有烘干功能,且是通过热泵系统实现的热泵式烘干方式。现有滚筒洗衣机考虑到热泵工作效率的问题,一般需要在壳体内预留出足够的空间安装热泵系统,因此会导致洗衣机的壳体增大。

因此,本发明提出的一种具有热泵烘干功能的滚筒洗衣机,热泵系统包括蒸发器、冷凝器、压缩机及风机组件,风机组件将外筒内的湿热烘干风输送至蒸发器处,蒸发器与湿热烘干风进行换热将湿热烘干风中的水分冷凝变成干冷的烘干风,干冷的烘干风被输送至冷凝器处进行热量交换加热变成干热的烘干风,干热的烘干风导入外筒内进行衣物烘干再次变成湿热的烘干风,再次进行循环。而热泵介质在蒸发器、冷凝器及压缩机间循环,热泵介质在蒸发器中吸收热量实现冷凝,在冷凝器中释放热量实现加热。

本发明旨在提出一种具有热泵烘干功能的滚筒洗衣机,从滚筒洗衣机壳体的内部空间布局考虑,充分利用壳体的内部空间,实现热泵系统的设置,确保烘干效率和烘干效果,保持具有热泵烘干功能的滚筒洗衣机的壳体与普通的对应公斤级的滚筒洗衣机的壳体保持相同尺寸。

【热泵模块】

结合图1-1-1至图1-1-28所示,烘干风机组件43、两器组件44和第一连接连接风道41、第二连接风道42设置在外筒2的上方,外筒2的顶部沿着筒的深度方向(也即轴向方向)设有外筒进风口22和外筒出风口21,烘干风机组件43、两器组件44连接在连外筒进风口22和外筒出风口21之间,具体地,外筒进风口22设置在外筒2的前外筒体上231,外筒出风口21设置外筒的后外筒体上232,其中第一风道41一端与烘干风机组件43进风口连接,另一端与外筒出风口21连接,第二风道42一端与两器组件进风口连接,另一端与外筒进风口22连接,两器组件的一端与第二风道连接,另一端与烘干风机组件43出风口连接,如此形成一个连接在衣物处理桶之间的烘干系统。

结合图1-1-1至图1-1-28所示,两器组件包括形成有换热腔的两器盒447和设置于两器盒内的两器模块44,即蒸发器和冷凝器,烘干气流流经两器盒时先后与蒸发器、冷凝器完成热交换(烘干空气流经蒸发器时被蒸发器冷却去湿气,流经冷凝器时被加热);由此外筒出风口21、第一风道41、烘干风机组件43、两器盒(蒸发器→冷凝器)、第二风道42和外筒进风口22依次密封连接并连通形成衣物处理设备的外部烘干风道,外部烘干风道与衣物处理桶形成烘干系统的循环流路,在烘干风机组件43作用下,烘干气流经出风口、第一风道引出来以后,经烘干风机组件,再沿着烘干风道从后向前依次掠过蒸发器的换热管、冷凝器的换热器管完成热交换,最后通过第二风道42、进风口返回到衣物处理桶中与衣物完成热交换,如此循环多次实现衣物的烘干。

为充分利用壳体的内部空间,实现烘干系统各个构成模块的设置,确保烘干效率和烘干效果,保持具有热泵烘干功能的衣物处理设备的壳体与普通的对应公斤级的衣物处理设备的壳体保持相同尺寸。作为上述烘干系统的进一步优化,本实施例从衣物处理设备壳体的内部空间布局特点考虑,进一步的对烘干系统的构成部件及部件之间的结构关系、空间布局关系作出如下优化:

<关于两器组件的设置>

由于外筒2的左上方空间或者右上方空间有限,同时为了保证衣物处理设备整机的高度尺寸保持不变且换热效率、烘干效果不受影响,本申请巧妙的利用外筒与壳体之间的空间特点,对两器组件及换热主体的整体形状及结构布局提出优化设计,以充分利用壳体与外筒之间的空间和有效控制整机高度且同时能够保证换热效率、烘干效果。具体的技术方案如下:

这里需要说明的是:换热主体,顾名思义,为主要换热部分。对于采用一个或多个设有直管和弯头的换热管的换热器来讲,通常我们将直管部分视为是换热主体部分,本申请的直管上穿插有翅片。此外,本领域技术人员可知晓的,本申请所称的水平和竖直并不要求具有数学含义的绝对水平和绝对垂直,而只要近似的水平和竖直都视为是本申请水平和竖直所涵盖的范围之内。

本实施例的蒸发器441、冷凝器442的换热主体不像传统的换热器那样为规则的长方体,而是根据其所在的空间特点进行适配性的形状设计,使其换热主体具有适配于其所在的壳体的左上方空间或者右上方空间的外部轮廓。由于外筒2的圆筒形结构和壳体为方形结构,外筒2与壳体1之间的左上方空间或者右上方空间在竖直方向的间距h(外筒外周壁到对应的外壳顶壁之间的最小距离h)越靠近所在侧的壳体侧壁,间距h越大;外筒2与壳体1之间的左上方空间或者右上方空间在水平方向上的间距w(从外筒的外周壁到对应的壳体侧壁的最小距离)越靠近所在侧的壳体的顶壁,间距w越大。如此,我们将换热主体的形状设计为卧式布置,换热管直管段沿着壳体的左右方向延伸,且越靠近壳体的顶壁换热主体在间距w 上的宽度w1越大,且越靠近壳体的所在侧侧壁换热主体在间距h上的高度h1越大,优选达的,换热主体设计成L形状或阶梯形状(本领域技术人员可理解的,我们这里说的L形状或倒阶梯形状,在装配状态,如果我们从外筒的后侧向前侧看,其实是倒L形状或倒7形状或阶梯形状具体的本领域技术人人员可根据本发明的发明构思进行其他等同变型,这些都属于本申请涵盖的保护范围之内。

两器组件迎风换热面(蒸发器侧)设置在背向壳体的投放口,与烘干风机组件出风口相对,其同样也具有换热主体适配于其所在的壳体1与外筒2之间的左上方空间或者右上方空间的形状。如此,本实施例的蒸发器441和冷凝器442设置在壳体1内部有限的空间内,相比现有的规则的长方形或者正方形的蒸发器和冷凝器不但可以保证蒸发器441和冷凝器442 的烘干效率和烘干效果,且更充分利用壳体1内部的空间,且能满足烘干效率。

优选的,考虑到人们对传统洗衣机的使用习惯,针对现有的衣物处理设备的壳体1内外筒2的左上方一般会设置洗涤剂投放盒,本实施例将蒸发器441和冷凝器442设置在壳体1 内外筒2的右上方空间;当然,若用户有需求将洗涤剂投放盒设置在壳体1内外筒2的右上方,那么可将蒸发器441和冷凝器442设置在壳体1内外筒2的左上方空间。对此,本申请并不限定。

作为本实施例的可选实施方式,本实施例所述蒸发器441和冷凝器442的换热主体的迎风换热面具有靠近壳体1顶壁的第一水平侧边和远离壳体1顶壁的第二水平侧边以及靠近所在侧的壳体1侧壁的第一竖直侧边和远离所在侧壳体1侧壁的第二竖直侧边,第二水平侧边的长度大于第一水平侧边的长度,第一竖直侧边的高度大于第二竖直侧边的高度。

为了便于冷凝器和蒸发器的装配,作为本实施例的可选实施方式,本实施例所述的冷凝器442和蒸发器441集成一体构成两器模块44,且冷凝器442和蒸发器441均具有水平方向长度不等的第一换热部4421和第二换热部4421,使得两器模块44的迎风换热面呈远离外筒侧的水平长度大于靠近外筒侧的水平长度的阶梯面。为了更好地利用该部分空间,将两器模块44的迎风换热面设置为非矩形的结构,即在该所述空间内,两器模块44的迎风换热面形状设置为“L”形、“7”形等,并放置在所述空间内,最大化的增大两器模块44的迎风换热面,以提升热泵烘干效果。

进一步的,下面进一步从各个实施例的描述中体现出本申请的改进。

<两器>

本实施例提供一种具有烘干功能的滚筒洗衣机,包括:

壳体,其形成一内部空间;

外筒,设置在所述壳体的内部空间;

热泵模块,包括两器组件,所述两器组件包括蒸发器和冷凝器,所述的蒸发器和/或冷凝器设置在所述壳体内外筒的左上方空间或者右上方空间内,所述蒸发器和/或冷凝器的换热主体具有适配于其所在的所述左上方空间或者右上方空间的外部轮廓。

所述蒸发器和/或冷凝器的换热主体垂直所述外筒轴线的断面呈上宽下窄的形状。

所述断面呈近似阶梯面的形状。

所述蒸发器和/或冷凝器的换热主体具有靠近所述外筒的第一水平侧边和远离所述外筒的第二水平侧边,所述第二水平侧边的长度大于第一水平侧边的长度。

所述的冷凝器和蒸发器集成一体构成两器模块,所述冷凝器和蒸发器的换热主体包括具有水平方向长度不等的第一换热部和第二换热部,使得两器模块的换热主体的断面形成一阶梯面,所述阶梯面远离外筒侧的水平长度大于靠近外筒侧的水平长度。

所述的蒸发器和冷凝器均具有在壳体高度方向上靠近壳体顶壁的第一换热部和远离壳体顶壁的第二换热部,所述的第一换热部由第一长度的第一换热管穿插在第一翅片中形成,所述的第二换热部由第二长度的第二换热管穿插在第二翅片中形成,所述第一换热管的长度大于第二换热管的长度;

所述的第一换热部与第二换热部之间通过第三换热管连通,第三换热管包括穿插在第一翅片中与第一换热管等长的第一管段,穿插在第二翅片中与第二换热管等长的第二管段及连通第一管段、第二管段的第三管段;

可选地,所述的第一换热部与第二换热部通过第三换热管实现整体外观形状的缩进及流路贯通实现管路的单进单出。

所述的两器组件包括两器盒,所述的两器模块设置在两器盒内;所述的两器盒固定在所述壳体上且位于所述外筒的左上方或者右上方,所述的两器盒与外筒的外筒周壁之间具有间隔。

所述两器盒上与所述外筒周壁相对的一侧外壁面为内凹圆弧面,所述的内凹圆弧面与外筒周壁共中心轴线,且所述内凹圆弧面与外筒周壁之间具有间隔。

所述两器盒内具有用于近壳体侧的第一腔室和近外筒侧的第二腔室,所述第一腔室沿水平方向上的长度大于第二腔室沿水平方向上的长度;

所述的第一换热部设置在第一腔室,所述的第二换热部设置在第二腔室。

所述的热泵模块包括风机组件,所述的风机组件固定在所述壳体上且位于所述外筒的左上方或者右上方,所述的风机组件与外筒的外筒周壁之间具有间隔,所述的两器组件设置在近外筒的筒口一侧,所述的风机组件设置在近外筒的筒底一侧;

所述的外筒周壁的顶部开设出风口,所述的风机组件通过出风风道与所述出风口连通;所述的两器盒具有两器盒进风口,所述风机组件的风机出风口直接连接所述两器盒进风口;

所述外筒的筒口安装有门封,所述的两器盒具有两器盒出风口,所述的两器盒出风口通过进风风道连通所述的门封。

所述外筒的外筒周壁通过减振挂簧吊装在壳体内,所述的两器盒上与所述减振挂簧相对的侧壁面上设置内凹避让结构,用于避让安装减振挂簧。

所述外筒的外筒周壁上与所述两器盒相对的位置具有用于避让所述两器盒安装的外筒避让区域。

本实施例还提供一种具有热泵烘干功能的滚筒洗衣机,包括:

外筒,顶部具有出风口;

壳体,所述外筒设置在壳体的内部空间;

热泵模块,包括设置在外筒上方与壳体之间空间内的蒸发器、冷凝器、换热风道及风机组件,所述的蒸发器、冷凝器设置在换热风道内,所述风机组件的风机进风口与所述外筒上的出风口连通,所述风机组件的风机出风口与所述换热风道的风道进风口固定连接构成一体式连接结构,所述换热风道的风道出风口连通外筒内部。

所述风机出口的外周设置有第一卡扣结构和第一装配孔,所述换热风道的风道进风口外周设置有第二卡槽结构和第二装配孔,通过第一卡扣结构与第二卡槽结构卡接将风机出风口和风道进风口进行预固定,再通过连接件贯穿第一装配孔并紧固在第二装配孔上将风机出风口和风道进风口进行固定连接。

所述风机出风口和风道进风口之间设置密封圈,所述风机出风口和/或风道进风口内设置用于装配所述密封圈的环形密封槽。

所述的风机组件包括蜗壳、风机叶轮及风机电机,所述的风机叶轮设置在蜗壳内,所述的风机电机设置在蜗壳上,风机电机的电机轴伸入蜗壳内连接所述风机叶轮,所述的风机进风口设置在蜗壳上,风机进风口与所述风机叶轮共中心轴线,所述的风机出风口设置在蜗壳上,风机出风口的中心轴线与风机叶轮的中心轴线垂直设置;

所述的蜗壳固定安装在所述壳体上,所述蜗壳上风机进风口的中心轴线相对于外筒上出风口的中心轴线呈偏心设置。

所述的壳体包括框架组件,所述的框架组件包括后框架板和固定在后框架板的两端且相对设置的左框架板和右框架板,所述的蜗壳至少固定安装在所述后框架板和右框架板上。

所述的蜗壳包括上蜗壳和下蜗壳,所述的上蜗壳与下蜗壳固定连接围合出设置所述风机叶轮的蜗壳腔室,所述的上蜗壳上设置搭台,所述的下蜗壳上设置内部具有螺纹孔的固定柱,所述搭台和固定柱沿蜗壳的周向布置;

所述搭台固定搭接在所述右框架板/后框架板上,所述固定柱通过连接件固定在所述后框架板/右框架板上。

所述上蜗壳上设置第一搭台和第二搭台,所述的框架组件包括跨接右框架板和后框架板的角框架板,所述的第一搭台固定搭接在右框架板上,所述的第二搭台固定搭接在角框架板上,所述的固定柱通过连接件固定在后框架板上。

所述风机进风口通过柔性转接件与所述外筒上的出风口连通。

所述外筒上的出风口设置在外筒顶部的中心位置,所述柔性转接件具有与所述外筒上的出风口连接的第一连接口和与所述风机进风口连接的第二连接口,所述第一连接口的中心轴线与第二连接口的中心轴线之间具有偏心间距。

所述第一连接口与出风口通过第一紧固卡箍进行紧固连接,所述第二连接口与风机进风口通过第二紧固卡箍进行紧固连接。

本实施例还一种具有热泵烘干功能的衣物处理装置,包括:

外筒;

壳体,所述外筒设置在壳体的内部空间;

及热泵模块,包括两器盒和设置在两器盒内由冷凝器和蒸发器集成一体构成的两器模块,所述的两器盒具有两器盒进风口,所述的两器盒进风口相对于水平方向倾斜设置;

所述两器盒进风口的倾斜方向为朝着靠近所述两器模块的迎风换热面上距离最远的两个点之间的连线方向倾斜。

所述的两器盒包括盒周侧壁和盒底壁,所述的盒周侧壁和盒底壁围成用于容置两器模块的敞口容纳空间,所述的盒底壁与所述外筒相对且具有间隔设置,所述的两器盒进风口设置在迎着烘干气流的盒周侧壁上,且靠近所述盒底壁。

所述的两器盒包括迎着烘干气流的第一盒侧壁和与第一盒侧壁相对的第二盒侧壁,所述的盒底壁为朝向两器盒内部容纳空间内凹的内凹圆弧面;

所述的两器盒进风口开设在第一盒侧壁上且靠近所述盒底壁,所述的两器盒还具有开设在第二盒侧壁上的两器盒出风口。

所述两器模块具有沿竖直方向靠近壳体侧的第一换热部和靠近外筒侧的第二换热部,所述的第一换热部由第一长度的第一换热管穿插在第一翅片中形成,所述的第二换热部由第二长度的第二换热管穿插在第二翅片中形成,所述第一换热管的长度大于第二换热管的长度;

所述两器盒进风口在垂直于中心轴线的投影面上的投影斜跨所述两器模块的对角线在垂直于中心轴线的投影面上的投影。

所述的两器盒进风口正对所述两器模块的蒸发器换热面,且所述两器盒进风口与所述蒸发器换热面之间具有间距,所述间距的范围为20mm~80mm。

所述的第一换热部和第二换热部均具有换热主体和位于换热主体一端的换热管接头,所述两器盒内位于两器盒进风口一侧设置用于引导烘干风流通至所述换热面主体上的导风板。

所述的热泵模块包括设置在外筒后方壳体上的压缩机,所述的压缩机通过热泵介质管路与所述两器模块连接,所述的导风板与所述两器盒体之间形成管路通道,所述的热泵介质管路穿过所述管路通道与所述换热管接头连接。

所述盒底壁的内壁面上设置用于支撑蒸发器的第一换热部的第一支撑板和用于支撑蒸发器的第二换热部的第二支撑板,用于支撑冷凝器的第一换热部的第三支撑板和冷凝器的第二换热部的第四支撑板,以及用于分隔蒸发器和冷凝器的分隔卡板,所述的第一支撑板、第二支撑板同位于所述分隔卡板的一侧,所述的第三支撑板、第四支撑板同位于所述分隔卡板的另一侧;

可选地,所述盒底壁的内壁面上还设置阶梯支撑台,所述的分隔卡板包括设置在阶梯支撑台上的第一分隔卡板和第二分隔卡板,所述蒸发器和冷凝器相互靠近一端的第一换热部、第二换热部分别抵接在所述阶梯支撑台上,所述的第一分隔卡板插入卡接在蒸发器的第一换热部与冷凝器的第一换热部之间,所述的第二分隔卡接板插入卡接在蒸发器的第二换热部与冷凝器的第二换热部之间。

所述两器盒的底壁设置用于排出冷凝水的冷凝水排水接头,所述冷凝水排水接头的出水方向与烘干风在两器盒内的流通方向保持一致。

所述两器盒的底部内壁上设置用于支撑两器模块的支撑板,所述支撑板靠近冷凝水排水接头的一端具有朝向冷凝水排水接头弯曲的冷凝水导流弧面。

本实施例还提供一种具有热泵烘干功能的衣物处理装置,包括:

外筒;

框架组件,所述外筒设置在框架组件内部空间;

及热泵模块,包括蒸发器、冷凝器和压缩机,所述的蒸发器和冷凝器设置在外筒上方,所述的压缩机设置在框架组件上;

所述的压缩机连接有第一热泵介质管路和第二热泵介质管路,所述的蒸发器连接有与所述第一热泵介质管路可拆卸连接的第三热泵介质管路,所述的冷凝器连接有与所述第二热泵介质管路可拆卸连接的第四热泵介质管路。

所述的框架组件包括后框架板和固定在后框架板的两端且相对设置的左框架板和右框架板;所述的后框架板上开设安装通孔,所述第一热泵介质管路与第三热泵介质管路的连接位置、第二热泵介质管路与第四热泵介质管路的连接位置均设置在所述安装孔附近。

所述的蒸发器和冷凝器均固定安装在所述的框架组件上,且位于外筒的上方;所述的第一热泵介质管路与第三热泵介质管路、第二热泵介质管路与第四热泵介质管路之间均为相对固定连接。

所述的第一热泵介质管路、第三热泵介质管路均为硬质管,所述的第一热泵介质管路、第三热泵介质管通过第一硬质管接头固定连接;

所述的第二热泵介质管路、第四热泵介质管路均为硬质管,所述的第二热泵介质管路、第四热泵介质管通过第二硬质管接头固定连接。

所述的热泵模块包括风机组件和出风风道,所述的风机组件通过出风风道与外筒内部连通,用于驱动烘干风在外筒与蒸发器、冷凝器间流通;

所述的风机组件安装在所述的框架组件上,所述的出风风道为弹性形变风道。

所述的蒸发器和冷凝器均固定安装在所述外筒的筒周壁顶部,所述的第一热泵介质管路与第三热泵介质管路、第二热泵介质管路与第四热泵介质管路之间均通过弹性形变管连接。

所述的第一热泵介质管路、第三热泵介质管路均为硬质管,所述弹性形变管包括第一软接橡胶管,所述的第一热泵介质管路、第三热泵介质管通过第一软接橡胶管可相对运动连接;

所述的第二热泵介质管路、第四热泵介质管路均为硬质管,所述弹性形变管包括第二软接橡胶管,所述的第二热泵介质管路、第四热泵介质管路通过第二软接橡胶管可相对运动连接。

所述的热泵模块包括风机组件,所述风机组件固定安装在所述外筒的筒周壁顶部,所述外筒的顶部开设出风口;

所述风机组件的进风口直接固定连接在所述出风口上,或者所述风机组件的进风口通过出风风道固定连接在所述出风口上,用于驱动烘干风在外筒与蒸发器、冷凝器间流通。

所述的冷凝器和蒸发器集成一体构成两器模块,所述的热泵模块还包括用于设置所述两器模块的两器盒,所述的两器盒具有两器盒进风口,所述风机组件的出风口固定连接所述两器盒进风口。

所述外筒的筒口安装有门封,所述的两器盒具有两器盒出风口,所述的两器盒出风口通过进风风道连通所述的门封。

本实施例还提供一种具有烘干功能的滚筒洗衣机,包括:

外筒,所述外筒的筒壁上设置第一出风口;

第一出风风道,其一端连通所述的第一出风口;

烘干机构,所述第一出风风道连通至烘干机构,所述的烘干机构还通过进风风道连通外筒;

所述第一出风口上设置第一过滤网,所述第一出风口的至少部分设置在外筒的最低水位线以下,使得所述第一过滤网上的线屑在洗涤或者漂洗过程中可被外筒内的洗涤水冲刷清理。

所述的外筒包括外筒底壁和环绕外筒底壁的外筒周壁;所述的第一出风口设置在外筒底壁上且位于最低水位线以下;所述的烘干机构包括驱动烘干风循环流动的风机组件,所述的风机组件设置在外筒周壁的上方且高于最高水位线。

包括:

第二出风口,设置在位于最高水位线以上的外筒筒壁上;

第二出风风道,其一端连通所述第二出风口,另一端连通风机组件;

第二过滤网,设置在所述的第二出风口上;

及喷淋装置,设置在第二过滤网上方,用于喷淋清理所述第二过滤网上的线屑。

所述第二出风口设置在外筒周壁的顶部,且靠近外筒底壁的一端。

所述的第二出风口的外边沿向上延伸形成筒状结构,所述的第二过滤网设置在筒状结构内,所述的第一出风风道连通所述筒状结构上且位于第二过滤网的上方。

所述筒状结构的侧壁上且靠近外筒底壁的一侧一体设置风道接口,所述的第一出风风道连接在所述的风道接口上。

所述第一出风风道包括竖直风道段和位于竖直风道段下端的第一弯头段、位于竖直风道段上端的第二弯头段,所述的第一弯头段连接所述第一出风口,所述第二弯头段连接所述风道接口。

所述的第一出风口和第二出风口均为常开设置。

所述的烘干机构包括两器组件,所述的两器组件包括将冷凝器和蒸发器集成一体的两器模块及用于设置所述两器模块的两器盒,所述的两器盒具有两器盒进风口和两器盒出风口,所述的两器盒进风口连通所述风机组件出风口,所述的两器盒出风口通过进风风道连通外筒;

所述的两器模块设置在所述壳体内外筒的左上方空间或者右上方空间内,所述两器模块的换热主体具有适配于其所在的所述左上方空间或者右上方空间的外部轮廓。

包括壳体,所述外筒设置在壳体内,所述的两器组件设置在所述壳体内外筒的左上方空间或者右上方空间内,所述两器组件设置在近外筒的筒口一端。

实施例1-1-1

本实施例提供一种具有烘干功能的滚筒洗衣机,解决外筒出风口被堵塞造成烘干效率降低的问题,具体的技术方案包括:

参见图1-1-1-图1-1-6所示,本实施例的一种具有烘干功能的滚筒洗衣机,包括:

外筒2,所述外筒2的外筒筒体23上设置第一出风口49;

第一出风风道48,其一端连通所述的第一出风口49;

烘干机构,所述第一出风风道48连通至烘干机构,所述的烘干机构还通过进风风道连通外筒;

所述第一出风口49上设置第一过滤网,所述第一出风口49的至少部分设置在外筒的最低水位线以下,使得所述第一过滤网上的线屑在洗涤或者漂洗过程中可被外筒内的洗涤水冲刷清理。

本实施例具有烘干功能的滚筒洗衣机中的烘干机构可以采用电加热烘干,或者是冷凝式烘干,再或者是本发明的热泵式烘干,本实施例具有烘干功能的滚筒洗衣机第一出风口49 设置在外筒筒体23上的位置可使得所述第一过滤网上的线屑在洗衣过程中可被洗涤水冲刷清理,避免堵塞,确保烘干效率,无需再单独设置针对过滤网的喷淋结构。

针对本实施例的具有热泵烘干功能的滚筒洗衣机的外筒上设置的第一出风口49的位置与实施例二至实施例五中外筒出风口22的位置不同,实施例二至实施例五中外筒出风口22 的位置处于外筒2的顶部,洗衣过程中洗涤水不可能达到外筒出风口22的位置处进行线屑冲刷清理,本实施例的第一出风口49的至少一部分设置在外筒的最低水位线以下,使得所述第一过滤网上的线屑在洗涤或者漂洗过程中可被外筒内的洗涤水冲刷清理。这样,本实施例的第一出风口49的线屑可以在洗涤或者漂洗过程中被洗涤水冲刷清理,避免堵塞,确保烘干效率。

可选地,所述的第一出风口设置在外筒筒体23上的最低水位线以下或者最低水位线附近的位置,从而可以在洗衣过程中被洗涤水冲刷到。

进一步地,本实施例所述的外筒筒体23包括外筒底壁和环绕外筒底壁的外筒周壁;所述的第一出风口49设置在外筒底壁上且位于最低水位线以下;所述的烘干机构包括风机组件43,所述风机组件43设置在外筒周壁的上方且高于最高水位线。本实施例的滚筒洗衣机中第一出风口49设置在外筒底壁上且位于最低水位线以下,可以确保洗衣过程中洗涤水可以冲刷到第一出风口49上的第一过滤网,而风机组件43设置在外筒周壁的上方且高于最高水位线是为了防止洗涤水由第一出风口49进入到风机组件43内造成损坏。另外,虽然在洗衣过程中,第一出风风道48可能进水,但是保持第一出风风道48竖直设置,这样在洗衣排水或者脱水时,第一出风风道48内的水在重力作用下可由第一出风口49自行排出至外筒筒体23内,并由外筒排水口排出。

进一步地,为了确保热泵系统的烘干效率,本实施例的一种具有热泵烘干功能的洗衣机,还包括:

第二出风口22,设置在位于最高水位线以上的外筒筒壁上;

第二出风风道41,其一端连通所述第二出风口22,另一端连通风机组件43;

第二过滤网,设置在所述的第二出风口22上;

及喷淋装置47,设置在第二过滤网上方,用于喷淋清理所述第二过滤网上的线屑。

本实施例的第二出风口22与实施例一至四中的外筒出风口22为同一个口,本实施例的第二出风风道41与实施例一至四中的出风风道42为同一风道,本实施例以第二出风口22、第二出风风道41进行表述。

本实施例的第二出风口22设置在外筒筒体23的顶部,通过设置喷淋装置实现对第二过滤网的线屑清理,本实施例的第二出风口22作为热泵系统的主出风口,第一出风口49作为辅出风口,在第二出风口22正常工作时第一出风口49起辅助作用可忽略。当第二出风口 22堵塞时,第一出风口49开始作为主要出风口工作,在后续洗涤过程中第二出风口22会慢慢被清理干净恢复功能,从而确保热泵系统的烘干效率。

由于第一出风口49选择在外筒的筒底壁下方布置,该位置在洗涤水位可接触的地方,在正常洗涤过程中就可自动清洁第一出风口49上的第一过滤网,无需另行设置喷淋器。

作为本实施例的可选实施方式,本实施例所述第二出风口22设置在外筒周壁的顶部,且靠近外筒底壁的一端。

具体地,为了实现第一出风口49和第二出风口22均与风机组件43进行连通,所述的第二出风口22的外边沿向上延伸形成筒状结构,所述的第二过滤网设置在筒状结构内,所述的第一出风风道48连通所述筒状结构上且位于第二过滤网的上方。本实施例通过将第一出风风道48连通第二出风口22,再通过第二出风口的第二出风风道41实现与风机组件43的连通,与风机组件43之间通过一个连通风道即可实现两个出风口的连通,装配更加简单方便。

进一步地,本实施例所述筒状结构的侧壁上且靠近外筒底壁的一侧一体设置风道接口 221,所述的第一出风风道48连接在所述的风道接口221上。

作为本实施例的可选实施方式,所述第一出风风道48包括竖直风道段和位于竖直风道段下端的第一弯头段、位于竖直风道段上端的第二弯头段,所述的第一弯头段连接所述第一出风口49,所述第二弯头段连接所述风道接口221。

本实施例所述的第一出风口49和第二出风口22均为常开设置。在烘干过程中,第一出风口49和第二出风口22均进行烘干气流的流通,只不过是在第二出风口22未堵塞时,热气流上升大多从第二出风口22流出,第一出风口49的流通效果较小,主要其辅助流通的作用;而当第二出风口22发生堵塞时,大部分的烘干气流会从第一出风口49流出,确保热泵系统的烘干效率。

本实施例所述的烘干机构包括两器组件,所述的两器组件包括将冷凝器和蒸发器集成一体的两器模块及用于设置所述两器模块的两器盒,所述的两器盒具有两器盒进风口和两器盒出风口,所述的两器盒进风口连通所述风机组件出风口,所述的两器盒出风口通过进风风道连通外筒。

进一步地,所述的两器组件44设置在所述外筒周壁的左上方或者右上方,所述两器组件设置在近外筒的筒口一端。

由于本实施例的滚筒洗衣机具有两个出风口,可以达到以下有益效果:

1.当第二出风口被堵塞时,第一出风口可继续工作;

2.第一出风口不用单独设置喷淋装置,可由外筒内水流进行清理。

实施例1-1-2

本实施例针对蒸发器和冷凝器进行结构设计和安装布局,从而确保蒸发器和冷凝器能够被适应于壳体内部的空间安装,提高了壳体内部的空间利用率,可以有效控制整机高度,具体的技术方案如下:

参见图1-1-1-图1-1-3,图1-1-7-图1-1-12所示,本实施例的一种具有热泵烘干功能的滚筒洗衣机,包括:

外筒2;

壳体1,所述外筒2设置在壳体1的内部空间;

及热泵模块,包括两器组件,所述两器组件包括蒸发器441和冷凝器442,所述的蒸发器441和冷凝器442设置在壳体1内外筒2的左上方或者右上方空间内,所述蒸发器441 和冷凝器442具有迎向换热气流的迎风换热面,所述蒸发器441和/或冷凝器442的迎风换热面的形状适配于所述壳体1与外筒2之间的空间。

本实施例结合壳体1内的空间布局,将蒸发器441和冷凝器442设置在壳体1内外筒2 的左上方或者右上方空间内,主要是考虑到壳体1内的结构部件的设置。具体地,现有的滚筒洗衣机的壳体1内外筒2的左上方一般会设置洗涤剂投放盒,因此,可将蒸发器441和冷凝器442设置在壳体1内外筒2的右上方空间;若考虑将洗涤剂投放盒设置在壳体1内外筒 2的右上方,那么可将蒸发器441和冷凝器442设置在壳体1内外筒2的左上方空间。

本实施例的蒸发器441和冷凝器442设置在壳体1内部有限的空间内,为了保证蒸发器 441和冷凝器442的烘干效率和烘干效果,现有的规则的长方形或者正方形的蒸发器441和冷凝器442便不适于充分利用壳体1内部的空间,且不能满足烘干效率。

因此,本实施例的蒸发器441和/或冷凝器442的迎风换热面的形状适配于所述壳体1 与外筒2之间的空间,也就是说蒸发器441和/或冷凝器442的整体结构根据安装空间进行适配性的形状设计,不再是规则的长方形,不仅能够充分利用壳体内的安装空间,而且能够保证换热效率。

作为本实施例的可选实施方式,本实施例所述蒸发器441和/或冷凝器442的迎风换热面具有靠近所述外筒2的第一水平侧边和远离所述外筒2的第二水平侧边,所述第二水平侧边的长度大于第一水平侧边的长度。由于外筒2的筒形结构,壳体为平面结构,使得壳体1 内外筒2的左上部或者右上部的空间在竖直方向从上至下水平长度逐渐减小,因此,本实施例的蒸发器441和/或冷凝器442的迎风换热面为了适配安装空间,将靠近所述外筒2的第一水平侧边的水平距离小于远离所述外筒2的第二水平侧边的水平距离。

为了便于冷凝器和蒸发器的装配,作为本实施例的可选实施方式,参见图1-1-5所示,本实施例所述的冷凝器442和蒸发器441集成一体构成两器模块44,所述冷凝器442和蒸发器441均具有水平方向长度不等的第一换热部4421和第二换热部4421,使得两器模块44的迎风换热面呈远离外筒侧的水平长度大于靠近外筒侧的水平长度的阶梯面。为了更好地利用该部分空间,将两器模块44的迎风换热面设置为非矩形的结构,即在该所述空间内,两器模块44的迎风换热面形状设置为“L”形、“7”形等,并放置在所述空间内,最大化的增大两器模块44的迎风换热面,以提升热泵烘干效果。

参见图1-1-8所示,作为本实施例的可选实施方式,所述的蒸发器441和/或冷凝器442 具有远离外筒2的第一换热部4451和靠近外筒2的第二换热部4452,所述的第一换热部4451 由第一长度的第一换热管4453穿插在第一翅片中形成,所述的第二换热部4452由第二长度的第二换热管4455穿插在第二翅片中形成,所述第一换热管4453的长度大于第二换热管 4455的长度。

本实施例所述的第一换热部4453与第二换热部4455之间通过第三换热管4454连通,第三换热管4454包括穿插在第一翅片中与第一换热管4453等长的第一管段,穿插在第二翅片中与第二换热管4455等长的第二管段及连通第一管段、第二管段的第三管段。

本实施例的两器模块44,包含冷凝器441和蒸发器442,均通过铜管穿插翅片所得,分别用来产生热量和吸收热量;并利用外筒2与壳体1所围成的空间,将两器模块44的迎风换热面最大化,并放置在所述空间内;其中蒸发器441和冷凝器442的迎风换热面呈阶梯状,铜管流路穿插在翅片中,阶梯截面处通过长短U型的第三换热管4454进行连接,使阶梯面的铜管流路贯通,蒸发器441和冷凝器442结构一体化,易于装配;同时实现铜管流路的贯穿为单进单出,提升热泵冷媒介质利用率。

进一步地,本实施例所述的两器组件包括两器盒,所述的两器模块44设置在两器盒内;所述的两器盒固定在所述壳体1上且位于所述外筒2的左上方或者右上方,所述的两器盒与外筒2的外筒周壁之间具有间隔。本实施例的两器盒包括两器盒体443和两器盒盖444,两器盒体443内部具有一端敞口的内部容纳空腔,两器盒盖444封盖在两器盒体443的敞口上形成封闭空间,两器模块44放置在两器盒的内部封闭空间内,同样利用外筒2与壳体1之间的空间,并将该空间称之为有效空间,并与外筒2、壳体1之间分别预留一定的安全间隙。

作为本实施例的可选实施方式,所述两器盒上与所述外筒周壁相对的一侧外壁面为内凹圆弧面4434,所述的内凹圆弧面4434与外筒周壁共中心轴线,且所述内凹圆弧面4434与外筒周壁之间具有间隔。这样可以尽可能大的增大两器盒的内部空间,且能保持两器盒与外筒2之间的安全间距。

具体地,本实施例所述两器盒内具有用于近壳体1侧的第一腔室和近外筒2侧的第二腔室,所述第一腔室沿水平方向上的长度大于第二腔室沿水平方向上的长度;所述的第一换热部4451设置在第一腔室,所述的第二换热部4452设置在第二腔室。

本实施例的一种具有热泵烘干功能的滚筒洗衣机,所述外筒2的外筒周壁通过减振挂簧 53吊装在壳体1内,所述的两器盒上与所述减振挂簧53相对的侧壁面上设置避让凹槽4435,用于避让安装减振挂簧53。

本实施例的一种具有热泵烘干功能的滚筒洗衣机,所述的热泵模块包括风机组件43,所述的风机组件43固定在所述壳体1上且位于所述外筒的左上方或者右上方,所述的风机组件43与外筒2的外筒周壁之间具有间隔,所述的两器组件设置在近外筒2的筒口一侧,所述的风机组件43设置在近外筒2的筒底一侧。所述的外筒周壁的顶部开设外筒出风口22,所述的风机组件43通过出风风道41与所述外筒出风口22连通;所述的两器盒具有两器盒进风口,所述风机组件43的风机出风口直接连接所述两器盒进风口;所述外筒2的筒口安装有门封24,所述的两器盒具有两器盒出风口,所述的两器盒出风口通过进风风道511连通所述的门封24。

作为本实施例的可选实施方式,本实施例的一种具有热泵烘干功能的滚筒洗衣机,所述外筒2的外筒周壁上与所述两器盒相对的位置具有朝向外筒内部凹陷的外筒避让结构231。

实施例1-1-3

本实施例针对实施例二中的两器盒进行具体的结构设计,用于实现两器组件的安装,烘干气流的流通优化等。

参见图1-1-1-图1-1-3、图1-1-13-图1-1-16所示,本实施例的一种具有热泵烘干功能的滚筒洗衣机,包括:

外筒2;

壳体1,所述外筒2设置在壳体1的内部空间;

及热泵模块,包括两器盒和设置在两器盒447内由冷凝器442和蒸发器441集成一体构成的两器模块445,所述的两器盒447具有两器盒进风口4431,所述的两器盒进风口4431 相对于水平方向倾斜设置;

所述两器盒进风口4431的倾斜方向为朝着靠近所述两器模块445的迎风换热面上距离最远的两个点之间的连线方向倾斜,或者所述两器盒进风口4431的倾斜方向与所述两器模块445的迎风换热面的上对角线距离最远的两个点之间的连线方向相一致。

本实施例的两器盒进风口4431的倾斜方向为朝着靠近所述两器模块445的迎风换热面上距离最远的两个点之间的连线方向倾斜,或者所述两器盒进风口4431的倾斜方向与所述两器模块445的迎风换热面的上对角线距离最远的两个点之间的连线方向相一致,这样,保证湿热的烘干气流朝向两器模块445的迎风换热面流动方向的一致性,避免由两器盒进风口 4431朝向两器模块445的迎风换热面流动的烘干气流窜流,提升烘干换热效率。

进一步地,本实施例所述的两器盒447包括盒周侧壁和盒底壁,所述的盒周侧壁和盒底壁围成用于容置两器模块的敞口容纳空间,所述的盒底壁与所述外筒2相对且具有间隔设置,所述的两器盒进风口4431设置在迎着烘干气流的盒周侧壁上,且靠近所述盒底壁。本实施例运用热空气上升的原理,将两器盒进风口4431设置在两器盒底部使湿热的烘干气流上升与两器模块445更加充分的接触,提高烘干效率。

具体地,本实施例所述的两器盒包括迎着烘干气流的第一盒侧壁和与第一盒侧壁相对的第二盒侧壁,所述的盒底壁为朝向两器盒内部容纳空间内凹的内凹圆弧面;所述的两器盒进风口4431开设在第一盒侧壁上且靠近所述盒底壁,所述的两器盒还具有开设在第二盒侧壁上的两器盒出风口。

作为本实施例的可选实施方式,所述两器模块445具有沿竖直方向靠近壳体侧的第一换热部4451和靠近外筒侧的第二换热部4452,所述的第一换热部4451由第一长度的第一换热管4453穿插在第一翅片中形成,所述的第二换热部4452由第二长度的第二换热管4455 穿插在第二翅片中形成,所述第一换热管4453的长度大于第二换热管4455的长度;所述两器盒进风口4431沿外筒2的中心轴线在垂直于中心轴线的投影面上的投影斜跨所述两器模块445的对角线沿外筒2的中心轴线在垂直于中心轴线的投影面上的投影。

作为本实施例的可选实施方式,所述的两器盒进风口4431正对所述两器模块445的蒸发器换热面,且所述两器盒进风口4431与所述蒸发器换热面之间具有间距,所述间距的范围为20mm~80mm。两器模块445与两器盒进风口4431相距一定距离范围设置,可以降低风阻,保证烘干气流的顺畅流动,同时降低风机组件负载。

作为本实施例的可选实施方式,所述的第一换热部4451和第二换热部4452均具有换热主体和位于换热主体一端的换热管接头,所述两器盒内位于两器盒进风口4431一侧设置用于引导烘干风流通至所述换热面主体上的导风板4433。当采用避让设计时,两器也要随之做避让结构,两器两侧有管路,因此L形为最佳方案,既避开了两器盒又为冷凝管提供了空间,但L形两器模块存在缺口,这要通过两器盒做挡风板来保证风能完全通过两器,本实施例的导风板4433呈与L形两器模块相同的L型板,可以更好的将两器盒进风口4431进入的烘干气流引流至两器模块的迎风换热面上,阻挡烘干气流至换热管接头,烘干气流在换热接头处的风阻较小,换热效果较差。

与此同时,本实施例所述的热泵模块包括设置在外筒后方壳体上的压缩机,所述的压缩机通过热泵介质管路与所述两器模块445连接,所述的导风板4433与所述两器盒体443之间形成管路通道,所述的热泵介质管路穿过所述管路通道与所述换热管接头连接。本实施例的导风板4433还用于构造管路通道用于压缩机与两器模块之间的热泵介质管路的布置及连通。

参见图1-1-15所示,本实施例的两器盒盒体443为了实现两器模块445的安装,具体的结构为:所述盒底壁的内壁面上设置用于支撑蒸发器441的第一换热部4451的第一支撑板4434和蒸发器441的第二换热部4452的第二支撑板4437,用于支撑冷凝器442的第一换热部4451的第三支撑板44314和冷凝器442的第二换热部4452的第四支撑板44310,以及用于分隔蒸发器441和冷凝器442的分隔卡板,所述的第一支撑板4434、第二支撑板4437 同位于所述分隔卡板的一侧,所述的第三支撑板44314、第四支撑板44310同位于所述分隔卡板的另一侧。本实施例的第一支撑板4434、第二支撑板4437实现了蒸发器441的支撑安装,第三支撑板44314、第四支撑板44310实现了冷凝器442的支撑安装,分隔卡板则通过卡接的方式插入蒸发器441与冷凝器442之间的同时将集成一体的蒸发器441和冷凝器442 分隔开。

可选地,所述盒底壁的内壁面上还设置阶梯支撑台4436,所述的分隔卡板包括设置在阶梯支撑台4436上的第一分隔卡板4435和第二分隔卡板4439,所述蒸发器441和冷凝器 442相互靠近一端的第一换热部4451、第二换热部4452分别抵接在所述阶梯支撑台4436上,所述的第一分隔卡板4435插入卡接在蒸发器441的第一换热部与冷凝器442的第一换热部之间,所述的第二分隔卡接板4439插入卡接在蒸发器441的第二换热部与冷凝器442 的第二换热部之间。

另外,本实施例的两器盒体443的内侧周壁上设置用于周向限位两器模块安装的两器角部限位块44311,两器角部限位块44311与两器模块的角部相抵接进行周向限位,防止周向晃动。

本实施例的两器盒体443上还设置两器盒螺柱44312,用于实现与两器盒盖444之间的固定连接装配。

作为本实施例的可选实施方式,本实施例所述两器盒447的底壁设置用于排出冷凝水的冷凝水排水接头44313,所述冷凝水排水接头44313的出水方向与烘干风在两器盒447内的流通方向保持一致。这样,可以借助烘干风力将冷凝水排出,避免冷凝水积存,导致烘干效率降低的问题。

进一步地,所述两器盒447的底部内壁上设置用于支撑两器模块445的支撑板,所述支撑板靠近冷凝水排水接头44313的一端具有朝向冷凝水排水接头弯曲的冷凝水导流弧面 4438,这样可将两器模块445的冷凝水引流至冷凝水排水接头44313。

本实施例的两器盒447的结构设计具有如下有益效果:

1.运用热空气上升的原理,将两器盒进风口设置在两器盒体底部使湿热的烘干气流上升与两器模块更加充分的接触,提高烘干效率。

2.在整机正面的投影方向上,倾斜设置的进风口斜跨两器模块对角方向,保证湿热的烘干气流流动方向的一致性,避免窜流。

3.两器模块与两器进风口相距一定距离范围设置,可以降低风阻,保证烘干气流的顺畅流动,同时降低风机负载。

4.冷凝水排水接头出水方向与烘干气流流动方向一致,可以借助风力将冷凝水排出,避免冷凝水积存,导致烘干效率降低的问题。

实施例1-1-4

本实施例针对热泵模块的风机组件进的装配及结构改进进行具体的优化设计,更好的利用壳体内部的空间进行装配,提升壳体内空间利用率,确保烘干效率,同时简化安装工序,具体方案如下:

参见图1-1-1-图1-1-3、图1-1-17-图1-1-21所示,本实施例一种具有热泵烘干功能的滚筒洗衣机,包括:

外筒2,顶部具有外筒出风口22;

壳体1,所述外筒2设置在壳体1的内部空间;

及热泵模块,包括设置在外筒2上方与壳体1之间空间内的蒸发器、冷凝器、换热风道及风机组件43,所述的蒸发器、冷凝器设置在换热风道内,所述风机组件43的风机进风口与所述外筒2上的外筒出风口22连通,所述风机组件43的风机出风口与所述换热风道的风道进风口直接固定连接,构成一体式连接结构,所述换热风道的风道出风口连通外筒2内部。

本实施例中所描述的热泵模块,由两器组件、换热风道、风机组件和导风组件组成;其中两器组件包含冷凝器和蒸发器,分别用来产生热量和吸收热量,均通过铜管穿插翅片所得;且两器组件通过铜管连接到压缩机,使形成完整的两器流路。

换热风道组件内部设置有可放置两器组件的支撑筋条,且两器组件完全放置在换热风道组件内,同时确保不影响通风面积,并通过周围筋条、海绵条限制两器组件的运动,使两器组件的自由度完全被限制;同时换热风道组件连接导风组件446、风机组件43,并通过连通外筒,进而形成完整的热泵烘干循环风路;同时该换热风道作为风路循环的通道。

两器组件位于外筒与壳体之间的位置,且外筒为圆筒状结构,壳体为平面结构,两器组件放置的空间结构为弧面与平面所组成的空间;在确保整机高度的前提下,以该空间为依据,最大化的设置两器组件,以提升热泵烘干效果。

同时换热风道组件留出与外筒之间的安全间隙,在外筒与壳体之间的有效空间内,最大化的设置两器组件,以便于增大翅片换热面积,提升烘干效率。

相应的,两器组件中蒸发器位于风机组件之后的位置,风机组件可使外筒内湿热的空气吹入蒸发器和冷凝器,并在通过蒸发器后将空气中的水冷凝下来,并受重力的作用沿着翅片流到换热风道底部,并通过换热风道底部设置的筋条将冷凝水排出;并且在经过冷凝器时,通过冷凝器产生热,使流经冷凝器的冷干空气转化为热干的空气,并经由第一连接件重新进入外筒内;

所述热泵模块依附于壳体,将热泵模块固定于壳体上,使其不受外筒的振动的影响。

本实施例的风机组件43与内部设置有蒸发器、冷凝器的换热风道固定连接为一体化结构,再将蒸发器、冷凝器和风机组件装配成的一体化模块整体安装在壳体1内时,避免蒸发器、冷凝器、换热风道以及风机组件43各自分别单独安装在壳体内造成的装配繁琐,且装配精度要求高的问题。而且,通过一体化的模块安装可以减少所需壳体1的内部安装空间,提高壳体1的内部空间利用率,降低洗衣机的整机高度。

参见图1-1-18所示,本实施例所述风机出口的外周设置有第一卡扣结构431和第一装配孔432,所述换热风道的风道进风口外周设置有第二卡槽结构44315和第二装配孔44316,通过第一卡扣结构431与第二卡槽结构44315卡接将风机出风口和风道进风口进行预固定,再通过连接件贯穿第一装配孔432并紧固在第二装配孔44316上将风机出风口和风道进风口进行固定连接,从而使得蒸发器、冷凝器、换热风道和风机组件装配成一体化模块。

本实施例通过卡扣和螺钉相结合的方式,设计卡扣结构便于装配上的预固定,再通过螺钉进行紧固。

进一步地,为了提升风机出风口和风道进风口之间连接的密封性,防止漏风,本实施例所述风机出风口和风道进风口之间设置密封圈46,所述风机出风口和/或风道进风口内设置用于装配所述密封圈的环形密封槽。

作为本实施例的可选实施方式,本实施例为了解决风机组件43在壳体内的固定安装,参见图图1-1-18、1-1-19及1-1-21所示,所述的风机组件包括蜗壳、风机叶轮4310及风机电机438,所述的风机叶轮4310设置在蜗壳内,所述的风机电机438设置在蜗壳上,风机电机4310的电机轴伸入蜗壳内连接所述风机叶轮4310,所述的风机进风口设置在蜗壳上,风机进风口与所述风机叶轮共中心轴线,所述的风机出风口设置在蜗壳上,风机出风口的中心轴线与风机叶轮的中心轴线垂直设置;所述的蜗壳固定安装在所述壳体1上,所述风机组件43设置在外筒2的右上方。本实施例将风机组件43固定安装在壳体1上,由于风机组件与蒸发器、冷凝器、换热风道装配为一体化模块,因此,蒸发器、冷凝器、换热风道也固定安装在壳体1上。

进一步地,所述的壳体1包括框架组件11,所述的框架组件包括后框架板111和固定在后框架板111的两端且相对设置的左框架板113和右框架板112,所述的蜗壳至少固定安装在所述后框架板111和右框架板上112,本实施例通过后框架板111和右框架板上112实现对风机组件43在至少两个方向上的固定安装,确保其装配的稳定性。

具体地,所述的蜗壳包括上蜗壳434和下蜗壳4311,所述的上蜗壳434与下蜗壳4311 固定连接围合出设置所述风机叶轮4310的蜗壳腔室,所述的上蜗壳434上设置搭台,所述的下蜗壳4311上设置内部具有螺纹孔的固定柱435,所述搭台和固定柱435沿蜗壳的周向布置;所述搭台固定搭接在右框架板112/后框架板111上,所述固定柱435通过连接件固定在后框架板111/右框架板112上。

本实施例所述上蜗壳434上设置第一搭台433和第二搭台434,所述的框架组件包括跨接右框架板112和后框架板111的角框架板114,所述的第一搭台433固定搭接在右框架板 112上,所述的第二搭台434固定搭接在角框架板114上,所述的固定柱435通过连接件固定在后框架板111上。本实施例的角框架板114不仅实现了风机组件43的固定安装,使风机组件43的安装更加稳定,而且增加了框架组件的整体强度,确保洗衣机整机的稳定性。

本实施例在风机组件的结构上设计搭台、固定柱等多方向的固定结构,通过对固定稳定性及受力角度分析,需将搭台、固定柱等多方向的固定结构布置在不小于风机组件直径三分之一的位置范围内;通过螺钉紧固件固定在整机箱体上。在外筒洗涤或脱水而引起整机箱体震动时,多方向的固定结构有效保证风机组件的稳定性。

在烘干过程中,风机电机4310以一定速度带动风机叶轮4310旋转,高速运转下的风机叶轮4310带动了烘干气流的内循环运动,使气流从外筒2内被吸入风机组件43中,再以一定速度向换热模块流动,形成烘干风道内的气流流动。

本实施例所述的烘干过程是指,在进行烘干时,风机组件43将通过风机电机4310高速运转,回路内的气流在外筒2内经过外筒出风口被吸入风机组件43中,再经过风机组件43 高转速的风机电机4310带动下,以一定速度做离心运动进入换热风道。而后再次进入外筒2 中,继续再被风机组件43吸入烘干回路中,不断循环。

参见图1-1-21所示,本实施例所述风机进风口通过柔性转接件41与所述外筒2的外筒筒体23上的外筒出风口22连通。由于风机组件43是固定在框架组件11上,外筒筒体23在洗衣机运行过程中会产生振动,因此,通过柔性转接件41实现外筒筒体23与风机组件 43的连通,避免外筒筒体23振动与风机组件43产生相互作用力而造成损坏。

进一步地,本实施例所述的外筒出风口22设置在外筒筒体23顶部的中心位置,所述柔性转接件41具有与所述外筒出风口22连接的第一连接口和与所述风机进风口连接的第二连接口,所述第一连接口的中心轴线与第二连接口的中心轴线之间具有偏心间距。

本实施例所述第一连接口与外筒出风口通过第一紧固卡箍437进行紧固连接,所述第二连接口与风机进风口通过第二紧固卡箍436进行紧固连接。

具体地,本实施例提供一种风机组件的柔性转接件41使用橡胶转接件连接烘干风道和外筒,利用了橡胶转接件的拉伸性和延展性,在外筒进行洗涤、脱水等程序运行而产生振动或多方向受力拉扯时,保证烘干风道不受振动影响,并保持完整封闭的循环风路系统。

本实施例所述橡胶转接件,装置于外筒顶部,用来连接风机组件和外筒;在外筒顶部连接的位置称为外筒出风口,其中,风机组件放置方式为与水平面形成一定夹角(90°以内);所述第一连接件511,装置于外筒前方位置,用来连接导风组件446和外筒;在该装配中,橡胶转接件、第一连接件均为柔性的可产生运动行程的结构与材料。

相对应的,所述外筒出风口设置在外筒顶部,以便减少风路循环路径长度,进而减少烘干循环风路的阻力,提升烘干效率,同时还起到循环风路的作用。

所述的外筒出风口,需要在该外筒出风口处设置第一过滤网411,用来过滤烘干过程所产生的毛屑。

实施例1-1-5

本实施例针对热泵模块的压缩机组件进的装配及结构改进进行具体的优化设计,更好的利用壳体内部的空间进行装配,提升壳体内空间利用率,确保烘干效率,同时简化安装工序,具体方案如下:

参见图1-1-1、图1-1-5-图1-1-13、图1-1-22-图1-1-24所示,本实施例的一种具有热泵烘干功能的滚筒洗衣机,包括:

外筒2;

框架组件11,所述外筒2设置在框架组件11内部空间;

及热泵模块,包括蒸发器、冷凝器和压缩机451,所述的冷凝器和蒸发器集成一体构成两器模块44,所述的两器模块44设置在外筒2上方,所述的压缩机451设置在框架组件11 上,所述的压缩机451通过热泵介质管路与两器模块44连接。

本实施例的滚筒洗衣机将两器模块44设置在外筒2上方,压缩机451设置在框架组件 11上且位于外筒2的后方,各模块间合理的位置布局,降低生产成本,合理利用洗衣机内部空间,降低了整机高度。

参见图1-1-23所示,本实施例所述的框架组件11包括后框架板111和固定在后框架板 111的两端且相对设置的左框架板113和右框架板112,所述左框架板113的底部具有左底板118,右框架板112的底部具有右底板117;所述的压缩机451固定安装在固定底板116上,所述固定底板116的两端分别固定在左底板118上靠近后框架板111的一端和右底板117上靠近后框架板111的一端。

本实施例通过固定底板116将压缩机451固定在框架组件11上,降低压缩机451运行时因振动产生的压缩机移位,降低压缩机451工况共振,使整机运行平稳。

参见图24所示,本实施例所述的压缩机451通过装配组件固定在所述固定底板116上;所述的装配组件包括装配螺栓4511及紧固螺母458,所述固定底板116上设置装配通孔,所述压缩机451的机壳上设置固定脚459,所述的装配螺栓4511由下至上依次穿过装配通孔及固定脚459,所述的紧固螺母458紧固在装配螺栓4511伸出固定脚459的一端上。

进一步地,所述的装配组件还包括预紧弹性垫圈4510,所述的预紧弹性垫圈4510套设在所述装配螺栓4511上,且位于所述固定脚459与所述固定底板116之间。

进一步地,所述的固定底板116上设置装配压型1161,所述装配压型1161与所述压缩机451的机壳端部形状相匹配,所述的压缩机451固定安装在固定底板116后,所述压缩机451的机壳端部抵接在装配压型1161内。

进一步地,所述的装配通孔包括多个,沿所述装配压型1161的外周均匀分布,所述的固定脚459包括多个,沿压缩机451的机壳外周均匀分布,与所述装配通孔一一对应设置。

安装时,所述装配通孔与所述固定脚459一一对应装配,装配螺栓4511从下往上依次穿过所述固定底板116上的装配通孔、预紧弹性垫圈4510、固定脚459,通过设置于所述固定脚459上方的紧固螺母458进行锁紧,当装配到位时,所述压缩机451底部与所述装配压型1161抵接,所述预紧弹性垫圈4510提供螺栓锁紧的预紧力,且能吸收一定的振动能量,从而降低因所述压缩机运行时产生的振动使所述螺栓锁紧失效的风险,所述装配压型给所述压缩机的锁紧提供锁紧反馈,且在水平方向上形成一定的结构限位,提高了所述压缩机锁紧强度。

参见图1-1-23所示,本实施例所述左框架板和/或右框架板上设置散热风机453,所述散热风机453的出风方向朝向所述压缩机451,用于压缩机的散热。参见图1-1-26所示,后框架板111上设置用于散热风机453吹出的散热风流通出壳体1内部的散热孔119。

本实施例所述的热泵模块还包括用于设置所述两器模块的两器盒,所述的两器盒具有两器盒出风口,所述的两器盒出风口通过进风风道511连通外筒2的内部。

进一步地,本实施例所述的热泵模块包括风机组件43,所述外筒2上开设外筒出风口 22,所述风机组件43通过出风风道41连通外筒出风口22,所述的两器盒具有两器盒进风口,所述的两器盒进风口连通所述风机组件的出风口。

本实施例的滚筒洗衣机中所述的两器模块、风机组件设置在所述外筒周壁的上方,所述的两器模块设置在近外筒的筒口一端,所述的风机组件设置在近外筒的筒底一端。

本实施例的压缩机与蒸发器、冷凝器之间的管路连接方式如下:

参见图1-1-25-图1-1-28所示,本实施例所述的压缩机451连接有第一热泵介质管路 455和第二热泵介质管路454,所述的蒸发器连接有与所述第一热泵介质管路455可拆卸连接的第三热泵介质管路456,所述的冷凝器连接有与所述第二热泵介质管路454可拆卸连接的第四热泵介质管路457。

本实施例的压缩机、蒸发器、冷凝器分别连接热泵介质管路,在进行单独部件装配在壳体内时,彼此部件之间不会干涉,更易于装配,将压缩机、蒸发器、冷凝器分别装配完成后,再将对应的热泵介质管路连接上即可实现各个部件之间的热泵介质管路连通。因此,本实施例的热泵管路的分开连接方式,简化零部件间的装配顺序,降低生产成本。

作为本实施例的可选实施方式,本实施例所述的框架组件11包括后框架板和固定在后框架板111的两端且相对设置的左框架板113和右框架板112;所述的后框架板111上开设安装通孔115,所述第一热泵介质管路455与第三热泵介质管路456的连接位置、第二热泵介质管路454与第四热泵介质管路457的连接位置均对应所述安装通孔115。这样,利用框架组件11上的安装通孔115用于管路连接和拆卸检修,简化装配,降低生产及售后维修成本。

作为本实施例的可选实施方式,本实施例所述的蒸发器和冷凝器均相对固定安装在所述的框架组件11上,且位于外筒2的上方;所述的第一热泵介质管路455与第三热泵介质管路456、第二热泵介质管路454与第四热泵介质管路457之间均为相对固定连接。由于蒸发器和冷凝器均相对固定安装在所述的框架组件11上,压缩机也相对固定安装在框架组件11 上,所以蒸发器、冷凝器及压缩机间不会发生相对位移,热泵介质管路之间可以采用相对固定的硬连接方式。

具体地,所述的第一热泵介质管路455、第三热泵介质管路456均为硬质管,所述的第一热泵介质管路455、第三热泵介质管456通过第一硬质管接头固定连接;所述的第二热泵介质管路454、第四热泵介质管路457均为硬质管,所述的第二热泵介质管路454、第四热泵介质管457通过第二硬质管接头固定连接。具体地,第一热泵介质管路455、第三热泵介质管456、第二热泵介质管路454、第四热泵介质管457均采用铜制或者铝制金属管,第一硬质管接头、第二硬质管接头则采用铜制或者铝制管接头。

与此同时,本实施例所述的热泵模块包括风机组件43和出风风道41,所述的风机组件 43通过出风风道41与外筒2内部连通,用于驱动烘干风在外筒2与蒸发器、冷凝器间流通;所述的风机组件43安装在所述的框架组件11上,所述的出风风道41为柔性形变风道。由于风机组件43固定安装在框架组件11上,外筒在洗衣机运行的过程中会产生振动,因此需要通过柔性形变风道进行连通。

作为本实施例的可选实施方式,本实施例所述的蒸发器和冷凝器均相对固定安装在所述外筒2的筒周壁顶部,所述的第一热泵介质管路455与第三热泵介质管路456、第二热泵介质管路454与第四热泵介质管路457之间均通过柔性形变管连接。由于蒸发器和冷凝器均安装在外筒上,压缩机相对固定安装在框架组件11上,外筒在洗衣机运行的过程中会产生振动,所以蒸发器、冷凝器与压缩机间会发生相对位移,热泵介质管路之间采用相对运动的软连接方式。

具体地,所述的第一热泵介质管路、第三热泵介质管路均为硬质管,所述柔性形变管包括第一软接橡胶管,所述的第一热泵介质管路、第三热泵介质管通过第一软接橡胶管可相对运动连接;

所述的第二热泵介质管路、第四热泵介质管路均为硬质管,所述柔性形变管包括第二软接橡胶管,所述的第二热泵介质管路、第四热泵介质管路通过第二软接橡胶管可相对运动连接。

与此同时,本实施例所述的热泵模块包括风机组件43,所述风机组件43相对固定安装在所述外筒2的筒周壁顶部,所述外筒2的顶部开设外筒出风口22;所述风机组件43的进风口直接固定连接在所述外筒出风口22上,或者所述风机组件43的进风口通过出风风道固定连接在所述外筒出风口22上,用于驱动烘干风在外筒与蒸发器、冷凝器间流通。风机组件43固定在外筒上与外筒同步运动,两者相对静止,因此风机组件43与外筒2之间的风路连接方式可以是硬连接。

本实施例所述的冷凝器和蒸发器集成一体构成两器模块,所述的热泵模块还包括用于设置所述两器模块的两器盒,所述的两器盒具有两器盒进风口,所述风机组件的出风口固定连接所述两器盒进风口。

本实施例所述外筒的筒口安装有门封,所述的两器盒具有两器盒出风口,所述的两器盒出风口通过进风风道连通所述的门封。

本实施例中热泵模块的两器部件与压缩机部件在整机位置中分开放置,整机装配时,两个部件之间的热泵介质管路分别焊接,待两个部件分别装配到位后再通过中间管路A连接。

通过该发明取得以下有益效果:

(1)两器及压机的分开放置,降低了整机高度,实现热泵式衣物处理装置的小型化;

(2)压缩机放置在筒后及固定在底板上,合理的整机内部空间利用;

(3)热泵管路的分开焊接方式,简化零部件间的装配顺序,降低生产成本;

(4)利用框架上的安装通孔用于管路连接,简化装配,降低生产及售后维修成本。

实施例1-1-6

本实施例提供一种具有热泵烘干功能的滚筒洗衣机,包括:

壳体,其形成一内部空间;

外筒,设置在所述壳体的内部空间,所述的外筒包括外筒底壁和环绕在外筒底壁一周的外筒周壁,所述的外筒底壁上开设出风口;

热泵模块,包括两器组件、烘干风道及风机组件,所述的风机组件设置在所述壳体内外筒的左上方空间或者右上方空间内,所述烘干风道连通出风口和风机组件,所述的两器组件包括蒸发器和冷凝器,所述的蒸发器和/或冷凝器设置在所述烘干风道位于外筒底壁后方的部分内。

所述蒸发器设置在烘干风道内靠近出风口一侧,所述冷凝器设置在烘干风道内靠近风机组件一侧。

所述的烘干风道包括一体成型且相互连通的第一烘干风道段和第二烘干风道段,所述第一烘干风道段的一端连接所述出风口,另一端朝向外筒的顶部延伸与所述的第二烘干风道段连通,所述的第二烘干风道段沿水平方向延伸,所述的风机组件与所述第二烘干风道段相连通;

所述的蒸发器设置在第一烘干风道段内,所述的冷凝器设置在第一烘干风道段内或者第二烘干风道段内。

所述的第一烘干风道段包括第一烘干风道壳体和第一烘干风道盖体,所述的第一烘干风道壳体具有一端敞口的内部腔室,所述的蒸发器设置在第一烘干风道壳体的内部腔室内,所述的第一烘干风道盖体密封盖装在所述第一烘干风道壳体的敞口上。

所述的第二烘干风道段包括第二烘干风道壳体和第二烘干风道盖体,所述的第二烘干风道壳体具有上端敞口的内部腔室,第二烘干风道的壳体底壁上具有与第一烘干风道段连通的第一连通口,所述的冷凝器设置在第二烘干风道壳体的内部腔室内,所述的第二烘干风道盖体密封盖装在所述第二烘干风道壳体的敞口上。

所述的风机组件包括风机风道和设置在风机风道内的热泵风机,所述的第二烘干风道盖体上开设第二连通口,所述的风机风道连接所述的第二连通口,所述的热泵风机对应所述第二连通口设置。

所述的风机风道朝向外筒的筒口方向延伸一定距离,所述风机风道近外筒的筒口一端连接第一连接件,所述的第一连接件连通至外筒的内部;所述的第一连接件为柔性连接体。

所述第一烘干风道段连接第二连接件,所述的第二连接件连通所述出风口,所述的第二连接件为柔性连接体。

所述出风口设置在外筒底壁上中心以下的位置处。

包括驱动装置,所述驱动装置的驱动轴贯穿所述外筒的外筒底壁的中心安装区域;

所述的烘干风道偏心设置在外筒底壁后方避让所述中心安装区域。

具体方案如下:参见图1-1-29至图1-1-35所示,本实施例的一种具有热泵烘干功能的滚筒洗衣机,包括:

外筒1,设置在所述壳体的内部空间,外筒1包括外筒底壁和环绕在外筒底壁一周的外筒周壁,所述的外筒底壁上开设出风口7;

热泵模块,包括两器组件、烘干风道2及风机组件3,所述的风机组件3设置在所述壳体内外筒的左上方空间或者右上方空间内,所述烘干风道2连通出风口7和风机组件3,所述的两器组件包括蒸发器12和冷凝器11,所述的蒸发器12和/或冷凝器11设置在所述烘干风道2位于外筒底壁后方的部分内。

本实施例的具有热泵烘干功能的滚筒洗衣机中将两器组件放置在外筒1的后方,有效利用了外筒底壁的后方的空间,无需占用外筒1上方空间,有效利用整机空间,可以控制整机高度。

作为本实施例的可选实施方式,本实施例所述蒸发器12设置在烘干风道2内靠近出风口7一侧,所述冷凝器11设置在烘干风道2内靠近风机组件3一侧。这样,冷凝器11位于蒸发器12的上方,使外筒1内湿热的空气通过风机组件3的作用,通过烘干风道2依次流过蒸发器12和冷凝器11,并在通过蒸发器12后将空气中的水冷凝下来,并受重力的作用沿着翅片流回到外筒1内;并且在经过冷凝器11时,通过冷凝器11产生热,使流经冷凝器 11的冷干空气转化为热干的空气,并经由进风风道4重新进入外筒内。

参见图1-1-32所示,作为本实施例的可选实施方式,本实施例的蒸发器12和冷凝器 11均设置于烘干风道2的竖直段,且上下布置。

参见图1-1-33及图1-1-34所示,作为本实施例的可选实施方式,所述的烘干风道1包括一体成型且相互连通的第一烘干风道段和第二烘干风道段,所述第一烘干风道段的一端连接所述出风口7,另一端朝向外筒1的顶部延伸与所述的第二烘干风道段连通,所述的第二烘干风道段沿水平方向延伸一定距离,所述的风机组件3与所述第二烘干风道段相连通;所述的蒸发器12设置在第一烘干风道段内,所述的冷凝器11设置在第一烘干风道段内或者第二烘干风道段内。这样,实现了换热风道内冷凝器与蒸发器垂直放置,能够降低风阻的同时,增大冷凝器的换热面积,提高烘干效率。

优选地,所述的蒸发器12设置在第一烘干风道段内,所述的冷凝器11设置在第二烘干风道段内。

进一步地,本实施例所述的第一烘干风道段包括第一烘干风道壳体13和第一烘干风道盖体17,所述的第一烘干风道壳体13具有一端敞口的内部腔室,所述的蒸发器12设置在第一烘干风道壳体13的内部腔室内,所述的第一烘干风道盖体17密封盖装在所述第一烘干风道壳体13的敞口上。

本实施例所述的第二烘干风道段包括第二烘干风道壳体14和第二烘干风道盖体15,所述的第二烘干风道壳体14具有上端敞口的内部腔室,第二烘干风道的壳体14底壁上具有与第一烘干风道段连通的第一连通口,所述的冷凝器11设置在第二烘干风道壳体14的内部腔室内,所述的第二烘干风道盖体15密封盖装在所述第二烘干风道壳体14的敞口上。

本实施例所述的风机组件3包括风机风道4和设置在风机风道内的热泵风机18,所述的第二烘干风道盖体15上开设第二连通口16,所述的风机风道4连接所述的第二连通口16,所述的热泵风机18对应所述第二连通口16设置。

作为本实施例的可选实施方式,本实施例所述热泵模块的两器组件、烘干风道2及风机组件3依附于壳体,将其均固定在壳体上,使其不受外筒1的振动的影响,但是风机组件3 与外筒1连通,为了避免振动由外筒1传递至热泵模块,本实施例的风机组件3与外筒1 的连接方式如下:

本实施例所述的风机风道4朝向外筒1的筒口方向延伸一定距离,所述风机风道近外筒的筒口一端连接第一连接件5,所述的第一连接件5连通至外筒1的内部;所述的第一连接件5为柔性连接体。

本实施例所述第一烘干风道段连接第二连接件8,所述的第二连接件8连通所述出风口 7,所述的第二连接件8为柔性连接体。

本实施例所述第一连接件件5,于外筒的前方,用来连接风机组件3和外筒1;所述第二连接件8,于外筒的底部,用来连接烘干风道2和外筒1;在外筒1的外筒底壁连接的位置设置出风口7。在该装配中,第一连接件5、第二连接件8均为柔性的可产生运动行程的结构与材料,避免振动由外筒1传递至热泵模块。

作为本实施例的可选实施方式,本实施例所述出风口7设置在外筒底壁上中心以下的位置处。这样,不会导致烘干的衣物被打湿,同时还起到循环风路的作用。

本实施例所述的出风口7需要设置过滤网,用来过滤烘干过程所产生的毛屑;进一步的,蒸发器12的冷凝水流经过滤网,对烘干所产生的毛屑清理有积极地效果。同时,因所述出风口7设置在外筒的外筒底壁中心以下的位置,在洗涤过程中可使过滤网的毛屑被冲洗去除,可减少毛屑堵塞过滤网所产生的问题。

作为本实施例的可选实施方式,本实施例的一种具有热泵烘干功能的滚筒洗衣机,包括驱动装置,所述驱动装置的驱动轴贯穿所述外筒的外筒底壁的中心安装区域;所述的烘干风道2偏心设置在外筒底壁后方避让所述中心安装区域。本实施例的烘干风道2的设置位置避让出驱动装置的驱动轴的中心安装区域,对于驱动装置驱动轴的装配方式不会产生影响。

本实施例的冷凝器和蒸发器构成两器组件,分别用来产生热量和吸收热量,均通过铜管穿插翅片所得;且两器组件通过铜管连接到热泵系统的压缩机,使形成完整的两器流路。

本实施例的换热风道内部的两侧设置可放置两器组件的支撑结构,使两器组件完全放置在换热风道内,并同时确保不影响通风面积,非通风面通过海绵条限制两器组件的运动,使两器组件的自由度完全被限制。

本实施例的换热风道设置在外筒的外筒底壁后方,可固定在外筒的外筒底壁后方的壳体上,同时留出换热风道与外筒的外筒底壁之间的安全间隙,在外筒后方的有效空间内,最大化的设置两器组件,以便于增大翅片换热面积,提升烘干效率。与之相应的,风机组件也可设置壳体上,压缩机设置在壳体上,两器组件与压缩机之间为相对固定的硬连接,两器组件与外筒之间、换热风道与外筒之间均为相对运动的软连接。

另外,本实施例的换热风道也可设置在外筒的外筒底壁上,与之相应的,风机组件也可设置在外筒周壁上,压缩机设置在壳体上,两器组件与压缩机之间为相对运动的软连接,两器组件与外筒之间、换热风道与外筒之间均为相对固定的硬连接。

本实施例滚筒洗衣机的烘干过程为:在风机组件3的高速运转下,外筒1内的气流被吸入换热风道2内。从出风口7出来经过第二连接件8进入换热风道中,气流在换热风道内的两器组件(蒸发器12和冷凝器11)进行换热加热;在风机组件3的高速运转驱动下,经过蒸发器12和冷凝器11加热升温后的烘干气流进入第一连接件件5内,再经过进风口进入外筒1,最后继续从出风口7进入换热风道,形成换热风道和外筒的内循环。

<两器盒>

本实施提供一种热泵衣物处理装置两器盒,包括:

两器盒体,具有容纳所述热泵衣物处理装置冷凝器和蒸发器的容纳空间,所述两器盒体上方设有开口,所述两器盒体两侧设有两器盒进风口和两器盒出风口,所述两器盒进风口用于将所述热泵衣物处理装置烘干时从热泵衣物处理装置外筒排出的湿热风吹入所述蒸发器一侧进行冷凝干燥,所述两器盒出风口用于将蒸发器干燥后经过冷凝器加热的热风排入所述外筒内;

两器盒盖,与所述两器盒体的开口盖合在一起,所述两器盒盖设有位于所述蒸发器迎风一侧的喷淋装置,所述喷淋装置的喷淋口与所述蒸发器迎风面相对设置。

所述喷淋口被构造为由其喷出的水可喷射到所述蒸发器迎风面的上半部分。

所述喷淋口与所述蒸发器迎风面的上半部分相对设置。

所述喷淋装置包括进水接头和与所述进水接头相通的喷淋盒,所述两器盒盖上设有容纳口,所述喷淋盒嵌入所述容纳口内并位于所述蒸发器迎风面一侧,所述喷淋盒与所述两器盒盖之间密封连接,所述喷淋盒朝向所述蒸发器迎风面一侧的侧壁设有若干个所述喷淋口。

所述进水接头与所述两器盒盖或喷淋盒一体成型。

所述容纳口的边沿形成有沿所述两器盒盖厚度方向向下凸伸的连续的环状凸筋,所述环状凸筋内侧设有内盒体,所述进水接头与所述内盒体内部空间相通,所述环状凸筋与所述内盒体的侧壁之间形成环状间隙,所述环状间隙设有环状封堵体,所述环状封堵体、所述环状凸筋和所述内盒体的侧壁形成密封连接,所述内盒体朝向所述两器盒出风口的侧壁设有若干贯通所述环状凸筋和所述内盒体内部空间的喷淋口。

所述环状封堵体在所述两器盒盖下表面一侧形成环状凹槽或环状台阶,所述喷淋盒的下表面具有喷淋盖,所述喷淋盖嵌入到所述环状凸筋内,所述喷淋盖朝向所述喷淋盒一侧设有环状凸起,所述环状凸起插入到所述环状凹槽的槽底,或所述环状凸起的端部与所述环状台阶抵靠在一起。

所述环状凸筋、所述内盒体和所述喷淋盖形成所述喷淋盒,或所述内盒体和所述喷淋盖形成所述喷淋盒。

所述喷淋盒上表面与所述两器盒盖的上表面平齐设置。

本实施例还提供一种热泵洗衣机,其特征在于,包括:

冷凝器;

蒸发器;

上述任一所述的一种热泵衣物处理装置两器盒,所述冷凝器和蒸发器设置在所述两器盒内并在所述两器盒内形成风道,所述蒸发器位于所述两器盒进风口一侧,所述冷凝器位于所述两器盒出风口一侧,所述风道与所述两器盒进风口和所述两器盒出风口相通;

外筒,其上方设有与其内部相通的第一风道和第二风道,所述两器盒设置在所述外筒上方,所述第一风道与所述两器盒进风口相通,所述第二风道与所述两器盒出风口连通,所述第一风道或所述第二风道上设有烘干风机组件。

实施例1-2-11

本实施例提供了一种热泵衣物处理装置两器盒,如图1-2-1-图1-2-4所示,包括:两器盒体443,具有容纳所述热泵衣物处理装置冷凝器442和蒸发器441的容纳空间,所述两器盒体443上方设有开口,所述两器盒体443两侧设有两器盒进风口a和两器盒出风口b,所述两器盒进风口a用于将所述热泵衣物处理装置烘干时从热泵衣物处理装置外筒23排出的湿热风进入所述蒸发器441一侧进行冷凝干燥,所述两器盒出风口b用于将蒸发器441 干燥后经过冷凝器442加热的热风排入所述外筒23内;两器盒盖444,与所述两器盒体443 的开口盖合在一起,所述两器盒盖444设有位于所述蒸发器441迎风一侧的喷淋装置,所述喷淋装置的喷淋口c与所述蒸发器441迎风面相对设置。

本实施例中所述两器盒盖444可采用螺钉与所述两器盒体443固定连接。

本实施例中设置两器盒体,可将所述冷凝器和蒸发器放置在一起,在热泵衣物处理装置进行烘干时,减少风道的长度,降低热损失,使冷凝器和蒸发器更高效的工作,避免冷凝器和蒸发器采用分散布置低效工作需要占用较大的空间结构,致使热泵衣物处理装置的体积较大的问题。同时,设置喷淋装置向蒸发器的迎风一侧喷射水,可去除烘干过程中附着在蒸发器上的毛屑和衣物的异味,也加快湿热空气在蒸发器表面的冷凝。

为进一步提高去除毛屑和冷凝效果,优选的,所述喷淋口c被构造为由其喷出的水可喷射到所述蒸发器441迎风面的上半部分,使水从蒸发器441的顶部流入底部将毛屑排出,同时增大喷淋水与湿热空气的接触面,提高湿热空气冷凝去湿的效果,使喷淋装置能更高效的喷淋。优选的,所述喷淋口c与所述蒸发器441迎风面的上半部分相对设置,可缩小所述喷淋装置在所述两器盒盖444上表面到喷淋装置底部的距离,进而缩小两器盒整体的高度。

本实施例中所述两器盒体443底部设有排水口,用于将喷淋装置喷出的水排出。

可选的,所述两器盒盖444下表面形成有避让槽,在所述两器盒盖444上表面避让槽的位置形成有避让凸起,且所述避让凸起与所述两器盒盖444上表面平滑过渡,形成光顺面,有利于减小两器盒的整体高度。

在本实施例的一个实施方式中,所述喷淋装置包括进水接头445和与所述进水接头445 相通的喷淋盒,所述两器盒盖444上设有容纳口,所述喷淋盒嵌入所述容纳口内并位于所述蒸发器441迎风面一侧,所述喷淋盒与所述两器盒盖444之间密封连接,所述喷淋盒朝向所述蒸发器441迎风面一侧的侧壁设有若干个所述喷淋口c。所述喷淋盒嵌入所述容纳口内并位于所述蒸发器441迎风面一侧,可减小两器盒盖444上表面到所述喷淋盒下表面的距离,进而缩小两器盒整体的高度,使热泵式洗衣机布置可更加紧凑,体积可以做的更小。进一步可选的,所述进水接头445与所述两器盒盖444一体成型。进一步,所述容纳口的边沿形成有沿所述两器盒盖444厚度方向向下凸伸的连续的环状凸筋4441,所述环状凸筋4441内侧设有内盒体4442,所述进水接头445与所述内盒体4442内部空间相通,所述环状凸筋4441 与所述内盒体4442的侧壁之间形成环状间隙,所述环状间隙设有环状封堵体4444,所述环状封堵体4444、所述环状凸筋4441和所述内盒体4442的侧壁形成密封连接,所述内盒体 4442朝向所述两器盒出风口b的侧壁设有若干贯通所述环状凸筋4441和所述内盒体4442 内部空间的喷淋口c。可选的,所述环状封堵体4444、所述环状凸筋4441和所述内盒体4442 的侧壁采用超声焊接固定形成密封连接。为方便内盒体的成型,所述环状封堵体4444在所述两器盒盖444下表面一侧形成环状凹槽或环状台阶,所述喷淋盒的下表面具有喷淋盖447,所述喷淋盖447嵌入到所述环状凸筋4441内,所述喷淋盖447朝向所述喷淋盒一侧设有环状凸起,所述环状凸起插入到所述环状凹槽的槽底,或所述环状凸起的端部与所述环状台阶抵靠在一起。所述环状凹槽或环状台阶对喷淋盖447的安装起到定位的作用,可选的,所述喷淋盖447通过超声焊接的方式固定在所述喷淋盒上。优选的,所述进水接头与所述两器盒盖一体成型设置。

进一步,所述环状凸筋4441、所述内盒体4442和所述喷淋盖447形成所述喷淋盒,或所述内盒体4442和所述喷淋盖447形成所述喷淋盒。

在本实施例的又一个实施方式中,所述喷淋盒为单独件,其侧壁设有环绕所述喷淋盒一周并与其侧壁垂直的筋板,所述两器盒盖444上设有容纳口,所述喷淋盒嵌入所述容纳口位置,所述筋板与所述两器盒体443之间为可拆卸密封连接,或者采用超声焊接密封连接,且所述筋板封堵所述容纳口。在该实施方式中,所述进水接头可与所述喷淋盒一体成型。

进一步优选的,所述两器盒盖444的上表面平齐设置,在两器盒盖444上表面形成避让空间,同时缩小喷淋盒在两器盒盖441底部的空间,不仅有利于缩小两器盒整体的体积,同时也利于降低风经过两器的阻力。

可选的,所述两器盒盖444下表面设有连续的环状密封凸起4443,所述两器盒体443 在所述开口的端面形成有连续的环状密封槽4431,所述环状密封凸起4443与所述环状密封槽4431密封配合,以实现密封,防止两器盒漏风。所述两器盒盖444的上表面为光滑面,以及述喷淋盒上表面与所述两器盒盖444的上表面平齐设置,可将两器盒盖443与热泵衣物处理装置外壳侧壁之间的间距做的更小,有利于缩小热泵衣物处理装置的体积。

实施例1-2-12

本实施例提供了一种热泵洗衣机,如图1-2-6所示,包括冷凝器442、蒸发器441和实施例1中所述的一种热泵衣物处理装置两器盒,所述冷凝器442和蒸发器441设置在所述两器盒内并在所述两器盒内形成风道,所述蒸发器441位于所述两器盒进风口a一侧,所述冷凝器442位于所述两器盒出风口b一侧,所述风道与所述两器盒进风口a和所述两器盒出风口b相通;外筒23,其上方设有与其内部相通的第一风道41和第二风道42,所述两器盒设置在所述外筒23上方,所述第一风道41与所述两器盒进风口a相通,所述第二风道42与所述两器盒出风口b连通,所述第一风道41或所述第二风道42上设有烘干风机组件43。本实施例中所述烘干风机组件43至少包括风机。

可选的,所述蒸发器为管式换热器,其换热管上设有翅片,本实施例中从所述喷淋口喷出的水喷射到蒸发器的翅片上。

具体的,所述外筒23的前端设有外筒两器盒进风口,其后端设有外筒排风口,所述第一风道41与所述外筒两器盒进风口相通,所述第二风道42与所述外筒排风口相通,在热泵洗衣机对衣物进行烘干时,采用循环风进行烘干,通过烘干风机组件43将外筒23内湿热空气抽出依次送入蒸发器和冷凝器,蒸发器制冷对湿热空气进行除湿,喷淋装置的喷淋水喷射到蒸发器迎风面一侧,去除烘干过程中附着在蒸发器上的毛屑,同时加快湿热空气的冷凝,如果洗衣机对衣物进行去除异味处理,则带有异味分子的空气在蒸发器表面遇冷凝结,同时喷淋水加快凝结速度并将凝结在水中的异味分子通过排水口排出。

实施例1-2-21

本实施例提供一种热泵衣物处理装置上的两器盒,包括:

两器盒体,其顶部设有开口,所述两器盒体在所述开口一侧设有与所述开口方向相同的过线槽;

两器盒盖,与所述两器盒体的开口盖合在一起,且所述两器盒盖压在所述过线槽上。

所述两器盒体外表面所述开口一侧设有至少两个呈间距设置的凸起,每个凸起上形成有所述过线槽,且每个所述凸起上的过线槽延伸方向相同。

所述凸起上设有螺钉孔,所述两器盒盖通过螺钉与所述螺钉孔固定连接。

所述凸起与所述两器盒体一体成型。

所述过线槽用于固定所述热泵洗衣机冷凝器和蒸发器上检测元件的线路。

所述两器盒体外表面一侧设有管路卡扣。

所述管路卡扣的数量至少为两个,且两个所述管路卡扣的端面相对设置,所述管路卡扣与所述过线槽同侧设置。

所述管路卡扣与所述两器盒体一体成型。

所述管路卡扣用于固定与所述热泵洗衣机冷凝器和蒸发器连接的管路。

在本实施例中提供了一种热泵衣物处理装置上的两器盒,如图1-2-7-图1-2-9所示,包括:两器盒体443,其顶部设有开口,所述两器盒体443在所述开口一侧设有与所述开口方向相同的过线槽4435;两器盒盖444,与所述两器盒体443的开口盖合在一起,且所述两器盒盖444压在所述过线槽4435上。

优选的,所述两器盒体443外表面所述开口一侧设有至少两个呈间距设置的凸起4432,每个凸起4432上形成有所述过线槽4435,且每个所述凸起4432上的过线槽4435延伸方向相同。通过在凸起4432上设置过线槽4435,并通过两器盒盖444将线路压在所述过线槽4435 内实现线路的固定。进一步,所述凸起4432上设有螺钉孔4433,所述两器盒盖444通过螺钉与所述螺钉孔4433固定连接,既实现了线路的固定,又保证两器盒盖444和所述两器盒体443之间的密封。优选的,所述凸起4432与所述两器盒体443一体成型,通过注塑成型形成一体件。

进一步可选的,所述两器盒体443外表面一侧设有管路卡扣4434,以便于两器盒体443 外部管路的固定,防止管路松动。

进一步可选的,所述管路卡扣4434的数量至少为两个,且两个所述管路卡扣4434的端面相对设置,所述管路卡扣4434与所述过线槽4435同侧设置,便于线路的布置。可选的,多个所述管路卡扣4434的中心共轴线设置。

优选的,所述管路卡扣4434与所述两器盒体443一体成型,以方便安装固定。

可选的,所述过线槽用于固定所述热泵洗衣机冷凝器和蒸发器上检测元件的线路。所述管路卡扣用于固定与所述热泵洗衣机冷凝器和蒸发器连接的管路。

实施例1-2-22

本实施例提供了一种热泵洗衣机,如图1-2-14所示,包括实施例中所述两器盒。

具体的,如图1-2-10-图1-2-13所示,所述热泵洗衣机还包括冷凝器442、蒸发器441、外筒23和烘干风机组件43;所述两器盒设有两器盒进风口a和两器盒出风口b,所述冷凝器442和蒸发器441设置在所述两器盒内,所述蒸发器441位于所述两器盒进风口a一侧,所述冷凝器442位于所述两器盒出风口b一侧,所述外筒23上方设有与其内部相通的第一风道41和第二风道42,所述两器盒设置在所述外筒23上方,所述第一风道41与所述两器盒进风口a相通,所述第二风道42与所述两器盒出风口b连通,所述烘干风机组件43具有风机出风口和风机进风口,所述风机进风口与所述第一风道42连通,所述风机出风口与所述两器盒进风口a连通,所述两器盒出风口b与所述第二风道连通。

所述烘干风机组件43包括风机和蜗壳,所述风机设置在所述蜗壳内,所述蜗壳具有风机出风口和风机进风口。

<压缩机>

实施例1-3

本实施例提供一种热泵衣物处理装置中压缩机的散热控制方法,所述热泵衣物处理装置包括对压缩机进行散热的散热风机,所述散热控制方法包括:

检测压缩机的排气温度和衣物处理装置中洗涤水对应的水加热温度;

根据所述排气温度和水加热温度确定当前环境温度;

根据所述排气温度、所述当前环境温度和压缩机的排气温度上限值控制散热风机对压缩机进行降温。

所述根据所述排气温度和水加热温度确定当前环境温度包括:

比较预设时间内所述排气温度的排气温度均值T1与所述水加热温度的水温均值T2;

当T1-T2≤A时,确定所述排气温度均值T1作为当前环境温度;当T1-T2>A时,将上次记忆的环境温度作为当前环境温度。

当T1-T2>A时,若无法获取上次记忆的环境温度,则将默认环境温度B作为当前环境温度,其中所述默认环境温度B的范围为20℃-25℃。

所述根据所述排气温度、所述当前环境温度和压缩机的排气温度上限值控制散热风机对压缩机进行降温包括:

当所述排气温度T

一种热泵衣物处理装置,所述热泵衣物处理装置采用上述中任意一项所述的散热控制方法,所述衣物处理装置包括:

壳体,所述壳体包括框架模块,所述框架模块围设出所述衣物处理装置的配件安装区域,且所述框架模块的下部开设有散热通孔;

热泵烘干模块,所述热泵烘干模块包括:压缩机组件,所述压缩机组件设置在所述配件安装区域的下部且靠近所述散热通孔,所述压缩机组件包括压缩机和对所述压缩机进行散热的散热风机;

控制器,用于根据所述压缩机的排气温度、所述压缩机的当前环境温度和所述压缩机的排气温度上限值控制散热风机对所述压缩机进行降温。

所述散热风机的送风方向朝向所述散热通孔,所述压缩机设置在所述散热风机与所述散热通孔之间。

所述散热通孔开设在所述框架模块的底部,且位于所述压缩机的下方。

所述框架模块包括左侧壁、后侧壁和右侧壁,

其中所述左侧壁、后侧壁和右侧壁依次连接围设出所述配件安装区域,所述左侧壁的下部开设所述散热通孔;和/或,所述后侧壁的下部开设所述散热通孔;和/或,所述右侧壁的下部开设所述散热通孔。

所述压缩机组件还包括:设置在所述框架模块底部后侧的固定底板,

所述固定底板与所述左侧壁、后侧壁和右侧壁连接,所述固定底板上方固定所述压缩机。

所述左侧壁的底部设有与所述固定底板连接的左底板,所述右侧壁的底部设有与所述固定底板连接的右底板。

所述散热风机设置在所述右底板和/或左底板和/或固定底板上。

所述热泵衣物处理装置还包括:桶组件,

所述桶组件设置在所述配件安装区域中部,且所述筒组件位于所述压缩机的前侧。

所述热泵烘干模块还包括:风机部件、烘干风道、回风道以及与所述压缩机连接的两器部件,

所述两器部件位于所述配件安装区域上部,且靠近所述筒组件上部右侧或靠近所述筒组件上部左侧设置;

所述烘干风道接设在所述风机部件的出风口与所述筒组件的进风口之间;所述回风道接设在所述筒组件的出风口与所述风机部件的进风口之间;所述两器部件的冷凝器位于所述烘干风道中,且所述两器部件通过制冷剂管路与所述压缩机连接。

如图1-3-1-图1-3-12所示,在本实施例中提供了一种热泵衣物处理装置,衣物处理装置包括:

壳体,壳体包括框架模块1,框架模块1围设出衣物处理装置的配件安装区域,且框架模块1的下部开设有散热通孔102;

热泵烘干模块,该热泵烘干模块包括压缩机组件,压缩机组件设置在配件安装区域的下部且靠近散热通孔102,压缩机组件包括压缩机201和对压缩机201进行散热的散热风机202;

控制器,用于根据压缩机201的排气温度、压缩机201的当前环境温度和压缩机201的排气温度上限值控制散热风机202对压缩机201进行降温。

优选地,散热风机202的送风方向朝向散热通孔102,压缩机201设置在散热风机202 与散热通孔102之间。框架模块1包括左侧壁111、后侧壁112和右侧壁113,其中左侧壁111、后侧壁112和右侧壁113依次连接围设出配件安装区域,左侧壁111的下部开设散热通孔102;和/或,后侧壁112的下部开设散热通孔102;和/或,右侧壁113的下部开设散热通孔102。

相应的,压缩机组件还包括:设置在框架模块1底部后侧的固定底板203,固定底板203 与左侧壁111、后侧壁112和右侧壁113连接,固定底板203上方固定压缩机201。左侧壁111的底部设有与固定底板203连接的左底板1111,右侧壁113的底部设有与固定底板203连接的右底板1131。散热风机202设置在右底板1131和/或左底板1111和/或固定底板203上。

在一些可选地方式中,热泵衣物处理装置还包括:桶组件3,桶组件3设置在配件安装区域中部,且筒组件位于压缩机201的前侧。热泵烘干模块还包括:与压缩机201连接的两器部件22,两器部件22位于配件安装区域上部,且靠近筒组件上部右侧或靠近筒组件上部左侧设置。优选地,热泵烘干模块还包括:风机部件21、烘干风道、回风道等,烘干风道接设在风机部件21的出风口与筒组件的进风口之间;回风道接设在筒组件的出风口与风机部件21的进风口之间;两器部件22的冷凝器位于烘干风道中,且两器部件22通过制冷剂管路与压缩机201连接。

具体的,如图1-3-1、图1-3-2、图1-3-3、图1-3-4和图1-3-6所示,该热泵衣物处理装置,包括:桶组件3、热泵烘干模块以及框架模块1。桶组件3及热泵烘干模块设置于框架模块1内。热泵烘干模块包括两器部件22及压缩机部件,两器部件22安装于桶组件3 上方,压缩机201部件安装于桶组件3后方。桶组件3上方设置有两器部件22,压缩机201 设置在桶组件3的后方,且两器部件22中的冷凝器与蒸发器设计成“7”字型,在整机的正面投影上,两器部件22靠近桶组件3设置,在保证两器工况面积满足的前提下降整机高度降低。

如图1-3-1、图1-3-6、图1-3-7、图1-3-8所示,该热泵式衣物处理装置,烘干方式为内循环式烘干模式。热泵烘干模块还包括风机部件21,风机部件21与两器部件22连接,形成了可驱动桶组件3内的烘干气流向两器部件22运动,并在两器部件22内部进行热交换的烘干通道。桶组件3上设置有衣物容纳腔、进风口以及出风口。烘干通道的两端分别与进风口及出风口密封连接,实现烘干气流的内循环,即烘干气流的循环路径为:衣物容纳腔→出风口→风机部件21→两器部件22→进风口→衣物容纳腔。

如图1-3-1、图1-3-6、图1-3-7、图1-3-8所示,该热泵式衣物处理装置,包括:热泵烘干模块。该热泵烘干模块还包括:进风弯头部件211。风机部件21包括蜗壳离心风机,风机的轴向方向与桶组件3上的出风口同轴装配,用于驱动烘干气流;优选的,出风口与桶组件3上的衣物容纳腔连接。两器部件22,包括:冷凝器与蒸发器2213、两器盒上盖 2211以及两器壳体2212。优选的,两器壳体2212设置有冷凝器与蒸发器2213的容置部;优选的,两器盒上盖2211将冷凝器及蒸发器密封装配在两器壳体2212内,形成烘干气流的热交换通道;优选的,两器部件22一端与风机部件21一端密封连接。进风弯头部件用于连接热交换通道与桶组件3上的进风口,用于引到烘干气流进入衣物容纳腔,优选的,进风弯头部件的一端与进风口密封连接,进风弯头的另一端与两器部件22连接。

热泵烘干模块由各部件间密封连接形成,实现烘干气流的内循环,各部件间的密封连接顺序为:衣物容纳腔→出风口→风机部件21→两器部件22→进风口→进风弯头部件→衣物容纳腔。

如图1-3-1、图1-3-4、图1-3-5、图1-3-10所示,该热泵式衣物处理装置,包括:两器部件22。两器部件22包括:用于容纳热泵两器部件22的盒体,包括两器壳体2212与两器盒上盖2211,两器壳体2212设置有热泵两器部件22容纳腔,两器盒上盖2211设置于两器壳体2212的上方,与热泵两器部件22形成热交换通道,两器盒上盖2211设置有喷淋装置,喷淋装置用于清洁热泵两器部件22上的毛屑。优选的,两器盒上盖2211包括管路避让结构、电气件安装结构、气流阻隔件、密封固定结构。

两器盒上盖2211中,喷淋装置包括进水接头以及多孔喷淋腔,进水接头一端与多孔喷淋腔连通;另一端与进水流路连通,提供清洁水,优选的,喷淋装置还包括喷淋腔盖,用于与进水接头及多孔喷淋腔形成完整的喷淋流道。优选的,多孔喷淋结构为多个间隔几毫米的过水通孔,过水通孔的排列方式为至少一排的垂直于烘干气流方向设置;优选的,进水接头以及多孔喷淋腔与两器盒上盖2211一体注塑成型;优选的,喷淋腔盖可通过焊接工艺与多孔喷淋腔装配,进一步的,过水通孔可设置在喷淋腔盖上。

两器盒上盖2211中,管路避让结构包括避让凸起,避让凸起设置于两器上盖上,当两器盒上盖2211与两器壳体2212装配时,存在一种装配情况,即两器壳体2212内的热泵两器部件22存在高于两器盒上盖2211及两器壳体2212装配面的零部件,优选的,避让凸起允许装配情况出现,提高结构空间的利用,简化装配结构,降低生产成本。

进一步的,两器盒上盖2211中,电气件安装结构包括感温包安装凹台以及线槽结构,优选的,感温包与感温包密封橡胶装配于感温包安装凹台内,用于检测热交换通道内的温度;优选的,感温包的电信号传输线束可安装于线槽结构内,提升电气安全性能,提供稳定的电气件工况环境。

进一步的,两器盒上盖2211中,气流阻隔件用于限制热交换通道内的烘干气流,优选的,气流阻隔件可为柔性材料,当两器盒上盖2211与两器壳体2212装配时,柔性材料通过压装产生形变,以达到更好的气流阻隔效果,优选的,气流阻隔件可为海绵,通过气流阻隔件,避免了烘干气流在烘干通道内的窜流,提高热交换效率。

进一步的,两器盒上盖2211中,密封固定结构包括螺钉孔位、卡扣结构以及密封凸筋,两器盒上盖2211与两器壳体2212装配时,优选的,卡扣结构与两器壳体2212形成预装;螺钉孔位用于螺钉将两器盒上盖2211与两器壳体2212紧固;密封凸筋使设置在两器壳体2212上的密封圈形变密封,防止热交换通道内的烘干气流泄漏。

如图1-3-6、图1-3-8、图1-3-9、图1-3-12所示,该热泵衣物处理装置的热泵烘干模块包括压缩机部件,压缩机部件包括压缩机、固定底板203以及预紧橡胶2031,压缩机上设置有在压缩机径向圆周分布的固定底脚。优选的,固定底板203上设置有压缩机的装配压型与装配通孔,安装时,装配通孔与固定底脚一一对应装配,装配螺栓从下往上依次穿过固定底板203上的装配通孔、预紧橡胶、固定底脚,通过设置于固定底脚上方的螺母进行锁紧,当装配到位时,压缩机底部与装配压型抵接,预紧橡胶提供螺栓锁紧的预紧力,且能吸收一定的振动能量,从而降低因压缩机运行时产生的振动使螺栓锁紧失效的风险,装配压型给压缩机的锁紧提供锁紧反馈,且在水平方向上形成一定的结构限位,提高了压缩机锁紧强度。

进一步的,框架模块1,包括:左、后、右侧壁,左底板1111与右底板1131,压缩机部件上的固定底板203的两端分别与左底板1111、右底板1131装配抵接,将压缩机部件安装在框架模块1上,装配抵接方式可为铆接和/或螺钉紧固,优选的,压缩机靠近固定底板 203的一端装配,即压缩机在固定底板203上的安装位置靠近固定底板203与左底板1111 或右底板1131的抵接位置,综上,有利于提高压缩机在整机的装配强度,降低共振。

如图1-3-6、图1-3-9、图1-3-11所示,该热泵衣物处理装置包括:桶组件3、热泵烘干模块以及框架模块1。桶组件3及热泵烘干模块设置于框架模块1内。热泵烘干模块包括两器部件22及压缩机部件,两器部件22安装于桶组件3上方,压缩机部件安装于桶组件3后方。

进一步的,框架模块1,包括:左底板1111与右底板1131,压缩机部件包括压缩机201 及固定底板203,压缩机201固定在固定底板203上,优选的,压缩机部件上的固定底板203 的两端分别与左底板1111、右底板1131抵接装配,将压缩机部件安装在框架模块1上,左底板1111和/或右底板1131上设置有散热风机202,散热风机202的出风方向朝向压缩机设置,用于压缩机的散热。

进一步的,框架模块1,包括:框架,框架上设置有散热通孔102,压缩机设置在散热风机202与散热通孔102之间,优选的,框架为U壳框架。在本实施例中,还可以将散热通孔102设置在框架底部,散热通孔102的开设位置可以选在靠近或者位于压缩机正下方位置均可。

综上方案,压缩机的工况温度下降有利于提高压缩机的效率,从而提高整机烘干效率。

如图1-3-3、图1-3-6、图1-3-8、图1-3-9和图1-3-11所示,该热泵衣物处理装置,包括:桶组件3、热泵烘干模块以及框架模块1。桶组件3及热泵烘干模块设置于框架模块 1内。热泵烘干模块包括两器部件22及压缩机部件,两器部件22设置于桶组件3上方,压缩机部件安装于桶组件3后方。

进一步的,桶组件3,包括:衣物容纳腔,出风口以及进风口;两器部件22两端分别与出风口及进风口连接,使两器部件22与衣物容纳腔连接,实现烘干气流的循环,优选的,两器部件22设置于桶组件3上方;压缩机部件安装于桶组件3后方。

进一步的,热泵烘干模块,包括:两器部件22,压缩机部件及管路,管路设置在热泵烘干模块及两器部件22之间,连接两者,用于冷媒的传输;管路包括第一管路及第二管路,第一管路与两器部件22连接,第二管路与压缩机部件连接,第一管路与第二管路连接,综上形成热泵烘干模块。

进一步的,框架模块1包括:后盖板12,框架的后侧壁设置有安装通孔101,方便相关零部件安装;后盖板安装于框架后侧,用于覆盖安装通孔101。优选的,整机装配时,两器部件22及压缩机部件可分开整装,再通过管路将两者进行连接,管路连接位置设置在安装通孔101附近。

优选的,上述方案提供了一种热泵烘干模块的装配方式,将两器部件22与压缩式部件分开装配再进行管路连接,进一步的,安装通孔101的设置有利于装配及检修,因此管路连接位置设置在安装通孔101附近,降低生产成本及方便售后维护。

如图1-3-4、图1-3-5所示,该容纳热泵两器部件22的盒体,包括两器壳体2212与两器盒上盖2211,两器壳体2212设置有热泵两器部件22容纳腔,两器盒上盖2211设置于两器壳体2212的上方,与热泵两器部件22形成热交换通道。

进一步的,两器壳体2212包括孔位凸耳结构,孔位凸耳结构的一侧形成有内凹特征,当两器盒上盖2211与两器壳体2212装配到位时,内凹特征与两器盒上盖2211形成线管卡槽22121,优选的,线管卡槽22121用于线路和/或管路的限位固定,优选的,孔位凸耳结构为两器壳体2212与两器盒上盖2211装配时的螺钉柱。

进一步的,两器壳体2212包括管路卡扣,管路卡扣至少一个的间隔一定距离的设置在两器壳体2212的一侧,优选的,线管卡槽22121用于线路和/或管路的限位固定。

优选的,线管卡槽22121通过两个结构件间的装配间隙形成,合理的利用了结构空间,降低生产成本。

下面结合该热泵衣物处理装置,在本实施例中还提供了热泵衣物处理装置中压缩机的散热控制方法,如图1-3-13所示,该散热控制方法包括:

S1、检测压缩机的排气温度和衣物处理装置中洗涤水对应的水加热温度;

S2、根据排气温度和水加热温度确定当前环境温度;

S31、根据排气温度、当前环境温度和压缩机的排气温度上限值控制散热风机202对压缩机进行降温。

具体如图1-3-14所示,在一些可选地方式中,根据排气温度和水加热温度确定当前环境温度包括:比较预设时间t内排气温度的排气温度均值T1与水加热温度的水温均值T2;当T1-T2≤A时,确定排气温度均值T1作为当前环境温度;当T1-T2>A时,将上次记忆的环境温度作为当前环境温度。优选地,预设时间t取值5秒~10秒。

进一步地,当T1-T2>A时,若无法获取上次记忆的环境温度,则将默认环境温度B作为当前环境温度,其中默认环境温度B的范围为20℃-25℃。

优选地,根据排气温度、当前环境温度和压缩机的排气温度上限值控制散热风机202 对压缩机进行降温包括:当排气温度T排气≥aC时,控制散热风机202开启;当T排气≤bC时,控制散热风机202关闭;其中a取值范围为90%~95%,b取值范围为70%~80%,C=排气温度上限值Tmax-当前环境温度。

【烘干模块】

<两器盒透气结构>

本实施例提供一种热泵洗衣机烘干装置,所述烘干装置具有烘干风道,所述烘干风道的第一风道进气口和第二风道排气口分别用于与所述热泵洗衣机的外筒内部空间连通,所述烘干风道的内壁上设有连通所述烘干风道与所述外筒外部环境的透气孔,所述透气孔与所述外筒的外部环境相通。

所述烘干装置包括:

两器盒,其内部设有蒸发器和冷凝器,所述蒸发器和冷凝器在所述两器盒内形成换热风道,所述换热风道在所述两器盒上的蒸发器一侧设有两器盒进风口,其在所述两器盒上的冷凝器一侧设有两器盒出风口,所述换热风道作为所述烘干风道的一部分,所述透气孔设置在所述蒸发器迎风一侧的一段所述烘干风道上。

所述烘干装置还包括:

烘干风机组件,具有风机风道,所述风机风道具有风机进风口和风机出风口,所述风机出风口与所述两器盒进风口相通;

第一连接件,具有第一风道,所述第一风道一端具有所述第一风道进气口,其另一端与所述风机进风口相通;

第二连接件,具有第二风道,所述第二风道一端与所述两器盒出风口相通,其另一端具有所述第二风道排气口;

所述换热风道、所述风机风道、所述第一风道和所述第二风道形成所述烘干风道;

所述蒸发器迎风一段所述换热风道上和/或所述风机风道和/或所述第一风道和/或所述第二风道设有所述透气孔。

所述两器盒上在所述蒸发器迎风一侧设有与所述换热风道相通的透气孔。

所述透气孔的数量为多个。

所述烘干风机组件包括:

蜗壳,所述蜗壳内部具有所述风机风道;

风叶,设置在所述蜗壳内;

电机,设置在所述蜗壳上,用于驱动所述风叶转动。

包括上述任一所述的热泵洗衣机烘干装置。

所述热泵洗衣机还包括:

外筒,所述烘干装置设置在所述外筒的上方,所述外筒设有与其内部空间连通的外筒进风口和与其内部空间连通的外筒出风口,所述外筒出风口与所述第一风道进气口相通,所述外筒进风口与所述出风口相通。

所述热泵洗衣机还包括过滤网,所述过滤网覆盖所述第一风道进气口或所述外筒出风口。

实施例2-1-1

在本实施例中提供了一种热泵洗衣机烘干装置,如图2-1-1-图2-1-2所示,所述烘干装置具有烘干风道,所述烘干风道的第一风道进气口和第二风道排气口分别用于与所述热泵洗衣机的外筒23内部空间连通,所述烘干风道的内壁上设有连通所述烘干风道与所述外筒外部环境的透气孔4a,所述透气孔4a与所述外筒23的外部环境相通。

所述烘干装置包括:两器盒,其内部设有蒸发器441和冷凝器442,所述蒸发器441和冷凝器442在所述两器盒内部形成换热风道,所述换热风道在所述两器盒上的蒸发器441一侧设有两器盒进风口,其在所述两器盒上的冷凝器442一侧设有两器盒出风口,所述换热风道作为所述烘干风道的一部分,所述透气孔4a设置在所述蒸发器441迎风一侧的一段所述烘干风道上。具体可选的,如图2-1-4-图2-1-8所示,所述两器盒包括:两器盒体443,具有容纳所述热泵洗衣机上冷凝器442和蒸发器441的容纳空间,所述两器盒体443上方设有开口,所述两器盒体443两侧设有两器盒进风口和两器盒出风口,所述两器盒进风口用于将所述热泵洗衣机烘干时从热泵洗衣机外筒23排出的湿热风吹入所述蒸发器441一侧进行冷凝干燥,所述两器盒出风口用于将蒸发器441干燥后经过冷凝器442加热的热风排入所述外筒23内;两器盒盖444,与所述两器盒体443的开口盖合在一起,所述两器盒盖444设有喷淋装置,所述喷淋装置的喷淋口c位于所述两器盒盖444下表面并朝向所述两器盒出风口一侧设置。所述两器盒体443底部设有排水口。

如图2-1-6-图2-1-8所示,所述喷淋装置包括进水接头445和与所述进水接头445相通的喷淋盒,所述两器盒盖444上设有容纳口,所述喷淋盒设置在所述容纳口的位置并位于所述蒸发器441迎风面一侧,且其上表面与所述两器盒盖444的上表面平齐设置,所述喷淋盒与所述两器盒盖444之间密封连接,所述喷淋盒朝向所述蒸发器441迎风面一侧的侧壁设有若干个所述喷淋口c。所述喷淋盒上表面与所述两器盒盖444的上表面平齐设置,可减小两器盒盖444的厚度,进而减小热泵洗衣机的占用空间。进一步可选的,所述进水接头445与所述两器盒盖444一体成型。进一步,所述容纳口的边沿形成有沿所述两器盒盖444厚度方向延伸的连续的环状凸筋4441,所述环状凸筋4441内侧设有内盒体4442,所述进水接头445与所述内盒体4442内部空间相通,所述环状凸筋4441与所述内盒体4442的侧壁之间形成环状间隙,所述环状间隙设有封堵其的环状体4444,所述环状体4444、所述环状凸筋4441和所述内盒体4442的侧壁形成密封连接,所述内盒体4442朝向所述两器盒出风口的侧壁设有若干贯通所述环状凸筋4441和所述内盒体4442内部空间的喷淋口c。可选的,所述环状体4444、所述环状凸筋4441和所述内盒体4442的侧壁采用超声焊接固定形成一体件。为方便内盒体的成型,所述环状体4444在所述两器盒盖下表面一侧形成环状凹槽,所述喷淋盒的下表面具有喷淋盖447,所述喷淋盖447朝向所述喷淋盒一侧设有与所述环状凹槽相适配的环状凸起,所述环状凸起扣合到所述环状凹槽内,以使喷淋盖447封堵所述内盒体4442。可选的,所述喷淋盖447通过超声焊接的方式固定在所述喷淋盒上。进一步,所述环状凸筋4441、所述内盒体4442和所述喷淋盖447形成所述喷淋盒,或所述内盒体4442 和所述喷淋盖447形成所述喷淋盒。

本实施例中所述两器盒盖444可采用螺钉与所述两器盒盖444固定连接。

进一步,如图2-1-3所示,所述烘干装置还包括:烘干风机组件43,具有风机风道,所述风机风道具有风机进风口和风机出风口,所述风机出风口与所述两器盒进风口相通;第一连接件46,具有第一风道41,所述第一风道41一端具有所述第一风道进气口,其另一端与所述风机进风口相通;第二连接件47,具有第二风道42,所述第二风道42一端与所述两器盒出风口相通,其另一端具有所述第二风道排气口;所述换热风道、所述风机风道、所述第一风道41和所述第二风道42形成所述烘干风道;所述蒸发器441迎风一段所述换热风道上和/或所述风机风道和/或所述第一风道41和/或所述第二风道42设有所述透气孔4a,可将过多的热量从烘干风道排出,保持烘干风道内压力的稳定性,降低压缩机运行的负荷,同时引入新风,可增强烘干风道内湿热空气的除湿效果。优选的,所述两器盒上在所述蒸发器441迎风一侧设有与所述换热风道相通的透气孔4a,在烘干过程中,两器盒内的温度较高,将透气孔4a设置在两器盒上,不仅可以保持两器盒内部气压的温度性,同时可更进一步干燥空气,产生的冷凝水更方便从两器盒的排水口排出。可选的,所述透气孔4a设置在两器盒体443迎风面一侧。

进一步可选的,所述透气孔4a的数量为多个。

进一步可选的,所述烘干风机组件43包括:蜗壳433,所述蜗壳433内部具有所述风机风道;风叶431,设置在所述蜗壳内;电机432,设置在所述蜗壳上,用于驱动所述风叶 431转动。

具体的,所述蜗壳由上蜗壳4331和下蜗壳4332组成,上蜗壳4331和下蜗壳4332扣合在一起形成风机风道,电机432安装在所述上蜗壳上驱动风叶431转动。

实施例2-1-2

本实施例提供了一种热泵洗衣机,如图2-1-9所示,包括实施例1所述的热泵洗衣机烘干装置。

进一步,所述热泵洗衣机还包括:外筒23,所述烘干装置设置在所述外筒23的上方,所述外筒23设有与其内部空间连通的外筒进风口4b和与其内部空间连通的外筒出风口4c,所述外筒出风口4c与所述第一风道进气口相通,所述外筒进风口4b与所述出风口相通。

所述外筒23的前端设有烘干进风口,其后端设有烘干排风口,所述第一风道41与所述烘干进风口相通,所述第二风道42与所述烘干排风口相通,在热泵洗衣机对衣物进行烘干时,采用循环风进行烘干,通过烘干风机组件43将外筒23内湿热空气抽出依次送入蒸发器和冷凝器,蒸发器441制冷对湿热空气进行除湿,喷淋装置的喷淋水喷射到蒸发器441迎风面一侧,去除烘干过程中附着在蒸发器上的毛削,同时加快湿热空气的冷凝,如果热泵洗衣机对衣物进行去除异味处理,则带有异味分子的空气在蒸发器表面遇冷凝结,同时喷淋水加快凝结速度并将凝结在水中的异味分子通过排水口排出,透气孔4a不仅可防止烘干风道内的气压过高,同时引入适量的冷空气可增加湿热空气的冷凝,有利于烘干过程的除湿和除味。

优选的,如图2-1-9所示,所述热泵洗衣机还包括过滤网48,所述过滤网48覆盖所述第一风道进气口或所述外筒出风口4c,过滤网48可过滤掉从外筒23内排出湿热空气的大部分毛屑,湿热空气中少了的毛屑被吹入到蒸发器441的表面,并通过喷淋装置喷出的水冲刷掉,从两器盒内排出。

<过滤网喷淋结构>

实施例2-2

本实施例提供一种具有烘干功能的衣物处理设备,其特征在于,包括外筒、过滤网和喷淋装置;所述外筒的顶部的一端形成有外筒出风口,所述过滤网为凸向所述外筒的洗涤腔的曲面结构且设置在所述外筒出风口处;所述喷淋装置设置在所述过滤网的上方且包括喷淋件,所述喷淋件被构造为水由所述喷淋件发散式喷向所述过滤网。

所述喷淋件包括其内部形成有喷淋腔的喷淋部,所述喷淋部靠近所述过滤网的侧部形成有喷淋面,所述喷淋面与过滤网的曲面结构相适配;所述喷淋面形成有多个与所述喷淋腔连通的喷淋口。

沿所述外筒出风口的轴向方向由上至下,所述喷淋面与过滤网的曲面结构的距离增大,且所述喷淋面的喷淋面积逐渐增大。

所述喷淋部为喷淋臂结构且沿所述外筒出风口的直径方向延伸,沿所述喷淋臂的宽度方向设有相对设置的第一喷淋口组和第二喷淋口组;所述第一喷淋口组和第二喷淋口组均包括多个沿所述喷淋臂的长度方向分布的喷淋口;

所述第一喷淋口组被设置为由其喷出的水可覆盖所述过滤网的一部分,所述第二喷淋口组被设置为由其喷出的水可覆盖所述过滤网的另一部分。

所述第一喷淋口组和第二喷淋组相对所述喷淋臂的对称轴对称设置;在竖直面上所述第一喷淋口组中喷淋口的中心线与所述第二喷淋口组中喷淋口的中心线之间的夹角为α,其中 50°≤α≤170°。

α=110°。

所述喷淋件还包括进水部,所述进水部形成有与所述喷淋腔连通的进水腔;进入所述进水腔的水,流向所述喷淋腔,并由所述第一喷淋口组和第二喷淋口组喷向并清洗所述过滤网。

所述喷淋件还包括安装架,所述外筒出风口的侧壁形成有安装孔;所述喷淋部由所述安装孔穿过并设置在所述过滤网的上方,进而所述安装架与所述外筒出风口的侧壁可拆卸连接。

在所述安装架和所述外筒出风口的侧壁之间设有密封圈。

所述喷淋装置还包括喷淋进水管,所述衣物处理设备包括第三进水阀,所述第三进水阀包括喷淋接口;所述喷淋进水管的一端与喷淋接口连接,所述喷淋进水管的另一端与进水部连接;外界水经所述第三进水阀、喷淋进水管进入所述进水腔。

所述烘干系统还包括设置在所述外筒上方的烘干风机组件、两器组件和风道,所述外筒的顶部的另一端形成有外筒进风口,所述两器组件包括两器盒和设置于所述两器盒内的蒸发器和冷凝器,所述风道包括第一风道和第二风道;所述外筒出风口、第一风道、烘干风机组件、两器盒、第二风道和外筒进风口依次密封连接并连通形成烘干流路;

在所述烘干风机组件作用下,烘干气流由所述外筒出风口进入所述烘干流路,其中的毛屑被所述过滤网过滤,流经所述两器盒时先流经所述蒸发器后流经所述冷凝器并完成热交换,流经所述外筒时与衣物完成热交换而烘干衣物;

清洗所述过滤网时,所述第三进水阀被间歇性控制打开,外界水进入所述喷淋腔,经所述第一喷淋口组和第二喷淋口组喷向并清洗所述过滤网;和/或

在所述衣物处理设备洗涤过程中,所述外筒内的部分洗涤水可流经所述外筒出风口并冲洗所述过滤网。

如图2-2-1a、图2-2-1b、图2-2-2和图2-2-3所示,本实施例提供一种具有烘干功能的衣物处理设备,包括外筒23、过滤网241和喷淋装置;外筒23的顶部的一端形成有外筒出风口21,过滤网241为凸向外筒23的洗涤腔的曲面结构且设置在外筒出风口21处;具体地,外筒出风口21设置于外筒23的周侧壁靠近外筒23的底壁的一端;喷淋装置设置在过滤网241的上方且包括喷淋件242,喷淋件242被构造为水由喷淋件242发散式和多方位喷向过滤网241;

综上所述,采用喷淋件242清理过滤网241上的毛屑,结构简单、清洗效果好和清洗速度快;解决手动清理毛屑过程繁琐、清洗速度慢和清洗效果差的问题;喷淋件242发散式喷水,扩大了清洗覆盖面,对过滤网241全面地和多方位地清洗,清洗更加彻底,避免出现部分毛屑漏清理的情况;使得过滤网241保持较高的过滤效果,降低风阻,有效提升烘干效率,保证烘干系统清洁度和稳定运行。

进一步,喷淋件242包括喷淋部2421,喷淋部2421的内部形成有喷淋腔,喷淋部2421 靠近过滤网241的侧部形成有喷淋面,喷淋面与过滤网241的曲面结构相适配;具体地,喷淋面与过滤网241的间隙逐渐增大,相对曲率逐渐增大,有效增大喷淋面积;过滤网241 下方的喷淋区域大于过滤网241上方的喷淋区域,在过滤网241的正面方向更有利于毛屑的清理;

沿外筒出风口21的轴向方向由上至下,喷淋面与过滤网241的曲面结构的距离增大,且喷淋面的喷淋面积逐渐增大。

如图2-2-4a、图2-2-4b、图2-2-5a、图2-2-5b和图2-2-6所示,喷淋面形成有多个与喷淋腔连通的喷淋口2422;多个喷淋口2422的位置呈发散状且每个喷淋口2422的中心线与过滤网241的曲面结构均呈一定角度,水由喷淋口2422喷出后可最大限度地覆盖过滤网241的表面,使得清理过滤网241上的毛屑更加全面和彻底;

优选地,喷淋部2421为喷淋臂结构且沿外筒出风口21的直径方向延伸,沿喷淋臂的宽度方向设有相对设置的第一喷淋口组和第二喷淋口组;第一喷淋口组和第二喷淋口组均包括多个沿喷淋臂的长度方向分布的喷淋口2422;

第一喷淋口组被设置为由其喷出的水可覆盖过滤网241的一部分,第二喷淋口组被设置为由其喷出的水可覆盖过滤网241的另一部分;如此水由第一喷淋口组和第二喷淋口组喷出后可覆盖并清洗过滤网241。

在一些实施例中,第一喷淋口组和第二喷淋组相对喷淋臂的对称轴对称设置;在竖直面上第一喷淋口组中喷淋口的中心线与第二喷淋口组中喷淋口的中心线之间的夹角为α,其中 50°≤α≤170°;在保证喷淋件242的喷淋清洗效果的同时扩大了清洗覆盖面。

优选地,α=110°。

如图2-2-2和图2-2-3所示,喷淋件242还包括进水部2423,进水部2423形成有与喷淋腔连通的进水腔;进入进水腔的水,流向喷淋腔,并由第一喷淋口组和第二喷淋口组喷向并清洗过滤网241;喷淋件242通过进水部2423外接管路,实现向喷淋件242供水。

进一步,如图2-2-3和图2-2-4a所示,喷淋件242还包括安装架2424,外筒出风口21的侧壁形成有安装孔;喷淋部2421由安装孔穿过并设置在过滤网241的上方,进而安装架2424与外筒出风口21的侧壁可拆卸连接,便于喷淋件242的安装固定、拆卸和更换;具体为插销式连接或螺纹连接。

在安装架2424和外筒出风口21的侧壁之间设有密封圈25,起到密封效果,避免由喷淋口2422喷出的水由安装孔流出,进而引起安全隐患。

进一步可选地,喷淋装置还包括喷淋进水管26,衣物处理设备设有进水阀组件71,进水阀组件71包括第三进水阀715,第三进水阀715包括喷淋接口;喷淋进水管26的一端与喷淋接口连接,喷淋进水管26的另一端与进水部2423连接;外界水经第三进水阀715、喷淋进水管26进入进水腔。

本实施例中可通过两种方式清洗过滤网241:

第一种为:控制第三进水阀715间歇性打开,外界水经第三进水阀715、喷淋进水管26 和进水部2423进入喷淋腔,再经第一喷淋口组和第二喷淋口组喷向并清洗过滤网241,使得过滤网241上的毛屑脱落,在后续的洗涤过程中随洗涤水排至外筒23外;清洗过程简单、清洗覆盖面大和清洗彻底;无需增加零部件排出毛屑;

第二种为:在衣物处理设备洗涤过程中,外筒23内的部分洗涤水产生激荡,可流经外筒出风口21并冲洗过滤网241,使得过滤网241上的毛屑脱落并随洗涤水排至外筒23外;不需要额外设置清洗结构,充分利用洗涤水进行清洗,简化了衣物处理设备的整体结构,缩小了占用空间。

如图2-2-1a和图2-2-1b所示,衣物处理设备还包括外筒23、设置在外筒23的上方的烘干风机组件43、两器组件44和风道,外筒23的顶部还形成有外筒进风口22;具体地,外筒进风口22设置于外筒23的周侧壁靠近外筒23的开口的一端,保证烘干气流与衣物充分接触的同时缩短了烘干流路,减少热量损失,提高烘干效率;优选地,外筒出风口21为圆型结构,外筒进风口22为矩型结构。

烘干风机组件43、两器组件44和风道设置于外筒出风口21和外筒进风口22之间;两器组件44包括形成有换热腔的两器盒和设置于换热腔内的两器;具体地,烘干气流流经两器盒时在换热腔中与两器完成热交换;

风道包括第一风道41和第二风道42;第一风道41靠近外筒出风口21设置,第二风道 42靠近外筒进风口22设置;外筒出风口21、第一风道41、烘干风机组件43、两器盒、第二风道42和外筒进风口22依次密封连接并连通形成烘干流路;

在烘干风机组件43作用下,烘干气流沿烘干流路循环流动,流经换热腔时与两器完成热交换而被加热,流经外筒23时与衣物完成热交换而烘干衣物;

第一风道41和第二风道42为柔性件或柔性连接件,使得外筒23振动过程中,烘干系统中各部件始终可靠密封连接,提高了烘干系统运行的可靠性;避免了外筒23振动时烘干系统连接不可靠和烘干气流泄漏的问题。

烘干风机组件43包括沿竖直方向且同轴设置的蜗壳上盖431和蜗壳下盖432;蜗壳上盖431和蜗壳下盖432密封连接并形成有风叶腔,风叶腔的底部形成有朝向竖直方向的风机进风口;

进一步,烘干风机组件43还包括第一驱动电机和与第一驱动电机驱动连接的风叶;第一驱动电机设置于蜗壳上盖431的顶部且与蜗壳上盖431同轴设置,风叶设置于风叶腔中;如此外筒出风口21、风机进风口、蜗壳下盖432、风叶、蜗壳上盖431和第一驱动电机同轴设置,使得烘干气流由外筒出风口21顺利进入风叶腔并排出;

在第一驱动电机作用下,风叶一定速度转动并带动烘干气流在烘干流路中循环流动,烘干气流经外筒出风口21、第一风道41、风机进风口进入风叶腔,再经风机出风口排出。

两器盒包括两器盒盖444和两器盒体443;两器盒盖444和两器盒体443密封连接并形成有换热腔,沿烘干气流的流动方向换热腔分别形成有换热进风口和换热出风口;换热进风口与风机出风口密封连接,换热出风口与第二风道42密封连接;烘干气流由换热进风口进入换热腔并与两器完成热交换,烘干气流先经过冷凝除湿、加热后成为高温蒸汽;

进一步,两器包括沿烘干气流的流动方向依次设置的蒸发器441和冷凝器442;烘干气流进入换热腔后,流经蒸发器441时,烘干气流中的水蒸气冷凝为水滴并向下沉降;烘干气流流经冷凝器442时,烘干气流被加热为高温气流。

<烘干风道>

实施例2-3-1

本实施例提供一种具有烘干功能的衣物处理设备,包括外筒、设置在所述外筒的上方的烘干风机组件、两器组件和风道,所述外筒的侧壁上形成有外筒出风口、外筒进风口;所述两器组件包括形成有换热腔的两器盒和设置于所述换热腔内的蒸发器和冷凝器,所述风道包括第一风道和第二风道;

所述外筒出风口、第一风道、烘干风机组件、两器盒、第二风道和外筒进风口依次密封连接并连通形成沿着所述外筒长度方向延伸的烘干流路;

在所述烘干风机组件作用下,烘干气流沿所述烘干流路循环流动,流经所述换热腔时先流经所述蒸发器后流经所述冷凝器并完成热交换,流经所述外筒时与衣物完成热交换而烘干衣物。

所述外筒的周侧壁形成所述外筒出风口和外筒进风口,所述外筒出风口靠近所述外筒的底壁;所述外筒进风口靠近所述外筒的开口;

所述第一风道、烘干风机组件、两器盒和第二风道沿所述衣物处理设备的轴向方向设置。

所述外筒出风口处设有外筒出风管,所述外筒出风管沿竖直方向延伸;所述外筒进风口处设有外筒进风管,所述外筒进风管沿所述衣物处理设备的轴向方向延伸。

所述第一风道的一端与所述外筒出风口为柔性连接和/或所述第一风道的另一端与所述烘干风机组件为柔性连接和/或所述第一风道为柔性件或柔性连接件。

所述烘干风机组件包括沿竖直方向且同轴设置的蜗壳上盖和蜗壳下盖;所述蜗壳上盖和蜗壳下盖密封连接并形成有风叶腔,所述风叶腔的底部形成有朝向竖直方向的风机进风口,所述风机进风口与所述第一风道密封连接;所述风叶腔靠近所述两器盒的侧部形成朝向所述外筒的轴向方向的风机出风口。

所述烘干风机组件还包括第一驱动电机和与所述第一驱动电机驱动连接的风叶;所述第一驱动电机设置于所述蜗壳上盖的顶部且与所述蜗壳上盖同轴设置;所述风叶设置于所述风叶腔中;

在所述第一驱动电机作用下,烘干气流经所述外筒出风口、第一风道、风机进风口进入所述风叶腔,再经所述风机出风口排出。

所述两器盒包括两器盒盖和两器盒体;所述两器盒盖和两器盒体密封连接并形成有所述换热腔,沿所述烘干气流的流动方向所述换热腔分别形成有换热进风口和换热出风口;所述换热进风口设置在所述蒸发器侧且与所述风机出风口密封连接,所述换热出风口设置在所述冷凝器侧且与所述第二风道密封连接。

所述两器盒体的底部形成有集水槽,所述集水槽被构造为可将水滴迅速排走的结构。

所述第二风道的一端与所述换热出风口为柔性连接和/或所述第二风道的另一端与所述外筒进风口为柔性连接和/或所述第二风道为柔性件或柔性连接件。

所述衣物处理设备还包括可拆卸地设置于所述外筒出风口处的过滤网;所述衣物处理设备在洗涤过程中,所述外筒内的部分洗涤水可流经所述外筒出风口并冲洗所述过滤网。

如图2-3-1a和图2-3-1b所示,本实施例提供一种具有烘干功能的衣物处理设备,优选为滚筒洗衣机;衣物处理设备包括外筒23、设置在外筒23的上方的烘干系统;烘干系统包括烘干风机组件43、两器组件44和风道,外筒23的侧壁上形成有外筒出风口21和外筒进风口22;具体地,外筒出风口21设置于外筒23的周侧壁靠近外筒23的底壁的一端,外筒进风口22设置于外筒23的周侧壁靠近外筒23的开口的一端,保证烘干气流与衣物充分接触的同时缩短了烘干流路,减少热量损失,提高烘干效率;优选地,外筒出风口21为圆型结构,外筒进风口22为矩型结构。

烘干风机组件43、两器组件44和风道设置于外筒出风口21和外筒进风口22之间;两器组件44包括形成有换热腔的两器盒和设置于换热腔内的蒸发器441和冷凝器442;具体地,烘干气流流经两器盒时在换热腔中与两器完成热交换;

风道包括第一风道41和第二风道42;第一风道41靠近外筒出风口21设置,第二风道 42靠近外筒进风口22设置;外筒出风口21、第一风道41、烘干风机组件43、两器盒、第二风道42和外筒进风口22依次密封连接并连通形成烘干流路;

在烘干风机组件43作用下,烘干气流沿烘干流路循环流动,流经换热腔时先流经蒸发器441后流经冷凝器442并完成热交换,流经外筒23时与衣物完成热交换而烘干衣物;

综上所述,烘干风机组件43、两器组件44和风道上方并靠近外筒23的周侧壁设置,烘干系统结构简单、所需零部件少,占空间小;烘干流路整体沿外筒23的轴向设置,极大地缩短了烘干流路的长度,风阻小,有利于烘干气流在烘干流路中顺畅流动,降低了烘干气流的热量损失,提高了烘干气流与衣物及两器的热交换面积,延长了烘干气流与衣物及两器的热交换时间,烘干气流的冷凝除湿和加热效率高,衣物的烘干效率高和所需烘干时间短。

如图2-3-1a和图2-3-1b所示,外筒出风口21处设有外筒出风管,外筒出风管沿竖直方向延伸,使得烘干气流顺利排出;外筒进风口22处设有外筒进风管,外筒进风管沿衣物处理设备的轴向方向延伸,使得烘干气流迅速进入外筒23中;

第一风道41被构造为当外筒23振动时第一风道41保持与外筒出风口21、烘干风机组件43密封连接;解决了由于空间限制导致烘干系统安装不方便和难以操作的问题,保证了外筒23振动时烘干系统不受振动影响而保持整体的密封性,密封严实,连接可靠。

在一些实施例中,第一风道41的一端与外筒出风口21为柔性连接和/或第一风道41 的另一端与烘干风机组件43为柔性连接和/或第一风道41为柔性件或柔性连接件,使得外筒23振动过程中,第一风道41与外筒出风口21、烘干风机组件43始终可靠密封连接,提高了烘干系统运行的可靠性;避免了外筒23振动时烘干系统连接不可靠和烘干气流泄漏的问题,同时第一风道41可吸收外筒23的振动,降低外筒23振动对烘干系统的影响;优选地,第一风道41为橡胶连接件。

烘干风机组件43包括沿竖直方向且同轴设置的蜗壳上盖431和蜗壳下盖432;蜗壳上盖431和蜗壳下盖432密封连接并形成有风叶腔,风叶腔的底部形成有朝向竖直方向的风机进风口;具体地,蜗壳上盖431、蜗壳下盖432、风机进风口和外筒出风口21同轴设置;风叶腔靠近两器盒的侧部形成朝向外筒23的轴向方向的风机出风口,缩短了烘干流路,减少了烘干气流的流动阻力,提高烘干效率;

第一风道41的一端与外筒出风口21通过第一紧固件411密封连接;第一风道41的另一端与风机进风口通过第二紧固件412密封连接;优选地,第一紧固件411和第二紧固件412为紧固卡箍。

进一步,烘干风机组件43还包括第一驱动电机和与第一驱动电机驱动连接的风叶;第一驱动电机设置于蜗壳上盖431的顶部且与蜗壳上盖431同轴设置,风叶设置于风叶腔中;如此外筒出风口21、风机进风口、蜗壳下盖432、风叶、蜗壳上盖431和第一驱动电机同轴设置,使得烘干气流由外筒出风口21顺利进入风叶腔并排出;

在第一驱动电机作用下,风叶一定速度转动并带动烘干气流在烘干流路中循环流动,烘干气流经外筒出风口21、第一风道41、风机进风口进入风叶腔,再经风机出风口排出。

两器盒包括两器盒盖444和两器盒体443;两器盒盖444和两器盒体443密封连接并形成有换热腔,沿烘干气流的流动方向换热腔分别形成有换热进风口和换热出风口;换热进风口与风机出风口密封连接,换热出风口与第二风道42密封连接;烘干气流由换热进风口进入换热腔并与两器完成热交换,烘干气流先经过冷凝除湿、加热后成为高温蒸汽;

进一步,烘干气流进入换热腔后,流经蒸发器441时,烘干气流中的水蒸气冷凝为水滴并向下沉降;烘干气流流经冷凝器442时,烘干气流被加热为高温气流;

两器盒体443的底部形成有集水槽,集水槽被构造为可将水滴迅速排走的结构;具体地,两器盒体443的底部倾斜设置,在两器盒体443的最低端设有排水管,排水管沿烘干气流的流动方向设置并与集水槽连通,可将集水槽中的冷凝水迅速排出。

如图2-3-2a和图2-3-2b所示,第二风道42靠近外筒进风口22的端部形成有第一固定部421,对应地,外筒23靠近其开口的端部形成有第二固定部231,第一固定部421和第二固定部231配合用于第二风道42的固定连接。

进一步,第一固定部421和第二固定部231均为孔型结构,预装配烘干系统时,第一固定部421和第二固定部231配合,并通过第三紧固件422将第二风道42固定在外筒23上。

此外,第二风道42被构造为当外筒23振动时第二风道42保持与外筒进风口22、两器组件44密封连接。

在一些实施例中,第二风道42的一端与换热出风口为柔性连接和/或第二风道42的另一端与外筒进风口22为柔性连接和/或第二风道42为柔性件或柔性连接件;和/或

在外筒23的周侧壁靠近外筒23的开口处设置有进风管,进风管的端部形成外筒进风口 22,进风管为柔性件;在外筒23振动时,第二风道42与其它部件的柔性连接,保证第二风道42与外筒进风口22、两器组件44保持密封连接;第二风道42为柔性件、柔性连接件或进风管为柔性件,可吸收外筒23的振动,避免外筒23振动影响烘干系统连接的可靠性和密封性,提高了烘干系统运行的可靠性;优选地,第二风道42为橡胶连接件。

进一步,衣物处理设备还包括可设置外筒23和烘干系统的框架11;框架11为U型结构,框架11形成相对设置的封闭端111和敞开端112。

如图2-3-3a所示,在预装配烘干系统时,第一固定部421和第二固定部231配合,将第二风道42预先固定连接在外筒23上,实现第二风道42与外筒23的硬连接,有效保证了烘干系统稳定地固定在外筒23上,避免两者的分离;将第一风道41与外筒出风口21柔性连接,此时可将外筒23和烘干系统整体装配在框架11中,外筒出风口21位于封闭端一侧,外筒进风口22位于敞开端一侧;

如图2-3-3b所示,在装配烘干系统时,先将第一固定部421和第二固定部231分离,后将第二风道42与外筒进风口22柔性连接;有效解决了在装配烘干系统和外筒23时,受框架11空间限制而难以操作的问题;使用第一风道41和第二风道42实现烘干系统与外筒 23的软连接,利用了橡胶连接件的拉伸性和延展性,使得在衣物处理设备进行洗涤和脱水等程序时产生的振动不影响烘干系统的密封性;第一固定部421和第二固定231部起到过渡性的硬连接作用。

衣物处理设备还包括可拆卸地设置于外筒出风口21处的过滤网241,可过滤烘干气流中的毛屑,过滤网241的结构与外筒出风口21的结构相适配;衣物处理设备在洗涤过程中,外筒23内的部分洗涤水可流经外筒出风口21并冲洗过滤网241,最大效率低冲刷过滤网241 上的毛屑,毛屑脱落后随洗涤水一起排出外筒23;省去了过滤网241的清洁装置,清洁过程简单和快速,避免了毛屑堵塞烘干流路,提高了过滤网241的过滤效果,保证烘干流路的清洁度和烘干过程的稳定运行。

衣物处理设备还包括内筒3和与内筒3驱动连接的第二驱动电机,外筒23用于承载洗涤水,内筒3用于承载衣物;第二驱动电机密封性地嵌设在外筒23中;衣物处理设备在烘干过程中,第二驱动电机驱动内筒3以一定速度转动,将衣物提升到一定高度,使得衣物被抖散,衣物与烘干气流充分接触,提升烘干效率。

实施例2-3-2

本实施例提供一种热泵洗衣机,包括:

两器盒,设有两器盒进风口,所述两器盒在所述两器盒进风口位置设有第一连接部;

风机组件,包括电机、上蜗壳和下蜗壳,所述电机固定在上蜗壳上,所述上蜗壳与下蜗壳可拆卸连接地扣合在一起形成具有蜗壳风道的蜗壳;

连接件,具有排风口的通风风道,所述连接件在所述排风口的位置设有第二连接部,所述第一连接部和所述第二连接部可拆卸连接,且所述两器盒进风口与所述排风口对接,所述连接件部分嵌入所述上蜗壳内表面,所述蜗壳风道与所述通风风道相贯通。

所述连接件包括具有通槽的第一连接体和具有通槽的第二连接体,所述第一连接体和所述第二连接体扣合在一起,且二者的通槽相对设置形成所述通风风道,所述第一连接体与所述第二连接体在所述排风口位置分别设有第二连接部,且二者的第二连接部分别与所述第一连接部可拆卸连接;

所述第一连接体与所述下蜗壳一体成型,所述第一连接体上的通槽与所述下蜗壳内表面所形成的空间相通,所述第二连接体一部分可拆卸地嵌入到所述上蜗壳的内表面,所述第二连接体上的通槽与所述上蜗壳内表面所形成的空间相通,或所述第一连接体和所述第二连接体扣合在一起后二者的一部分嵌入到所述蜗壳内表面,且二者的通槽延伸到所述蜗壳风道内。

所述上蜗壳在所述第二连接体一侧设有沿其轴向延伸的定位孔,所述第二连接体上与所述第一连接体相对的外表面一侧设有沿所述上蜗壳轴向延伸的定位凸起,所述定位凸起伸入到所述定位孔内,所述上蜗壳沿其轴向扣合在所述第二连接体上使所述定位凸起抵靠在所述定位孔的侧壁或边沿上。

所述上蜗壳与所述第二连接体可拆卸连接,且所述上蜗壳的安装方向为其轴向方向。

所述第一连接体和所述第二连接体在各自所述通槽的端部设有密封槽,所述第一连接体和所述第二连接体扣合在一起时,二者的所述密封槽相对接形成所述第二环形密封槽。

所述连接件包括具有通槽的第一连接体和具有通槽的第二连接体,所述第一连接体和所述第二连接体扣合在一起并在所述排风口位置形成所述第二连接部,且二者的通槽相对设置形成所述通风风道;

所述第一连接体、所述第二连接体与所述下蜗壳一体成型,所述第二连接体一部分可拆卸地嵌入到所述上蜗壳内表面,所述第一连接体和所述第二连接体二者的通槽延伸到所述蜗壳的所述通风风道内。

所述两器盒进风口四周形成有第一环形密封槽,所述第一环形密封槽内设有密封圈,所述连接件上所述排风口的四周形成有第二环形密封槽,所述第二环形密封槽与所述第一环形密封槽对接扣合在一起,所述第一连接部和所述第二连接部连接时将所述密封圈压紧形成密封连接。

所述第一连接部和所述第二连接部通过卡接和/或螺钉固定连接。

所述热泵洗衣机还包括:

外筒,所述两器盒、所述风机组件和所述连接件设置在所述外筒的上方并靠近所述外筒侧壁设置。

所述两器盒、所述风机组件和所述连接件形成烘干风道,所述烘干风道与所述外筒内部空间连通。

在本实施例中提供了一种热泵洗衣机,如图2-3-4-图2-3-12所示,包括:两器盒49,设有两器盒进风口a,所述两器盒49在所述两器盒进风口a位置设有第一连接部;风机组件23,包括电机432、上蜗壳4331和下蜗壳4332,所述电机432固定在上蜗壳4331上,所述上蜗壳4331与下蜗壳4332可拆卸连接地扣合在一起形成具有蜗壳风道的蜗壳;连接件 48,具有排风口w的通风风道,所述连接件48在所述排风口的位置设有第二连接部,所述第一连接部和所述第二连接部可拆卸连接,且所述两器盒进风口a与所述排风口对接,所述连接件48部分嵌入所述上蜗壳4331内表面,所述蜗壳风道与所述通风风道相贯通。

具体的,所述两器盒49包括两器盒体443和两器盒盖444,所述两器盒盖盖合在所述两器盒体443上。

在本实施例的一个实施方式中,如图2-3-10-图2-3-11所示,所述连接件48包括具有通槽的第一连接体481和具有通槽的第二连接体482,所述第一连接体481和所述第二连接体482扣合在一起,且二者的通槽相对设置形成所述通风风道,所述第一连接体481与所述第二连接体482在所述排风口位置分别设有第二连接部,且二者的第二连接部分别与所述第一连接部可拆卸连接;所述第一连接体481与所述下蜗壳4332一体成型,所述第一连接体 481上的通槽与所述下蜗壳4332内表面所形成的空间相通,所述第二连接体482一部分可拆卸地嵌入到所述上蜗壳4331的内表面(所述上蜗壳4331将所述第二连接体482的一部分扣合),所述第二连接体482上的通槽与所述上蜗壳4331内表面所形成的空间相通,或所述第一连接体481和所述第二连接体482扣合在一起后二者的一部分嵌入到所述蜗壳内,且二者的通槽延伸到所述蜗壳风道内。进一步可选的,所述上蜗壳4331在所述第二连接体482一侧设有沿其轴向延伸的定位孔d1,所述第二连接体482上与所述第一连接体481相对的外表面一侧设有沿所述上蜗壳4331轴向延伸的定位凸起d2,所述上蜗壳4331沿其轴向扣合在所述第二连接体482上使所述定位凸起d2抵靠在所述定位孔d1的侧壁或边沿上。进一步,所述上蜗壳4331与所述第二连接体482可拆卸连接,且所述上蜗壳4331的安装方向与自身的轴向方向相同。具体可选的,所述上蜗壳4331和所述第二连接体482之间通过螺钉进行连接,其中上蜗壳4331在所述两个定位孔d1之间设有螺钉孔d3,在所述两个定位凸起d2之间设有与所述定位凸起d2凸伸方向一致的螺钉柱d4,所述螺钉柱d4上设有螺纹孔,当所述定位凸起d2插入到所述定位孔d1内时,所述螺纹孔d4与所述螺钉孔d3相对设置,并通过第一紧固螺钉紧固后,使定位凸起d2卡紧在所述定位孔d1内,保证第二连接体482 的外表面与所述上蜗壳4331的内表面紧密贴合在一起。所述上蜗壳4331和下蜗壳4332扣合后通过第二紧固螺钉固定连接,其中所述第一紧固螺钉与所述第二紧固螺钉的安装方向相同,均在所述上蜗壳4331轴线方向一侧进行安装,在拆卸时,不需要将第一连接体481和第二连接体482从所述两器盒49拆卸即实现上蜗壳4331的拆卸,进而实现上蜗壳4331上的电机432的更换。具体可选的,当所述第一连接体481和所述第二连接体482扣合在一起后一部分嵌入到所述蜗壳内时,即上蜗壳4331和下蜗壳4332扣合在一起同时将第一连接体 481和所述第二连接体482夹在一起,其中上蜗壳4331和下蜗壳4332扣合后在其出风口的通道处设有环状定位槽,第一连接体481和所述第二连接体482扣合后在所述定位槽内形成环状定位凸起,所述环状定位凸起嵌入到所述定位槽内以实现第一连接体481和所述第二连接体482的固定。当仅是第二连接体482嵌入到所述上蜗壳4332的内表面,第一连接体481 与下蜗壳4331一体成型时,则第二连接体482在其通槽一侧形成半环状凸起,在所述上蜗壳4332的内表面形成有半环状定位槽,半环状凸起嵌入到半环状定位槽内,再通过上蜗壳 4332和下蜗壳4331扣合,使第一连接体481和所述第二连接体482扣合后各自的通槽相对设置形成所述通风风道。进一步,所述第一连接体481和所述第二连接体482在各自所述通槽的端部设有密封槽h,所述第一连接体481和所述第二连接体482扣合在一起时,二者的所述密封槽h相对接形成所述第二环形密封槽f。

在本实施例的又一实施方式中,如图2-3-12所示,所述连接件48包括具有通槽的第一连接体481和具有通槽的第二连接体482,所述第一连接体481和所述第二连接体482扣合在一起并在所述排风口w位置形成所述第二连接部,且二者的通槽相对设置形成所述通风风道;所述第一连接体481、所述第二连接体482与所述下蜗壳4332一体成型,所述第二连接体482一部分可拆卸地嵌入到所述上蜗壳4331内表面,所述第一连接体481和所述第二连接体482二者的通槽延伸到所述蜗壳的所述通风风道内。

进一步可选的,所述两器盒进风口a四周形成有第一环形密封槽e,所述第一环形密封槽e内设有密封圈,所述连接件48上所述排风口的四周形成有第二环形密封槽f,所述第二环形密封槽f与所述第一环形密封槽e对接扣合在一起,所述第一连接部和所述第二连接部连接时将所述密封圈压紧形成密封连接。

进一步可选的,所述第一连接部和所述第二连接部通过卡接和/或螺钉固定连接。在一个实施方式中,在所述两器盒进风口a周边设有若干个具有螺纹孔的螺柱d5,若干个所述螺柱形成所述第一连接部,在所述第一连接体481和所述第二连接体482所形成的排风口w 周边设有与所述螺柱相对应的螺钉孔,一部分螺钉孔位于所述第一连接体481上,一部分螺钉孔位于所述第二连接体482上,若干个所述螺钉孔形成所述第二连接部,所述第一连接部和所述第二连接部通过螺钉固定连接。可选的,在所述两器盒进风口a周边设有若干个卡槽 d6,在所述排风口w周边设有与若干个卡槽d6位置一一对应的卡接凸起d7,一部分卡接凸起d7位于所述第一连接体481上,一部分卡接凸起d7位于所述第二连接体482上,所述卡接凸起d7形成于所述第一连接体481和所述第二连接体482上,本实施例中也可以是螺柱d5和卡槽d6形成所述第一连接部,若干个卡接凸起d7和若干个所述螺钉孔形成所述第二连接部。

本实施例中所述热泵洗衣机还包括:外筒23,所述两器盒、所述风机组件和所述连接件48设置在所述外筒23的上方并靠近所述外筒23侧壁设置。可节省热泵洗衣机的空间,同时所述两器盒、所述风机组件和所述连接件48的连接可避免与所述外筒23外壁的间距狭小而造成上蜗壳不方便拆卸检修的问题。

进一步,所述两器盒、所述风机组件和所述连接件48形成烘干风道,所述烘干风道与所述外筒23内部空间连通。所述蜗壳内设有风叶431,如图2-3-5和图2-3-13所示,所述电机432驱动所述风叶431转动。

具体的,如图2-3-13所示,所述热泵洗衣机还包括:冷凝器442,设置在所述两器盒内,所述两器盒设有两器盒排风口,所述冷凝器442位于所述两器盒排风口一侧;蒸发器441,设置在所述两器盒内,所述蒸发器441位于所述进风口一侧;外筒23,所述两器盒设置在所述外筒的上方,所述蜗壳风道设有蜗壳进风口,所述两器盒排风口和所述蜗壳进风口分别与所述外筒23内部空间相通。所述蜗壳还设有蜗壳进风口,所述蜗壳进风口通过第一风道41与所述外筒23内部连通,所述两器盒排风口通过第二风道42与所述外筒23内部连通。

<外筒与烘干风道的连接>

实施例2-4-1

本实施例提供一种具有烘干功能的衣物处理设备,包括框架、设置在所述框架中的外筒和设置在所述框架与外筒之间的烘干风道;所述外筒的侧壁分别形成有外筒出风口和外筒进风口;所述烘干风道包括设置在所述外筒出风口和外筒进风口之间且依次连接在一起的第一风道、烘干风机组件、两器组件和第二风道;

所述第二风道的出风端与外筒进风口之间设有用于临时将所述烘干风道与外筒进风口固定连接的硬连接结构,以在装配所述衣物处理设备时先利用所述硬连接结构使所述烘干风道与外筒固定连接并随所述外筒一起装配在所述框架中;待所述烘干风道与外筒装配在所述框架中后,再拆开所述硬连接结构的固定连接,后将所述第二风道的出风端与外筒进风口柔性密封连接在一起。

所述硬连接结构包括第一固定部和第二固定部,所述第一固定部形成在所述第二风道的出风端;所述第二固定部形成在所述外筒靠近所述外筒进风口的进风端,所述第一固定部和第二固定部配合将所述烘干风道与外筒进风口临时固定连接。

所述第一固定部和第二固定部均为孔型结构,所述第一固定部和第二固定部配合,并通过第三紧固件使所述第一固定部和第二固定部固定连接在一起。

所述第二风道的出风端与外筒进风口之间设有柔性连接件和/或所述第二风道为柔性件或具有柔性结构,和/或

在所述外筒的周侧壁靠近所述外筒的开口处设置有进风管,所述进风管的端部形成所述外筒进风口,所述进风管为柔性件。

所述第一风道的进风端与外筒出风口之间设有柔性连接件和/或所述第一风道为柔性件或具有柔性结构。

所述第一风道具有两相对设置的连接端口,两个所述连接端口之间连接有环形柔性结构;所述环形柔性结构围成一贯通两个所述连接端口的通道,且所述环形柔性结构在两个所述连接端口之间形成有至少一个向外围突出的折叠部:

两个所述连接端口偏心设置,所述折叠部具有超出两个所述连接端口的最外边缘。

所述烘干风机组件包括同轴设置的蜗壳上盖和蜗壳下盖;所述蜗壳上盖和蜗壳下盖密封连接并形成有风叶腔,所述风叶腔的底部形成风机进风口;

所述第一风道的的进风端与所述外筒出风口通过第一紧固件密封连接;所述第一风道的出风端与所述风机进风口通过第二紧固件密封连接。

所述两器组件包括两器盒盖、两器盒体、蒸发器和冷凝器;所述两器盒盖和两器盒体密封连接并形成有换热腔,沿所述烘干气流的流动方向所述换热腔分别形成有换热进风口和换热出风口;所述换热进风口与所述风机出风口密封连接,所述换热出风口与所述第二风道密封连接。

所述框架包括依次设置的左侧壁、右侧壁和后侧壁,所述左侧壁、右侧壁和后侧壁围成前端、上端和下端均敞开的所述框架;

所述外筒和烘干风道整体装配在所述框架中时,所述外筒出风口靠近所述后侧壁,所述外筒进风口靠近所述框架的前端。

所述框架为U型结构。

如图2-3-1a和图2-3-1b所示,本实施例提供一种具有烘干功能的衣物处理设备,优选为滚筒洗衣机;衣物处理设备包括外筒23、设置在外筒23的上方的烘干风道;外筒23的侧壁分别形成有外筒出风口21和外筒进风口22;烘干风道包括设置在外筒出风口21和外筒进风口22之间且依次连接在一起的第一风道41、烘干风机组件43、两器组件44和第二风道42;具体地,外筒出风口21设置于外筒23的周侧壁靠近外筒23的底壁的一端,外筒进风口22设置于外筒23的周侧壁靠近外筒23的开口的一端,保证烘干气流与衣物充分接触的同时缩短了烘干流路,减少热量损失,提高烘干效率;优选地,外筒出风口21为圆型结构,外筒进风口22为矩型结构。

两器组件44包括形成有换热腔的两器盒和设置于换热腔内的两器;具体地,烘干气流流经两器盒时在换热腔中与两器完成热交换;

第一风道41靠近外筒出风口21设置,第二风道42靠近外筒进风口22设置;外筒出风口21、第一风道41、烘干风机组件43、两器盒、第二风道42和外筒进风口22依次密封连接并连通形成烘干流路;两器组件包括两器盒盖、两器盒体、蒸发器和冷凝器;

在烘干风机组件43作用下,烘干气流沿烘干流路循环流动,流经换热腔时与两器完成热交换而被除湿、加热,流经外筒23时与衣物完成热交换而烘干衣物;

综上所述,烘干风机组件43、两器组件44和风道上方并靠近外筒23的周侧壁设置,烘干风道结构简单、所需零部件少,占空间小;烘干流路整体沿外筒23的轴向设置,极大地缩短了烘干流路的长度,风阻小,有利于烘干气流在烘干流路中顺畅流动,降低了烘干气流的热量损失,提高了烘干气流与衣物及两器的热交换面积,延长了烘干气流与衣物及两器的热交换时间,烘干气流的冷凝除湿和加热效率高,衣物的烘干效率高和所需烘干时间短。

如图2-3-1a和图2-3-1b所示,外筒出风口21处设有外筒出风管,外筒出风管沿竖直方向延伸,使得烘干气流顺利排出;外筒进风口22处设有外筒进风管,外筒进风管沿衣物处理设备的轴向方向延伸,使得烘干气流迅速进入外筒23中;

第一风道的进风端与外筒出风口之间设有柔性连接件和/或第一风道为柔性件或具有柔性结构;解决了由于空间限制导致烘干风道安装不方便和难以操作的问题,保证了外筒23 振动时烘干风道不受振动影响而保持整体的密封性,密封严实,连接可靠;提高了烘干系统运行的可靠性;避免了外筒23振动时烘干风道连接不可靠和烘干气流泄漏的问题,同时第一风道41可吸收外筒23的振动,降低外筒23振动对烘干风道的影响;优选地,第一风道 41为橡胶连接件。

进一步,第一风道41具有两相对设置的连接端口,两个连接端口之间连接有环形柔性结构;环形柔性结构围成一贯通两个连接端口的通道,且环形柔性结构在两个连接端口之间形成有至少一个向外围突出的折叠部:两个连接端口偏心设置,折叠部具有超出两个连接端口的最外边缘。

烘干风机组件43包括沿竖直方向且同轴设置的蜗壳上盖431和蜗壳下盖432;蜗壳上盖431和蜗壳下盖432密封连接并形成有风叶腔,风叶腔的底部形成有朝向竖直方向的风机进风口;具体地,蜗壳上盖431、蜗壳下盖432、风机进风口和外筒出风口21同轴设置;风叶腔靠近两器盒的侧部形成朝向外筒23的轴向方向的风机出风口,缩短了烘干流路,减少了烘干气流的流动阻力,提高烘干效率;

第一风道41的一端与外筒出风口21通过第一紧固件411密封连接;第一风道41的另一端与风机进风口通过第二紧固件412密封连接;优选地,第一紧固件411和第二紧固件412为紧固卡箍。

进一步,烘干风机组件43还包括第一驱动电机和与第一驱动电机驱动连接的风叶;第一驱动电机设置于蜗壳上盖431的顶部且与蜗壳上盖431同轴设置,风叶设置于风叶腔中;如此外筒出风口21、风机进风口、蜗壳下盖432、风叶、蜗壳上盖431和第一驱动电机同轴设置,使得烘干气流由外筒出风口21顺利进入风叶腔并排出;

在第一驱动电机作用下,风叶一定速度转动并带动烘干气流在烘干流路中循环流动,烘干气流经外筒出风口21、第一风道41、风机进风口进入风叶腔,再经风机出风口排出。

两器盒包括两器盒盖444和两器盒体443;两器盒盖444和两器盒体443密封连接并形成有换热腔,沿烘干气流的流动方向换热腔分别形成有换热进风口和换热出风口;换热进风口与风机出风口密封连接,换热出风口与第二风道42密封连接;烘干气流由换热进风口进入换热腔并与两器完成热交换,烘干气流先经过冷凝除湿、加热后成为高温蒸汽;

进一步,两器包括沿烘干气流的流动方向依次设置的蒸发器441和冷凝器442;烘干气流进入换热腔后,流经蒸发器441时,烘干气流中的水蒸气冷凝为水滴并向下沉降;烘干气流流经冷凝器442时,烘干气流被加热为高温气流;

两器盒体443的底部形成有集水槽,集水槽被构造为可将水滴迅速排走的结构;具体地,两器盒体443的底部倾斜设置,在两器盒体443的最低端设有排水管,排水管沿烘干气流的流动方向设置并与集水槽连通,可将集水槽中的冷凝水迅速排出。

第二风道42的出风端与外筒进风口22之间设有用于临时将烘干风道与外筒进风口22 固定连接的硬连接结构,以在装配衣物处理设备时先利用硬连接结构使烘干风道与外筒23 固定连接并随外筒23一起装配在框架11中;待烘干风道与外筒23装配在框架11中后,再拆开硬连接结构的固定连接,后将第二风道42的出风端与外筒进风口22柔性密封连接在一起;

如图2-3-2a和图2-3-2b所示,硬连接结构包括第一固定部和第二固定部,第一固定部 421形成在第二风道42的出风端,第二固定部231形成在外筒23靠近外筒进风口22的进风端,第一固定部421和第二固定部231配合将烘干风道与外筒进风口22临时固定连接。

进一步,第一固定部421和第二固定部231均为孔型结构,第一固定部421和第二固定部231配合,并通过第三紧固件使第一固定部421和第二固定部231固定连接在一起。

在一些实施例中,第二风道42的出风端与外筒进风口22为柔性连接件和/或第二风道 42为柔性件或具有柔性结构;和/或

在外筒23的周侧壁靠近外筒23的开口处设置有进风管,进风管的端部形成外筒进风口 22,进风管为柔性件;在外筒23振动时,第二风道42与其它部件为柔性连接件,保证第二风道42与外筒进风口22、两器组件44保持密封连接;第二风道42为柔性件、具有柔性结构或进风管为柔性件,可吸收外筒23的振动,避免外筒23振动影响烘干风道连接的可靠性和密封性,提高了烘干系统运行的可靠性;优选地,第二风道42为橡胶连接件。

进一步,衣物处理设备还包括可设置外筒23和烘干风道的框架11;框架11包括依次设置的左侧壁、右侧壁和后侧壁,左侧壁、右侧壁和后侧壁围成前端、上端和下端均敞开的框架11;框架11在后侧壁为封闭端111,框架11在前端形成敞开端112;

外筒23和烘干风道整体装配在框架11中时,外筒出风口21靠近后侧壁,外筒进风口22靠近框架11的前端;

优选地,框架为U型结构。

如图2-3-3a所示,在装配衣物处理设备时,第一固定部421和第二固定部231配合,临时将烘干风道与外筒进风口22固定连接,有效保证了烘干风道稳定地固定在外筒23上,避免两者的分离;将第一风道41与外筒出风口21柔性连接,此时可将外筒23和烘干风道可整体装配在框架11中,且外筒出风口21位于封闭端111一侧,外筒进风口22位于敞开端112一侧;

如图2-3-3b所示,待烘干风道与外筒23装配在框架11中后,先将第一固定部421和第二固定部231分离,后将第二风道42与外筒进风口22柔性连接;有效解决了在装配烘干风道和外筒23时,受框架11空间限制而难以操作的问题;使用第一风道41和第二风道42 实现烘干风道与外筒23的软连接,利用了橡胶连接件的拉伸性和延展性,使得在衣物处理设备进行洗涤和脱水等程序时产生的振动不影响烘干风道的密封性;第一固定部421和第二固定231部起到过渡性的硬连接作用,解决预装烘干风道时直接采用软连接不利于烘干风道和外筒的吊装的问题。

衣物处理设备还包括可拆卸地设置于外筒出风口21处的过滤网241,可过滤烘干气流中的毛屑,过滤网241的结构与外筒出风口21的结构相适配;衣物处理设备在洗涤过程中,外筒23内的部分洗涤水可流经外筒出风口21并冲洗过滤网241,最大效率低冲刷过滤网241 上的毛屑,毛屑脱落后随洗涤水一起排出外筒23;省去了过滤网241的清洁装置,清洁过程简单和快速,避免了毛屑堵塞烘干流路,提高了过滤网241的过滤效果,保证烘干流路的清洁度和烘干过程的稳定运行。

衣物处理设备还包括内筒3和与内筒3驱动连接的第二驱动电机,外筒23用于承载洗涤水,内筒3用于承载衣物;第二驱动电机密封性地嵌设在外筒23中;衣物处理设备在烘干过程中,第二驱动电机驱动内筒3以一定速度转动,将衣物提升到一定高度,使得衣物被抖散,衣物与烘干气流充分接触,提升烘干效率。

实施例2-4-2

本实施例提供一种连接件,所述连接件具有两相对设置的连接端口,所述两连接端口之间连接有环形柔性结构;

所述环形柔性结构围成一贯通所述两连接端口的通道;

且所述环形柔性结构在所述两连接端口之间形成有至少一个向外围突出的折叠部:

所述两连接端口偏心设置,所述折叠部具有超出所述两连接端口的最外边缘。

所述折叠部形成有向外侧凸出的突起结构,所述突起结构形成超出所述两连接端口的最外边缘。

还包括设置于所述两连接端口的凸起部,所述折叠部的截面横向跨度大于任意一凸起部的截面横向跨度。

任意一所述凸起部均设置有定位孔与卡槽。

包括:壳体,设置于所述壳体内的筒组件以及设在所述筒组件与所述壳体之间的热泵组件;

所述筒组件包括外筒和内筒;所述外筒设有排气口;

所述热泵组件包括风机组件;所述风机组件包括蜗壳;

在所述外筒的排气口与所述蜗壳的进风口之间连接有如权利要求1-4任意一项所述的连接件。

所述外筒设有进气口;

所述热泵组件还包括两器组件;所述两器组件与所述外筒的进气口之间连接有前风道;

所述蜗壳、所述连接件、所述两器组件和所述前风道构成所述外筒的外循环风道。

所述两器组件包括蒸发器和冷凝器;所述蒸发器和所述冷凝器设置在两器盒内;

在所述外循环风道中,所述蜗壳的出风口与所述两器盒的进口连接,所述两器盒的出口通过所述前风道与所述外筒的进气口连接,所述蒸发器设置在蜗壳的出风口侧,所述冷凝器设置在所述外筒的进气口侧。

所述蜗壳包括电机和风叶;所述电机驱动所述风叶转动,所述风叶抽取所述筒组件内的湿气;

所述湿气被气力输送至所述两器盒内,并在气力运作下,所述湿气依次经过所述蒸发器与所述冷凝器后经所述前风道返回所述筒组件内;

所述热泵组件还包括压缩机组件;所述压缩机组件包括压缩机;

所述压缩机压缩冷媒依次经过所述冷凝器与所述蒸发器;

所述冷凝器与所述蒸发器之间连接节流装置。

所述蜗壳的出风口处及所述外筒的排气口处分别设置有定位凸起;两处所述定位凸起分别与所述连接件的两凸起部的定位孔对应配合。

所述连接件的所述两凸起部分别通过卡箍与所述蜗壳的进风口及所述外筒的出风口卡固连接;所述卡箍卡固在所述凸起部的卡箍槽内。

所述筒组件通过悬挂系统安装在所述壳体内;所述悬挂系统包括悬挂件和支撑件;所述悬挂件为对所述外筒进行悬挂的弹性件,所述支撑件为对所述外筒进行支撑的阻尼件。

所述悬挂件和所述支撑件分别在所述外筒两侧对称倾斜设置,且所述悬挂件和所述支撑件上下交错的设置。

所述悬挂件设有一对,所述支撑件设有两对,一对所述悬挂件位于两对所述支撑件之间;一对所述悬挂件在所述外筒顶部两侧对称悬挂;两对所述支撑件分别在所述外筒底部两侧对称支撑。

所述弹性件为挂簧,所述挂簧一端与所述外筒挂接,另一端与设置在所述壳体顶部的加强件挂接;

所述阻尼件为减震器,所述减震器一端与所述外筒转动连接,另一端与设置在所述壳体底部的加强件转动连接。

该连接件应用于热泵式洗干一体机。参考图2-4-1-2-4-23,图2-4-1示出了连接件仰视下的立体结构示意图,图2-4-2示出了连接件俯视下的立体结构示意图,图2-4-3示出了连接件的剖视结构示意图。

该连接件具有两相对设置的连接端口,两连接端口之间连接有环形柔性结构。环形柔性结构围成一贯通两连接端口的通道,并且环形柔性结构在两连接端口之间形成有至少一个向外围突出的折叠部2。

如图2-4-3所示,两连接端口偏心设置,折叠部2具有超出两连接端口的最外边缘。该连接件采用上述结构设置,能够具有良好的动态调节功能,同时有助于减小该连接件的设置长度,满足在有限空间的使用需求。在具体设置折叠部2时,折叠部2形成有向外侧凸出的突起结构,由该折叠结构形成超出两连接端口的最外边缘。

此外,该连接件还包括设置于两连接端口的凸起部1,折叠部2的截面横向跨度大于任意一凸起部1的截面横向跨度。除此之外,任意一凸起部1均设置有定位孔3与卡槽4。

另外,本申请提供了一种热泵式洗干一体机,如图2-4-4-2-4-25所示,该热泵式洗干一体机包括:壳体5,设置于壳体5内的筒组件以及设在筒组件与壳体5之间的热泵组件。筒组件包括外筒6和内筒;外筒6设有排气口。热泵组件包括风机组件;风机组件包括蜗壳7。在外筒6的排气口与蜗壳7的进风口之间连接有如上的连接件。该连接件的安装使用,使该热泵式洗干一体机设置热泵组件后保持与行业内现有热泵洗干一体机的常规高度一致。

进一步的,外筒6设有进气口。热泵组件还包括两器组件8;两器组件8与外筒6的进气口之间连接有前风道10;蜗壳7、连接件、两器组件8和前风道10构成外筒6的外循环风道。相对外循环风道而言,筒组件内构成内循环风道,内循环风道和外循环风道构成该热泵式洗干一体机的烘干循环风道。

在具体设置两器组件8时,两器组件8包括蒸发器81和冷凝器82;蒸发器81和冷凝器82设置在两器盒83内。在外循环风道中,蜗壳7的出风口与两器盒83的进口连接,两器盒83的出口通过前风道10与外筒6的进气口连接,蒸发器81设置在蜗壳7的出风口侧,冷凝器82设置在外筒6的进气口侧。

在具体设置蜗壳7时,蜗壳7包括电机和风叶,电机和风叶安装在蜗壳7内。电机驱动风叶转动,风叶抽取筒组件内的湿气。湿气被气力输送至两器盒83内,并在气力运作下,湿气依次经过蒸发器81与冷凝器82后经前风道10返回筒组件内。在内循环风道中,湿气自外筒6进入内筒。

在具体设置热泵组件时,热泵组件还包括压缩机组件;压缩机组件包括压缩机9。压缩机9压缩冷媒依次经过冷凝器82与蒸发器81。在具体设置时,冷凝器82与蒸发器81之间连接节流装置。

在本申请实施方案中,烘干衣物的原理是:利用压缩机9的冷媒通过蒸发器81和冷凝器82时的物理性能,具体为:冷媒经过蒸发器81时使蒸发器81吸热,冷媒经过冷凝器82时使冷凝器82散热;综上,进行烘干运行时,筒组件内湿气被电机和风叶气力输送至蒸发器81,蒸发器81此时吸热,带走湿气中的热量,水蒸气冷凝变成水珠遗留在蒸发器81,干燥后的气体则接着被输送至冷凝器82,冷凝器82此时放热,会加热干燥气体,加热之后的气体通过前风道10被输送至筒组件内空间,筒组件内空间慢慢变热,使遗留在衣物上的水变成水汽,水汽被电机和风叶吸走后进行新一轮的循环,以此完成除湿干燥衣物的目的。

水蒸气冷凝变成水珠遗留在蒸发器81内汇集形成冷凝水,冷凝水滴落在两器盒83内,两器盒83的底部形成有集水槽,集水槽被构造为可将冷凝水迅速排走的结构;具体地,两器盒83的底部倾斜设置,在两器盒83的最低端设有排水管,排水管沿烘干气流的流动方向设置并与集水槽连通,可将集水槽中的冷凝水迅速排出。

在一个具体的实施方案中,蜗壳7的出风口处及外筒6的排气口处分别设置有定位凸起;两处定位凸起分别与连接件的两凸起部1的定位孔3对应配合。以实现将连接件快速安装的目的。

此外,连接件的两凸起部1分别通过卡箍12与蜗壳7的进风口及外筒6的出风口卡固连接。卡箍12卡固在凸起部的卡箍槽4内。

在一个另外的实施方案中,筒组件通过悬挂系统安装在壳体1内。悬挂系统包括悬挂件 11和支撑件13;悬挂件11为对外筒6进行悬挂的弹性件,支撑件13为对外筒6进行支撑的阻尼件。

在具体设置悬挂件11和支撑件13时,悬挂件11和支撑件13分别在外筒6两侧对称倾斜设置,且悬挂件11和支撑件13上下交错的设置,外筒6可以在偏离自身轴线的任意方向运动。通过设置悬挂件11和支撑件13,可有效缓解筒组件相对壳体5产生的振动。

进一步的,悬挂件11设有一对,支撑件13设有两对,一对悬挂件11位于两对支撑件13之间;一对悬挂件11在外筒6顶部两侧对称悬挂;两对支撑件13分别在外筒6底部两侧对称支撑。

优选的,弹性件为挂簧,挂簧一端与外筒6挂接,另一端与设置在壳体5顶部的加强件挂接;阻尼件为减震器,减震器一端通过转轴与外筒6转动连接,另一端通过转轴与设置在壳体5底部的加强件转动连接。

在上述实施方案中,本申请提供的洗干一体机与行业内现有热泵洗干一体机的常规高度一致,在常规高度的洗干一体机上集成其他模块,由于高度空间受限,集成其他模块过多过大,都会影响洗干一体机壳体5内零部件的布局,当集成热泵组件后,由于受到高度设计标准的影响,在壳体5内布局时,空间受限,特别地,外筒6和蜗壳7之间的间隙较小,本申请提供的热泵式洗干一体机中两者之间间隙范围为15mm~35mm,所留间隙对连接件的设计和安装带来了不小的挑战,通过安装使用本申请提供的连接件,该连接件两端的两连接端口偏心设置,对外筒6和蜗壳7进行结构避让,在筒组件不转动时,能合理的安装在外筒6和蜗壳7两者之间的间隙空间内,在内筒转动时,外筒6会产生偏心,外筒6和蜗壳7两者之间的间隙空间会变动,该连接件通过折叠部2伸缩形变以适应该变动。

目前,现有常规高度的热泵洗干一体机都是先安装外筒,再装热泵模块,之后再安装软连结结构,目前采用的这种方式在安装软连结结构时,壳体内空间被外筒和热泵模块占用过多,手和工具无法深入壳体内安装该软连结结构零件。而在对本申请提供的连接件和热泵式洗干一体机进行预装配时,先吊装起外筒6,为了便于吊装起外筒6,在外筒6上设置吊装耳,然后用一临时硬连接结构件16将热泵组件和外筒6连接,这样方便安装本申请提供的连接件,将本申请连接件连接在后筒3的出风口和蜗壳7进风口之间,装配完成后,将外筒 6及热泵组件整体吊装进壳体5内的预定位置后即可拆除临时硬连接结构件16,再将两器组件8的两器盒83与壳体5固定,这样可以方便安装本申请提供的连接件。本申请连接件可以更好的适应外筒6和涡壳7的安装间隙以及实现更好的动态调节,内筒转动时,本申请连接件所起到的动态调节具体表现为折叠部2的上、下、左、右、前、后方向的形变。

在具体装配时,如图2-4-8、图2-4-9所示,前风道10靠近外筒6的进气口的端部形成有第一固定部14,对应的,外筒6靠近其开口的端部形成有第二固定部15,第一固定部 14和第二固定部15相配合通过临时硬连接结构件16将前风道10与外筒6固定连接。临时硬连接结构件16为螺栓紧固件16,第一固定部14和第二固定部15均为孔型结构。进行预装配时,第一固定部14和第二固定部15配合,通过临时硬连接结构件16连接固定,当将外筒6及热泵组件整体吊装进壳体5内的预定位置后即可拆除临时硬连接结构件16,再将两器组件8的两器盒83与壳体5固定,这样可以方便安装本申请提供的连接件。

从上述描述不难看出,本申请提供的洗干一体机通过安装使用本申请提供的连接件,在保证与现有热泵式洗干一体机常规高度一致的前提下,实现对热泵式洗干一体机壳体内部零部件结构的合理安装。

【振动模块】

<减振方式一-上下配重>

实施例3-1

本实施例提供一种衣物处理设备,包括:壳体、门体、桶组件以及配重组件;其中,

所述桶组件包括外桶和内桶;所述外桶包括前桶和后桶;所述配重组件包括上配重件和下配重件;所述上配重件固定在所述外桶顶部,所述下配重件固定在所述前桶底部且靠近所述门体一侧。

所述上配重件为长条形块状结构并沿所述外桶的前后方向固定在所述前桶及所述后桶的顶端。

所述前桶及所述后桶的顶部的外侧壁上分别设置有第一定位凸起;所述上配重件设置有与所述第一定位凸起配合的第一定位孔。

所述下配重件具有与所述前桶的外壁贴合的弧形面,所述下配重件固定在所述前桶的靠近所述门体侧的底部的外侧壁上。

所述下配重件还有具有包裹所述前桶部分端面的凸起,所述前桶的前端面设置有第二定位凸起;所述下配重件的凸起设有与所述第二定位凸起配合的第二定位孔。

还包括热泵组件,所述热泵组件包括两器组件,所述两器组件包括两器盒以及设置在所述两器盒内的冷凝器和蒸发器,所述两器组件设置在所述壳体与所述外桶之间的右上角空间或左上角空间;

所述壳体内还设有水盒组件,所述水盒组件与所述两器组件相对的设置在所述外桶的两侧;所述水盒组件包括蒸汽盒;

所述上配重件位于所述水盒组件及所述两器组件之间,且分别与所述水盒组件及所述两器组件之间具有间隙。

还包括风机组件,所述风机组件位于所述外桶的上方且位于所述两器组件的后侧;所述热泵组件还包括压缩机组件,所述压缩组件设置在所述外桶的下方并位于所述两器组件的同侧;所述两器组件和所述风机组件以及所述压缩机组件构成衣物处理设备的烘干模块;其中,

所述风机组件和所述压缩机组件均固定在所述壳体内。

所述壳体包括主框架、顶盖、底座和加强板,所述主框架包括左侧板、右侧板以及后侧板,所述左侧板、右侧板以及后侧板围成一朝向前端开口且上下开口的空间,所述加强板连接在所述左侧板和右侧板之间的开口端之间。

所述外桶距所述左侧板具有最小间隙A,A为18mm~20mm,所述外桶距所述右侧板具有最小间隙B,B为21mm~23mm;所述外桶距压缩机具有最小间隙C,C为31mm~33mm;所述下配重件距所述加强板具有最小间隙D,D为18mm~20mm;所述上配重件距所述烘干模块具有最小间隙E,E为16mm~18mm;所述上配重件距所述蒸汽盒具有最小间隙F,F为43mm~45mm;所述上配重件距所述顶盖具有最小间隙G,G为27mm~29mm。

所述桶组件通过悬撑组件安装在所述壳体内;所述悬撑组件包括悬挂件和支撑件;所述悬挂件为对所述外桶进行悬挂的弹性件,所述支撑件为对所述外桶进行支撑的阻尼件。

所述悬挂件倾斜设置在所述壳体与所述前桶之间的上方空间并与所述两器组件设置的位置相错;所述支撑件倾斜设置在所述壳体与所述外桶之间,且位于所述外桶下方;所述悬挂件和所述支撑件设置的位置相错。

所述悬挂件设有一对,一对所述悬挂件对称设置在所述前桶与所述壳体之间的左上方及右上方空间;

所述支撑件设有两对,其中一对所述支撑件对称设置在所述后桶与所述壳体之间的左下方及右下方空间,另外一对所述支撑件对称设置在所述前桶与所述壳体之间的左下方及右下方空间。

所述外桶的前桶左下方与后桶左下方设置的两个支撑件倾斜角度相同,所述外桶的前桶右下方与后桶右下方设置的两个支撑件倾斜角度不同。

所述弹性件为挂簧,所述挂簧一端与所述前筒挂接,另一端与所述壳体上方的加强板挂接;

所述阻尼件为阻尼器,所述阻尼器一端与所述前筒或所述后筒转动连接,另一端与所述壳体下方的加强板转动连接。

本发明提供了一种衣物处理设备,该衣物处理设备采用与市场上销售的洗衣机的常规高度一致的高度设计,市场上销售的洗衣机的常规高度通常是800mm-900mm之间,作为优选的常规高度通常是850mm。参考图3-1-1至3-1-7,该衣物处理设备包括门体及壳体1。其中,壳体1包括主框架、顶盖、底座和加强板,主框架包括左侧板、右侧板以及后侧板,左侧板、右侧板以及后侧板围成一朝向前端开口且上下开口的空间,加强板连接在左侧板和右侧板之间的开口端之间。上述结构围成衣物处理设备的主体结构,以用于容纳衣物处理设备的其他器件。

衣物处理设备还包括设置在壳体1内的桶组件、水盒组件、热泵组件以及配重组件等器件。其中,桶组件包括外桶2和装配在外桶2内的内桶;外桶2包括前桶和后桶,其中,前桶靠近门体,后桶远离门体。在装配时,前桶和后桶拼装通过螺栓固定组成外桶2。热泵组件包括两器组件,两器组件包括两器盒11以及设置在两器盒11内的冷凝器10和蒸发器 9,两器组件设置在壳体1与外桶2之间的右上角空间或左上角空间,水盒组件与两器组件相对的设置在外桶2的两侧。其中,两器盒11向壳体1的外桶2底部引有冷凝水回流管3。水盒组件还包括蒸汽盒。

配重组件包括上配重件4和下配重件5;其中,上配重件4固定在外桶2顶部,下配重件5固定在前桶底部且靠近门体一侧。上配重件4为长条形块状结构并沿外桶2的前后方向固定在前桶及后桶的顶端。外桶2的前后方向指代为:外桶2靠近门体的方向为前,远离门体的方向为后。如图3-1-2所示,前桶及后桶的顶部的外侧壁上分别设置有第一定位凸起 13;如图3-1-6所示,上配重件4设置有与第一定位凸起13配合的第一定位孔14。如图3-1-7 所示,下配重件5具有与前桶的外壁贴合的弧形面,下配重件5固定在前桶的靠近门体侧的底部的外侧壁上。下配重件5还有具有包裹前桶部分端面的凸起,结合图3-1-5,前桶的前端面设置有第二定位凸起15;下配重件5的凸起设有与第二定位凸起15配合的第二定位孔 16。这样便于上配重件4和下配重件5与外桶2连接。此外,上配重件4和下配重件5均具有与外桶2配合的弧形贴合面,便于使上配重件4及下配重件5与外桶2连接后贴合紧密。

在装配上配重件4时,将第一定位孔14套装在第一定位凸起13上,对上配重件4进行定位,之后通过螺栓将上配重件4固定在前桶及后桶上。上配重件4固定位于水盒组件及两器组件之间,且分别与水盒组件及两器组件之间具有间隙,并且上配重件4与顶盖之间具有间隙,此两处间隙的作用为容纳桶组件的振动以及上配重件4的振动,避免产生干涉。在装配下配重件5时类似于装配上配重件4,将第二定位孔16套装在第二定位凸起15上,对下配重件5进行定位,之后通过螺栓将下配重件5固定在前桶上。此外,在装配下配重件5 时,下配重件5的凸起位于门体与前桶之间,且凸起与门体之间具有间隙,该间隙是为了容纳桶组件以及下配重件5的振动,避免振动时产生干涉。

在本发明实施方案中,配重组件仅包括上配重件4和下配重件5,与现有技术中的衣物处理设备相比,有助于减少配重块的使用数量,使本发明提供的衣物处理设备在减少配重块的使用后,能够在不增加整体高度的前提下,即保持与现有技术中的衣物处理设备一致的标准高度,不但有助于减轻配重,同时有助于在壳体1内合理安装下其他的结构部件,并且,由于减少配重块的使用,还有助于增大洗涤容量的设计。

在一个具体的可实施方案中,本衣物处理设备还包括风机组件,风机组件位于外桶2 的上方且位于两器组件的后侧。热泵组件还包括压缩机组件,压缩机组件设置在外桶2的下方并位于两器组件的同侧;两器组件和风机组件以及压缩机组件构成衣物处理设备的烘干模块。其中,风机组件和压缩机组件均固定在壳体1内。

在此,本发明还对本衣物处理设备的烘干模块进行说明。

首先,外桶2设有排气口;排气口设在后桶上。风机组件包括蜗壳7;在外桶2的排气口与蜗壳7的进风口之间连接有连接件6。优选的,连接件6具有两相对设置的连接端口,两连接端口之间连接有环形柔性结构;环形柔性结构围成一贯通两连接端口的通道;且环形柔性结构在两连接端口之间形成有至少一个向外围突出的折叠部:两连接端口偏心设置,折叠部具有超出两连接端口的最外边缘。折叠部形成有向外侧凸出的突起结构,突起结构形成超出两连接端口的最外边缘。连接件6还包括设置于两连接端口的凸起部,折叠部的截面横向跨度大于任意一凸起部的截面横向跨度。该连接件6采用上述结构设置,能够具有良好的动态调节功能,同时有助于减小该连接件6的设置长度,满足在有限空间的使用需求。

其次,外桶2设有进气口;进气口设在前桶上。两器组件与外桶2的进气口之间连接有前风道。蜗壳7、连接件6、两器组件和前风道构成外桶2的外循环风道。相对外循环风道而言,桶组件内构成内循环风道,内循环风道和外循环风道构成该衣物处理设备的烘干循环风道。在外循环风道中,蜗壳7的出风口与两器盒11的进口连接,两器盒11的出口通过前风道与外桶2的进气口连接。冷凝水回流管3与两器盒11连通。冷凝水回流管3固定在外桶2的右侧,具体固定安装在前桶的右侧。蜗壳7包括电机和风叶;电机驱动风叶转动,风叶抽取桶组件内的湿气;湿气被气力输送至两器盒11内,并在气力运作下,湿气依次经过蒸发器9与冷凝器10后经前风道返回桶组件内。在上述内循环风道中,湿气自外桶2进入内桶。压缩机组件包括压缩机8;压缩机8压缩冷媒依次经过冷凝器10与蒸发器9;冷凝器 10与蒸发器9之间连接节流装置。

本发明的衣物处理设备的“热泵”并不需要制冷剂换向。本发明利用热泵系统烘干衣物的原理是:利用压缩机8的冷媒通过蒸发器9和冷凝器10时的物理性能,具体为:冷媒经过蒸发器9时使蒸发器9吸热,冷媒经过冷凝器10时使冷凝器10散热;综上,进行烘干运行时,桶组件内湿气被电机和风叶气力输送至蒸发器9,蒸发器9此时吸热,带走湿气中的热量,水蒸气冷凝变成水珠遗留在蒸发器9,被干燥后的气体继续被输送至冷凝器10,冷凝器10此时放热,会加热被干燥后的气体,加热之后的气体通过前风道被输送至桶组件内,桶组件内空间慢慢变热,使遗留在衣物上的水变成水汽,水汽被电机和风叶吸走后进行新一轮的循环,以此完成除湿干燥衣物的目的。

在本发明实施方案中,冷凝水回流管3具体固定在前桶右侧,水蒸气冷凝变成水珠遗留在蒸发器9内并汇集形成冷凝水,冷凝水滴落在两器盒11内,两器盒11的底部形成有集水槽,集水槽被构造为可将冷凝水迅速排走的结构。具体地,两器盒11的底部倾斜设置,在两器盒11的最低端连接设置冷凝水回流管3,冷凝水回流管3沿烘干气流的流动方向设置并与集水槽连通,可将集水槽中的冷凝水迅速排出。由于前桶右侧布置了冷凝水回流管3,使本发明的配重方式发生改变,具体变化为由常规的三块配重(即上配重以及左、右配重)改变为现在的上下配重,有助于减少配重块的使用数量,从而有助于减轻配重。下配重件5对前桶部分围绕,原因为在桶组件下方布置更多质量的配重,以用来使整机的质心与桶组件的轴线靠近。

参考图3-1-13,图3-1-13示出了桶组件的受力分析示意图,在本发明实施方案中外桶2通过连接件6与蜗壳7连接,蜗壳7与主框架固定连接,内桶转动运行时,外桶2 受到连接件6向上的拉力F1,并且由于外桶2底部设置有下配重件5,而使外桶2受到下配重件5向下的拉力F2,向上的拉力F1和向下的拉力F2对外桶2形成拉力平衡,使整机运行更加平稳。此外,上配重件4对外桶2具有向下的力G,从而增加桶组件的重量,降低桶组件的振幅。

参考图3-1-8,针对上配重件4和下配重件5的重量分布及布置进行研究,仿真结果如图3-1-8所示。通过静平衡仿真得知,第一,桶组件质心下移幅度越大,绕桶轴扭转模态振幅越大;第二,桶组件质心下移幅度越大,桶组件稳态振幅越大。以此为基础,根据洗衣机的实际质心进行配重设计及布局,确定了上下配重的质量。示例性的,外桶距左侧板具有最小间隙A,A为18~20mm,外桶距右侧板具有最小间隙B,B为21~23mm;外桶距压缩机具有最小间隙C,C为31~33mm;下配重件距加强板具有最小间隙D,D为18~20mm;上配重件距烘干模块具有最小间隙E,E为16~18mm;上配重件距蒸汽盒具有最小间隙F,F为43~45mm;上配重件距顶盖具有最小间隙G,G为27~29mm。

参考图3-1-9至3-1-12,将现有技术中的配重与本发明新配重形式即上下配重的这种形式,进行动态振动仿真比较,并对动态仿真振幅结果进行汇总如表1所示。

表1

由表1中数据可知,新配重方案的振幅较原配重方案更低,减震效果也是优于原配重的方案,新配重方案的振幅优化效果明显。

在一个另外的可实施方案中,桶组件通过悬撑组件安装在壳体1内;悬撑组件包括悬挂件和支撑件12;悬挂件为对外桶2进行悬挂的弹性件,支撑件12为对外桶2进行支撑的阻尼件。悬挂件倾斜设置在壳体1与前桶之间的上方空间并与两器组件设置的位置相错;支撑件12倾斜设置在壳体1与外桶2之间,且位于外桶2下方;悬挂件和支撑件12设置的位置相错。

内桶被衣物处理设备电机驱动旋转时,外桶2会发生振动,在本发明中,通过悬撑组件,外桶2可在偏离自身轴线的任意方向运动,能使外桶2减少振动,降低噪音,获得理想的静音效果。悬挂件与支撑件12倾斜设置且设置的位置相错,能够适应壳体1内部有限的空间,使本发明提供的衣物处理设备满足常规高度的设置条件。

在一个具体的可实施方案中,悬挂件设有一对,一对悬挂件对称设置在前桶与壳体1 之间的左上方及右上方空间;支撑件12设有两对,其中一对支撑件12对称设置在后桶与壳体1之间的左下方及右下方空间,另外一对支撑件12对称设置在前桶与壳体1之间的左下方及右下方空间。外桶2的前桶左下方与后桶左下方设置的两个支撑件12倾斜角度相同,外桶2的前桶右下方与后桶右下方设置的两个支撑件12倾斜角度不同。

作为优选,弹性件为挂簧,挂簧一端与前筒挂接,另一端与壳体1上方的加强板挂接;阻尼件12为阻尼器,阻尼器一端与前筒或后筒转动连接,另一端与壳体2下方的加强板转动连接。

安装支撑件12时,阻尼器通过销轴与前桶或后桶及壳体2下方的加强板转动连接,销轴允许阻尼器在外桶2和壳体1之间扭动,所不同的是,外桶2的前桶左下方与后桶左下方设置的两个支撑件12倾斜角度相同,外桶2的前桶右下方与后桶右下方设置的两个支撑件12倾斜角度不同。具体的,设置在外桶2左侧的两个支撑件12与竖直方向夹角优选为24°,设置在外桶2右侧的两个支撑件12与竖直方向夹角范围为20°-25°,与前桶右侧连接的支撑件12与竖直方向夹角优选为20°,与前桶右侧连接的支撑件12与竖直方向夹角优选为24°。

通过设置悬撑组件,能对桶组件实现减震效果,在内桶转动时,有助于降低噪音,获得理想的静音效果。

<减振方式二-阻尼器座>

实施例3-2

本实施例提供一种减震器座,用于衣物处理设备的减震器与壳体的连接,所述衣物处理设备的壳体设置有安装板,所述减震器座安装在所述安装板上,

所述减震器座包括:固定部,和设置在所述固定部上的两个支撑部;

两个所述支撑部之间形成用于安装所述减震器的空间,

所述固定部上设置有卡接结构和固定孔,用于与所述安装板卡装配合并固定连接。

所述固定部为板状结构,所述支撑部固定连接在所述固定部的第一面上,所述卡接结构设置在所述固定部的第二面上,所述固定孔为形成在所述固定部上的通孔。

所述卡接结构包括卡接爪和定位抓,

所述卡接爪设置两个,两个所述卡接爪的卡接方向相反,所述定位抓设置在两个所述卡接爪之间。

所述固定部的第一面和/或第二面上设置有固定加强筋,所述固定加强筋形成网格状结构。

所述支撑部为板状结构,与所述固定部垂直设置,所述支撑部上形成有连接孔,

两个所述支撑部上的连接孔的轴线共线。

所述支撑部的第一面和/或第二面上设置有支承加强筋,所述支撑加强筋形成网格结构。

所述支撑部和/或所述固定部内部形成有蜂窝结构。

所述减震器座为一体成型结构。

一种衣物处理设备,包括:

壳体,所述壳体内侧设置有安装板,所述安装板固定连接在所述壳体的内侧壁底部;

上述任一项所述的减震器座,所述减震器座固定在所述安装板上。

所述安装板上形成有加强结构,所述加强结构上形成安装面,所述安装面上形成与所述卡接结构配合的卡孔和与所述固定孔配合的安装孔。

如图3-2-1、图3-2-2所示,本实施例提供一种减震器座,用于衣物处理设备的减震器安装,衣物处理设备的壳体设置有安装板2,减震器座1安装在安装板2上,安装板2的设置起到对减震器座1安装位置结构强度的加强作用,可以提高衣物处理设备壳体的整体的结构强度。

减震器座1包括:固定部11,和设置在固定部11上的两个支撑部12,两个支撑部12之间形成用于减震器安装的空间,固定部11上设置有卡接结构和固定孔114,用于与安装板2进行连接。卡接结构可以实现减震器座1的初步连接以及安装定位,固定孔114可以配合连接件实现减震器座1的二次连接,两者配合实现卡接配合和固定连接,既可以提高减震器座1安装的便利性又能够提高减震器座1安装的可靠性。

在本实施例中,固定部11为板状结构,支撑部12固定连接在固定部11的第一面上,优选位于固定部11相互平行的两侧边缘,两个支撑部12和固定部11构成类似U型结构,在其内侧形成安装空间。卡接结构设置在固定部11的第二面上,固定孔114为形成在固定部11上的通孔。

卡接结构包括卡接爪111和定位抓113,卡接爪111设置两个,两个卡接爪111的卡接方向相反,定位抓113设置在两个卡接爪111之间。优选地,定位抓113的高度高于两个卡接爪111,在安装时首先通过定位抓113实现安装定位,然后通过卡接爪111实现卡接固定,再通过螺钉或其他连接件与固定孔114配合进行固定。

固定部11的第一面和/或第二面上设置有固定加强筋115,固定加强筋115形成网格状结构,以提高固定部11的强度,优选地,在本实施例中,固定部11的第一面上设置固定加强筋115,即固定加强筋115位于两个支撑部12之间,优选与两个支撑部12连接,可以对支撑部12和固定部11连接处起到加强作用。

支撑部12为板状结构,与固定部11垂直设置,支撑部12上形成有支撑连接孔121,两个支撑部12上的支撑连接孔121的轴线共线,连接孔用于配合销轴等连接件实现与减震器的铰接。

优选地,支撑部12的第一面和/或第二面上设置有支承加强筋,支撑加强筋122形成网格结构,在本实施例中,支撑加强筋122设置在支撑部12的第二面上,即安装空间外侧的壁面上。

优选地,减震器座1为一体注塑成型结构,进一步为强度较高的塑料材质,减小减震器座1的刚度,从而可以减少传递到壳体上的振动,进一步提高减震效果。或者,减震器座1 还可以由钣金件和注塑件一体成型。

进一步地,在其他实施中,减震器座1的内部具有较小的蜂窝结构,可以大幅度提高减震器座1的整体强度。

本实施例还提供一种衣物处理设备,包括:

壳体,壳体内侧设置有安装板2,安装板2固定连接在壳体的内侧壁底部;

上述减震器座1,减震器座1固定在安装板2上。

如图3-2-3、图3-2-4所示,优选地,安装板2上形成有加强结构21,加强结构21在安装板2上通过冲压的方式形成向上凸起的结构。凸起上形成安装面,安装面上形成与卡接结构配合的卡孔和与固定孔114配合的安装孔。加强结构21的设置一方面提高了安装板2 的结构强度,另一方面还给减震器座1的安装提供了空间,特别是方便卡接结构的连接。

加强结构21上形成有卡接孔211、定位孔212和固定连接孔213,分别用于与卡接爪111、定位抓113以及固定孔114配合,实现减震器座1的固定安装。

优选地,衣物处理装置为滚筒式洗衣机、烘干机或洗烘一体机等,筒体通过减震器3 与减震器座1连接,从而通过减震器3实现筒体的支撑。

<减振方式三-挂簧>

实施例3-3

本实施例提供一种衣物处理设备,包括:壳体、桶组件、热泵组件以及悬撑组件;其中,

所述桶组件包括外桶和内桶;所述外桶包括前桶和后桶;

所述热泵组件包括两器组件,所述两器组件设置在所述壳体与所述外桶之间的右上角空间或左上角空间;

所述悬撑组件包括悬挂件和支撑件;所述悬挂件倾斜设置在所述壳体与所述前桶之间的上方空间并与所述两器组件设置的位置相错;所述支撑件倾斜设置在所述壳体与所述外桶之间,且位于所述外桶下方;所述悬挂件为对所述外筒进行悬挂的弹性件,所述支撑件为对所述外筒进行支撑的阻尼件,且所述悬挂件和所述支撑件设置的位置相错。

所述悬挂件设有一对,一对所述悬挂件对称设置在所述前桶与所述壳体之间的左上方及右上方空间;

所述支撑件设有两对,其中一对所述支撑件对称设置在所述后桶与所述壳体之间的左下方及右下方空间,另外一对所述支撑件对称设置在所述前桶与所述壳体之间的左下方及右下方空间。

所述外桶的前桶左下方与后桶左下方设置的两个支撑件倾斜角度相同,所述外桶的前桶右下方与后桶右下方设置的两个支撑件倾斜角度不同。

所述壳体的开口端之间的上方连接有上加强板且下方连接有下加强板;

所述弹性件为挂簧,所述挂簧一端与所述前筒挂接,另一端与所述上加强板挂接;

所述阻尼件为减震器,所述减震器一端与所述前筒或所述后筒转动连接,另一端与所述下加强板转动连接。

还包括配重组件;所述配重组件包括上配重件和下配重件;

所述上配重件为长条形块状结构并沿所述外桶的前后方向固定在所述前桶及所述后桶的顶部的外侧壁上;

所述下配重件具有与所述前桶的外壁贴合的弧形面,所述下配重件固定在所述前桶底部的外侧壁上。

所述前桶及所述后桶的顶部的外侧壁上分别设置有第一定位凸起;所述上配重件设置有与所述第一定位凸起配合的第一定位孔。

所述下配重件还有具有包裹所述前桶部分端面的凸起,所述前桶的前端面设置有第二定位凸起;所述下配重件的凸起设有与所述第二定位凸起配合的第二定位孔。

所述壳体内还设有水盒组件,所述水盒组件与所述两器组件相对的设置在所述外桶的左右两侧;

所述上配重件位于所述水盒组件及所述两器组件之间,且分别与所述水盒组件及所述两器组件之间具有间隙。

所述两器组件包括两器盒以及设置在所述两器盒内的冷凝器和蒸发器,所述两器盒向所述壳体的外桶底部引有冷凝水回流管。

还包括风机组件,所述风机组件位于所述外桶的上方且位于所述两器组件的后侧;

所述热泵组件还包括压缩机组件,所述压缩机组件设置在所述外桶的下方并位于所述两器组件的同侧;

所述两器组件和所述风机组件以及所述压缩机组件构成洗烘一体机的烘干模块。

本实施例提供了一种衣物处理设备,参考图3-3-1至3-3-9,该衣物处理设备包括壳体 1、桶组件、热泵组件以及悬撑组件。另外,该衣物处理设备还包括常规的结构—门体组件,门体组件包括门体。在本发明中,壳体1与现有常规洗烘一体机的标准高度一致,壳体1 包括主框架、顶盖和底座,主框架包括左侧板、右侧板以及后侧板,左侧板、右侧板以及后侧板围成一朝向前端开口且上下开口的空间。上述结构围成衣物处理设备的主体结构,以用于容纳衣物处理设备的其他器件。其中,桶组件包括外桶2和装配在外桶2内的内桶,外桶2包括前桶21和后桶22,其中,前桶21靠近门体,后桶22远离门体。在装配时,前桶 21和后桶22拼装通过螺栓固定组成外桶2。

热泵组件包括两器组件11,两器组件11设置在壳体1与外桶2之间的右上角空间或左上角空间。悬撑组件包括悬挂件3和支撑件4;悬挂件3倾斜设置在壳体1与前桶21之间的上方空间并与两器组件11设置的位置相错;支撑件4倾斜设置在壳体1与外桶2之间,且位于外桶2的下方。悬挂件3为对外筒2进行悬挂的弹性件,支撑件4为对外筒2进行支撑的阻尼件,且悬挂件3和支撑件4设置的位置相错。内桶被衣物处理设备电机驱动旋转时,外桶2会发生振动,在本发明中,通过悬撑组件,外桶2可在偏离自身轴线的任意方向运动,能使外桶2减少振动,降低噪音,获得理想的静音效果。悬挂件3与支撑件4倾斜设置且设置的位置相错,能够适应壳体1内部有限的空间,使本发明提供的衣物处理设备满足常规高度的设置条件。

在本发明中,悬挂件3倾斜设置后,悬挂件3的垂线高度与两器组件11的高度相适配。悬挂件3设有一对,一对悬挂件3对称设置在前桶21与壳体1之间的左上方及右上方空间。支撑件4设有两对,其中一对支撑件4对称设置在后桶22与壳体1之间的左下方及右下方空间,另外一对支撑件4对称设置在前桶21与壳体1之间的左下方及右下方空间。

进一步的,壳体1的开口端之间的上方连接有上加强板且下方连接有下加强板。在一个优选的可实施方案中,弹性件3为挂簧,挂簧一端与前桶21挂接,另一端与上加强板挂接;阻尼件4为减震器,减震器一端与前桶21或后桶22转动连接,另一端与下加强板转动连接。减震器通过销轴与前桶21或后桶22及下加强板转动连接。

安装悬挂件3时,悬挂件3优选为挂簧,挂簧一端与前桶21挂接,前桶21上固定有用于与挂簧挂接的吊耳结构,挂簧另一端与上加强板挂接,上加强板上固定有挂接垫片,挂接垫片上设置有用于与挂簧挂接的垫片挂孔。

安装支撑件4时,支撑件4优选为减震器,减震器一端通过销轴与前桶21或后桶22转动连接,下加强板上固定有安装座,减震器另一端通过销轴与安装座转动连接,销轴允许减震器在外桶2和安装座之间扭动,所不同的是,外桶2的前桶21左下方与后桶22左下方设置的两个支撑件4倾斜角度相同,外桶2的前桶21右下方与后桶22右下方设置的两个支撑件4倾斜角度不同。具体的,设置在外桶2左侧的两个支撑件4与竖直方向夹角优选为 24°,设置在外桶2右侧的两个支撑件2与竖直方向夹角范围为20°-25°,与前桶21右侧连接的支撑件4与竖直方向夹角优选为20°,与前桶21右侧连接的支撑件4与竖直方向夹角优选为24°。

此外,本发明还包括配重组件;配重组件包括上配重件6和下配重件7。上配重件6固定在外桶2顶部,下配重件7固定在前桶21底部且靠近门体一侧。在本发明实施方案中,配重组件仅包括上配重件6和下配重件7,与现有技术中的洗烘一体机相比,有助于减少配重块的使用数量,使本发明提供的衣物处理设备在减少配重块的使用后,能够在不增加整体高度的前提下,即保持与现有技术中的洗烘一体机一致的标准高度,不但有助于减轻配重,同时有助于在壳体1内部合理安装布置其他的结构部件,并且,由于减少配重块的使用,还有助于增大洗涤容量的设计。

上配重件6为长条形块状结构并沿外桶2的前后方向固定在前桶21及后桶22的顶端。外桶2的前后方向指代为:外桶2靠近门体的方向为前,远离门体的方向为后。前桶21及后桶22的顶部的外侧壁上分别设置有第一定位凸起;上配重件6设置有与第一定位凸起配合的第一定位孔。下配重件7具有与前桶21的外壁贴合的弧形面,下配重件7固定在前桶 21的靠近门体侧的底部的外侧壁上。下配重件7还有具有包裹前桶21部分端面的凸起,前桶21的前端面设置有第二定位凸起;下配重件7的凸起设有与第二定位凸起配合的第二定位孔。

在一个具体的可实施方案中,壳体1内还设有水盒组件,水盒组件与两器组件11相对的设置在外桶2的左右两侧。上配重件6位于水盒组件及两器组件11之间,且分别与水盒组件及两器组件11之间具有间隙。其中,水盒组件包括蒸汽盒。上配重件6和下配重件7 均具有与外桶2配合的弧形贴合面,便于使上配重件6及下配重件7与外桶2连接后贴合紧密。在装配上配重件6时,将第一定位孔套装在第一定位凸起上,对上上配重件6进行定位,之后通过螺栓将上配重件6固定在前桶21及后桶22上。上配重件6固定位于水盒组件及两器组件11之间,且分别与水盒组件及两器组件11之间具有间隙,并且上配重件6与顶盖之间具有间隙,此两处间隙的作用为容纳桶组件的振动以及上配重件6的振动,避免产生干涉。在装配下配重件7时类似于装配上配重件6,将第二定位孔套装在第二定位凸起上,对下配重件7进行定位,之后通过螺栓将下配重件7固定在前桶21上。此外,在装配下配重件7 时,下配重件7的凸起位于门体与前桶21之间,且凸起与门体之间具有间隙,该间隙是为了容纳桶组件以及下配重件7的振动,避免振动时产生干涉。

在本发明实施方案中,配重组件仅包括上配重件6和下配重件7,与现有技术中的洗烘一体机相比,有助于减少配重块的使用数量,使本发明提供的衣物处理设备在减少配重块的使用后,能够在不增加整体高度的前提下,即保持与现有技术中的洗烘一体机一致的标准高度,不但有助于减轻配重,同时有助于在壳体1内合理安装下其他的结构部件,并且,由于减少配重块的使用,还有助于增大洗涤容量的设计。在本发明实施方案中,由于配重组件减少了配重块的使用,为避免减少配重块使用后产生的配重失衡问题,两器组件11包括两器盒113以及设置在两器盒113内的冷凝器112和蒸发器111,两器盒113向壳体1的外桶2 底部引有冷凝水回流管8。冷凝水回流管8与配重组件配合进行配重,避免减少配重块使用后的配重失衡问题。

在一个具体的可实施方案中,本衣物处理设备还包括风机组件,风机组件位于外桶2 的上方且位于两器组件11的后侧。热泵组件还包括压缩机组件,压缩机组件设置在外桶2 的下方并位于两器组件11的同侧;两器组件11和风机组件以及压缩机组件构成本衣物处理设备的烘干模块。风机组件和压缩机组件均固定在壳体1内。在此,对本衣物处理设备的烘干模块进行说明如下。

首先,外桶2设有排气口,排气口具体开设在后桶22;风机组件包括蜗壳10;在外桶2的排气口与蜗壳10的进风口之间连接有连接件9。优选的,连接件9具有两相对设置的连接端口,两连接端口之间连接有环形柔性结构;环形柔性结构围成一贯通两连接端口的通道;且环形柔性结构在两连接端口之间形成有至少一个向外围突出的折叠部:两连接端口偏心设置,折叠部具有超出两连接端口的最外边缘。折叠部形成有向外侧凸出的突起结构,突起结构形成超出两连接端口的最外边缘。连接件9还包括设置于两连接端口的凸起部,折叠部的截面横向跨度大于任意一凸起部的截面横向跨度。该连接件9采用上述结构设置,能够具有良好的动态调节功能,同时有助于减小该连接件9的设置长度,满足在有限空间的使用需求。

其次,外桶2设有进气口,进气口具体开设在前桶;两器组件11与外桶2的进气口之间连接有前风道。蜗壳10、连接件9、两器组件11和前风道构成外桶2的外循环风道。相对外循环风道而言,桶组件内构成内循环风道,内循环风道和外循环风道构成本衣物处理设备的烘干循环风道。在外循环风道中,蜗壳10的出风口与两器盒113的进口连接,两器盒 113的出口通过前风道与外桶2的进气口连接。冷凝水回流管8与两器盒113连通。蜗壳10 包括电机和风叶;电机驱动风叶转动,风叶抽取桶组件内的湿气;湿气被气力输送至两器盒 113内,并在气力运作下,湿气依次经过蒸发器111与冷凝器112后经前风道返回桶组件内。在上述内循环风道中,湿气自外桶2进入内桶。压缩机组件包括压缩机12;压缩机12压缩冷媒依次经过冷凝器112与蒸发器111;冷凝器112与蒸发器111之间连接节流装置。

烘干衣物的原理是:利用压缩机12的冷媒通过蒸发器111和冷凝器112时的物理性能,具体为:冷媒经过蒸发器111时使蒸发器111吸热,冷媒经过冷凝器112时使冷凝器112散热;综上,进行烘干运行时,桶组件内湿气被电机和风叶气力输送至蒸发器111,蒸发器111此时吸热,带走湿气中的热量,水蒸气冷凝变成水珠遗留在蒸发器111,被干燥后的气体继续被输送至冷凝器112,冷凝器112此时放热,会加热被干燥后的气体,加热之后的气体通过前风道被输送至桶组件内,桶组件内空间慢慢变热,使遗留在衣物上的水变成水汽,水汽被电机和风叶吸走后进行新一轮的循环,以此完成除湿干燥衣物的目的。

在本发明实施方案中,冷凝水回流管8具体固定在前桶21右侧,水蒸气冷凝变成水珠遗留在蒸发器111内并汇集形成冷凝水,冷凝水滴落在两器盒113内,两器盒113的底部形成有集水槽,集水槽被构造为可将冷凝水迅速排走的结构。具体地,两器盒113的底部倾斜设置,在两器盒113的最低端连接设置冷凝水回流管8,冷凝水回流管8沿烘干气流的流动方向设置并与集水槽连通,可将集水槽中的冷凝水迅速排出。由于前桶21右侧布置了冷凝水回流管8,使本发明的配重方式发生改变,具体变化为由常规的三块配重(即上配重以及左、右配重)改变为现在的上下配重,有助于减少配重块的使用数量,从而有助于减轻配重。下配重件7对前桶部分围绕,原因为在桶组件下方布置更多质量的配重,以用来使整机的质心与桶组件的轴线靠近。

在本发明实施方案中,外桶2通过连接件9与蜗壳10连接,蜗壳10与主框架固定连接,内桶转动运行时,外桶2受到连接件9向上的拉力,并且由于外桶2底部设置有下配重件7,而使外桶2受到下配重件7向下的拉力,向上的拉力和向下的拉力对外桶2形成拉力平衡,使整机运行更加平稳。此外,上配重件6对外桶2具有向下的力,从而增加筒组件的重量,降低筒组件的振幅。

本发明中,外桶2的悬挂系统包括悬挂件3与支撑件4,此外配合设置配重组件,三者合理布置在壳体1内部,使壳体1衣物处理设备在保持与现有常规洗烘一体机高度一致的前提下,将各种结构部件合理安装设置在壳体1有限的空间内;通过设置悬挂件3、支撑件4以及配重组件,在外桶2内的内桶转动时能减少振动,降低噪音,能获得更理想的静音效果;本发明中配重组件通过使用上配重件6、下配重件7以及冷凝水回流管8共同配合对外桶2实现配重,与现有衣物处理设备常规设置的偏心配重块相比,有助于减少配重块的使用数量,有助于减轻衣物处理设备整体重量。

通过上述描述不难发现,本发明提供的衣物处理设备能保持与现有洗烘一体机的常规高度一致,通过在有限的壳体空间内合理布置悬挂系统,实现减小振动、降低噪音的目的,同时通过减少配重块的使用数量,能保持与现有技术中的洗烘一体机一致的标准高度,不但有助于减轻配重,同时有助于合理安装其他结构部件,并且由于减少配重块,有助于增大洗涤容量的设计及降低本衣物处理设备的整体重量。

【蒸汽发生模块】

实施例4-1

本实施例提供一种蒸汽发生器,包括:

壳体,所述壳体内部形成有储水腔,所述壳体上设置有用于向所述储水腔内供水的进水管接头,用于排气的蒸汽管接头,和用于排水的出水结构;

开关机构,设置在所述壳体上,所述开关机构随所述储水腔的水位动作,用于开启或关闭所述蒸汽管接头。

所述壳体包括上盖和下盖,所述上盖和所述下盖扣合形成所述壳体,所述蒸汽管接头和所述开关机构位于所述上盖上,

所述开关机构包括设置在所述上盖内壁上的限位结构和可活动地设置在所述限位结构内的浮块,所述浮块具有封堵所述蒸汽管接头的第一工作位,和开启所述蒸汽管接头的第二工作位,

所述浮块可随所述储水腔内的水位变化在所述限位结构内上下滑动。

所述限位结构包括:

形成在所述上盖内壁上的限位筋,所述限位筋围绕所述蒸汽管接头所在的位置设置;

盖板,可拆卸地设置在所述限位筋上,将所述浮块限制在所述限位结构内;

所述限位筋和所述盖板上均设置有连通结构,使所述限位结构内部与所述储水腔连通。

所述上盖内壁上设置有围挡,所述围挡位于所述限位筋内侧,

所述围挡内侧形成气流通道,所述蒸汽口通过所述围挡与所述储水腔连通,

所述浮块处于所述第一工作位时抵靠在所述围挡上,并将所述气流通道封堵。

所述出水结构包括设置在所述壳体上的出水管接头,和设置在所述储水腔内并与所述储水腔外部连通的虹吸结构。

所述虹吸结构包括:

设置在所述下盖上的虹吸管,所述虹吸管的出口端穿出到所述下盖的外侧;

套管,设置在所述上盖的内壁上,所述虹吸管的入口端伸入到所述套管的内部,所述套管内周壁与所述虹吸管的外周壁之间供水流通;

其中,所述虹吸管和所述套管的长度均小于所述上盖的顶壁与所述下盖的底壁之间的距离。

所述上盖上还设置有透气结构,在大气压强作用下,外部空气可通过所述透气结构进入到所述储水腔内。

所述下盖内侧设置有加热器,用于对水加热产生蒸汽;

所述上盖上设置有感温包和液位检测检测装置,用于检测所述储水腔内的温度和水位。

一种衣物处理装置,包括上述任一项所述的蒸汽发生器。

一种衣物处理装置,包括:

洗涤筒组件;以及与所述洗涤筒组件相连的烘干风道和进水盒;

上述任一项所述的蒸汽发生器,其中,

所述蒸汽管接头与所述烘干风道连通,所述出水管接头与所述进水盒连通,所述虹吸结构与所述洗涤筒组件相连。

本发明通过在壳体上设置进水管接头和出水结构,使蒸汽发生器可以接入洗衣机的供水管路,从而可以简化洗衣机的水路结构。在壳体设置开关机构控制蒸汽管接头的开闭,并在进水时封闭蒸汽管接头12,保证进水时有足够的水压。同时,出水结构的设置,还能够使蒸汽发生器内的水及时排出,避免大量壳体内大量水残留引起蒸汽发生器被冻坏或在蒸汽发生器内滋生细菌。以下结合具体实施例对本发明进行详细介绍:

如图4-1-1、图4-1-2所示,本发明提供一种蒸汽发生器,包括:

壳体,壳体内部形成有储水腔,壳体上设置有用于向储水腔内供水的进水管接头11,用于排气的蒸汽管接头12,和用于排水的出水结构,进水管接头11与进水管路连接,蒸汽管接头12与洗涤筒内部连通;开关机构,设置在壳体上,开关机构随储水腔的水位动作,用于开启或关闭蒸汽管接头12。

壳体包括上盖1和下盖2,上盖1和下盖2扣合形成壳体,在本实施例中,进水管接头11和蒸汽管接头12设置在上盖1上,并位于上盖1的顶部或靠近顶壁的位置。

如图4-1-3、图4-1-4、图4-1-5所示,开关机构位于上盖1上,开关机构包括设置在上盖1内壁上的限位结构和可活动地设置在限位结构内的浮块31,浮块31具有封堵蒸汽管接头12的第一工作位,和开启蒸汽管接头12的第二工作位,浮块31可随储水腔内的水位变化在限位结构内上下滑动。

优选地,浮块31为泡沫块或其他轻质材质制成的块状结构,能够漂浮在水面上,且质量较轻的结构。

限位结构包括:形成在上盖1内壁上的限位筋13,限位筋13围绕蒸汽管接头12所在的位置设置,浮块31可以在限位筋13围成的空间内自由滑动不会受到限位筋13的影响;盖板32,可拆卸地设置在限位筋13上,将浮块31限制在限位结构内。

限位筋13和盖板32上均设置有连通结构,使限位结构内部与储水腔连通,使水和水蒸气能够进入到限位结构内,从而可以顺利的筒水位控制浮块31,以及使蒸汽可顺利从蒸汽管接头12流出。优选地,限位筋13靠近上盖1顶壁的位置设置通孔形成连通结构,或者,限位筋13设置多个,多个限位筋13间隔一定距离设置,相邻限位筋13之间的间隔形成连通结构;盖板32为镂空结构,镂空结构形成连通结构供水流通。

优选地,上盖1内壁上设置有围挡14,围挡14位于限位筋13内侧,围挡14内侧形成气流通道,具体地,围挡14与上盖1顶壁共同围成气流通道,蒸汽口通过气流通道与储水腔连通,围挡14改变蒸汽管接头12在上盖1内侧的连通口的位置,使蒸汽管接头12在上盖1内侧连通口的位置凸出于上盖1的内壁,浮块31处于第一工作位时抵靠在围挡14上,并将气流通道封堵。围挡14的设置使浮块31能够更容易将蒸汽管接头12封堵,并使封堵效果更好。

出水结构包括设置在壳体上的出水管接头21,和设置在储水腔内并与储水腔外部连通的虹吸结构,优选地,出水管接头21设置在下盖2的侧壁上,用于与洗衣机的水盒连通。

虹吸结构包括:

设置在下盖2上的虹吸管22,虹吸管22的出口端穿出到下盖2的外侧,具体从下盖2的底壁穿出构成虹吸管22接头;

套管15,设置在上盖1的内壁上,虹吸管22的入口端伸入到套管15的内部,套管15内周壁与虹吸管22的外周壁之间供水流通;

其中,虹吸管22和套管15的长度均小于上盖1的顶壁与下盖2的底壁之间的距离,使套管15和下盖2底壁之间有间隙,虹吸管22和套管15顶壁之间具有间隙,并且套管15 内径大于虹吸管22外径,套管15和虹吸管22之间也形成间隙,从而构成流通的通道。

优选地,上盖1上还设置有透气结构4,在大气压强作用下,外部空气可通过透气结构 4进入到储水腔内,保证虹吸结构能够正常出水。进一步地,上盖1上设置有透气孔16,透气结构4塞入到透气孔16内,透气结构4为柔性材质,当壳体内部压强小时,透气结构4 可变形使外部空气进入到壳体内部,而内部气压和外部平衡时,透气结构4封堵透气孔16,可以避免水或蒸汽溢出。进一步地,当壳体内压强过大,例如,蒸汽压力过大,可将透气结构4从透气孔16内挤出,从而通过透气孔16泄压,避免过大压力将壳体撑破。蒸汽发生器停止进水后,储水腔内充满水,储水腔通过透气结构4与外界大气压连通,虹吸结构在储水腔内发生虹吸效应,通过虹吸管22接头排出储水腔内剩余的水,显著减少储水腔中的滞留水,可以避免储水腔内因为滞留水产生细菌及防止蒸汽发生器组件出现冻裂情况。

在其他实施例中,储水腔停止进水后开关机构未完全封堵蒸汽管接头12,则可以不用设置透气结构4以及上盖1上的透气孔16,通过蒸汽管接头12即可向壳体内通入空气。

下盖2内侧设置有加热器5,优选地,下盖2内设置有加热器支架8,用于支撑加热器5,加热器5用于对水加热产生蒸汽;上盖1上设置有感温包7和液位检测装置6,用于检测储水腔内的温度和水位。

本发明还提供一种衣物处理装置,包括上述蒸汽发生器,在本实施例中衣物处理装置为洗烘一体机,优选为热泵式洗烘一体机。

具体地,衣物处理装置包括:

洗涤筒组件;以及与洗涤筒组件相连的烘干风道和进水盒;

上述蒸汽发生器,其中,进水管接头11连接洗衣机的进水管路,蒸汽管接头12与烘干风道连通,出水管接头21与进水盒连通。虹吸结构与洗涤筒组件相连,优选地,洗涤筒组件包括外筒和内筒,虹吸结构的虹吸管22的出口端通过管路与外筒相连,优选连通至外筒底部的排水口处,当洗涤筒组件的排水口关闭时,虹吸管22流出的水可进入到外筒内,当排水口开启时,虹吸管22流出的水可直接从排水口排出。

实施例4-2

本实施例提供一种蒸汽发生器,包括:

壳体,所述壳体内部形成有储水腔,所述壳体上设置有用于向所述储水腔内供水的进水管接头,用于排气的蒸汽管接头,和用于排水的出水结构;

双金属片,设置在所述壳体上,所述双金属片可随温度变化发生形变,并在温度高于阈值温度时开启所述蒸汽管接头,温度低于所述阈值温度时关闭所述蒸汽管接头。

所述壳体包括上盖和下盖,所述上盖和所述下盖扣合形成所述壳体,所述蒸汽管接头和所述双金属片位于所述上盖上。

所述双金属片包括固定部、连接部和封堵部,

所述固定部用于与所述上盖固定连接,所述连接部设置在所述封堵部与所述固定部之间,所述封堵部用于关闭或开启所述蒸汽管接头。

所述蒸汽管接头设置在所述上盖的侧壁上,

所述固定部与所述连接部和所述封堵部垂直设置,所述固定部固定连接到所述上盖的顶壁上。

所述出水结构包括设置在所述壳体上的出水管接头,和设置在所述储水腔内并与所述储水腔外部连通的虹吸结构。

所述虹吸结构包括:

设置在所述下盖上的虹吸管,所述虹吸管的出口端穿出到所述下盖的外侧;

套管,设置在所述上盖的内壁上,所述虹吸管的入口端伸入到所述套管的内部,所述套管内周壁与所述虹吸管的外周壁之间供水流通;

其中,所述虹吸管和所述套管的长度均小于所述上盖的顶壁与所述下盖的底壁之间的距离。

所述上盖上还设置有透气结构,外部空气可通过所述透气结构进入到所述储水腔内。

所述透气结构包括形成在所述上盖上的透气孔和设置在所述透气孔内的透气装置,所述透气装置为单向透气装置。

所述下盖内侧设置有加热器,用于对水加热产生蒸汽;

所述上盖上设置有感温包和液位检测检测装置,用于检测所述储水腔内的温度和水位。

一种衣物处理装置,包括上述任一项所述的蒸汽发生器。

一种衣物处理装置,包括:

洗涤筒组件;以及与所述洗涤筒组件相连的烘干风道、进水盒和进水管路;

上述任一项所述的蒸汽发生器,其中,

所述蒸汽管接头与所述烘干风道连通,所述出水管接头与所述进水盒连通,所述虹吸结构与所述进水管路连通。

本发明通过在壳体上设置进水管接头和出水结构,使蒸汽发生器可以接入洗衣机的供水管路,从而可以简化洗衣机的水路结构。双金属片的设置可以控制蒸汽管接头的开闭,并在进水时封闭蒸汽管接头,保证进水时有足够的水压。同时,出水结构的设置,还能够使蒸汽发生器内的水及时排出,避免大量壳体内大量水残留引起蒸汽发生器被冻坏或在蒸汽发生器内滋生细菌。以下结合具体实施例对本发明进行详细介绍:

如图4-1-1、图4-1-2所示,本发明提供一种蒸汽发生器,包括:

壳体,壳体内部形成有储水腔,壳体上设置有用于向储水腔内供水的进水管接头11,用于排气的蒸汽管接头12,和用于排水的出水结构,进水管接头11与进水管路连接,蒸汽管接头12与洗涤筒内部连通;双金属片3,设置在壳体上,双金属片3可随温度变化发生形变,并在温度高于阈值温度时开启蒸汽管接头,温度低于阈值温度时关闭蒸汽管接头。

壳体包括上盖1和下盖2,上盖1和下盖2扣合形成壳体,在本实施例中,进水管接头11和蒸汽管接头12设置在上盖1上,并位于上盖1的顶部或靠近顶壁的位置。

如图4-2-1、图4-2-2所示,双金属片3设置于上盖1上,双金属片3包括固定部31、连接部32和封堵部33,固定部31上设置有固定孔311用于与上盖1固定连接,连接部32 设置在封堵部33与固定部31之间,封堵部33用于关闭或开启蒸汽管接头12。蒸汽管接头 12设置在上盖1的侧壁上,固定部31与连接部32和封堵部33垂直设置,固定部31固定连接到上盖1的顶壁上。

优选地,封堵部33上设置有封堵塞34,通过封堵塞34对蒸汽管接头12进行封堵可以提高封堵密封性。

双金属片3的临界温度值为K,当温度低于临界温度值K,双金属片3不工作,当温度高于临界温度值K,双金属片3工作,优选地,临界温度值K的取值范围为60℃-100℃。衣物处理装置的蒸汽发生器进水后,蒸汽发生器内充满水,水的温度低于双金属片3临界温度K℃,双金属片3不工作,堵住蒸汽管接头,如图4-2-3所示,避免水从蒸汽管接头处流出至滚桶;减少水压的分散,增大进入进水盒的水量及水压,从而能够保证衣物处理装置进水时有足够的水压,从而便于洗涤剂等顺着水流进入到滚筒内洗涤衣物;衣物处理装置的蒸汽发生器产生蒸汽时,水的温度高于双金属片3临界温度K℃,双金属片3工作,蒸汽管接头未被堵住,如图4-2-4所示,蒸汽从蒸汽管接头进入滚桶进行蒸汽护理。

出水结构包括设置在壳体上的出水管接头21,和设置在储水腔内并与储水腔外部连通的虹吸结构,优选地,出水管接头21设置在下盖2的侧壁上,用于与洗衣机的水盒连通。

虹吸结构包括:

设置在下盖2上的虹吸管22,虹吸管22的出口端穿出到下盖2的外侧,具体从下盖2的底壁穿出构成虹吸管22接头;

套管15,设置在上盖1的内壁上,虹吸管22的入口端伸入到套管15的内部,套管15内周壁与虹吸管22的外周壁之间供水流通;

其中,虹吸管22和套管15的长度均小于上盖1的顶壁与下盖2的底壁之间的距离,使套管15和下盖2底壁之间有间隙,虹吸管22和套管15顶壁之间具有间隙,并且套管15 内径大于虹吸管22外径,套管15和虹吸管22之间也形成间隙,从而构成流通的通道。

优选地,上盖1上还设置有透气结构,在大气压强作用下,外部空气可通过透气结构进入到储水腔内,保证虹吸结构能够正常出水。进一步地,透气结构包括上盖1上设置的透气孔16,和设置在透气孔16内的透气装置4,透气装置4单向透气。透气装置4塞入到透气孔16内,透气装置4为柔性材质,当壳体内部压强小时,透气装置4可变形使外部空气进入到壳体内部,而内部气压和外部平衡时,透气装置4封堵透气孔16,可以避免水或蒸汽溢出。进一步地,当壳体内压强过大,例如,蒸汽压力过大,可将透气装置4从透气孔16 内挤出,从而通过透气孔16泄压,避免过大压力将壳体撑破。蒸汽发生器停止进水后,储水腔内充满水,储水腔通过透气装置4与外界大气压连通,虹吸结构在储水腔内发生虹吸效应,通过虹吸管22接头排出储水腔内剩余的水,显著减少储水腔中的滞留水,可以避免储水腔内因为滞留水产生细菌及防止蒸汽发生器出现冻裂情况。

在其他实施例中,储水腔停止进水后开关机构未完全封堵蒸汽管接头12,则可以不用设置透气装置4以及上盖1上的透气孔16,通过蒸汽管接头12即可向壳体内通入空气。

下盖2内侧设置有加热器5,优选地,下盖2内设置有加热器支架8,用于支撑加热器5,加热器5用于对水加热产生蒸汽;上盖1上设置有感温包7和液位检测装置6,用于检测储水腔内的温度和水位。

本发明还提供一种衣物处理装置,包括上述蒸汽发生器,在本实施例中衣物处理装置为洗烘一体机,优选为热泵式洗烘一体机。

具体地,衣物处理装置包括:

洗涤筒组件;以及与洗涤筒组件相连的烘干风道、进水盒和进水管路;

上述蒸汽发生器,其中,进水管接头11连接洗衣机的进水管路,蒸汽管接头12与烘干风道连通,出水管接头21与进水盒连通,虹吸结构与进水管路连通。

实施例4-3

本实施例提供一种蒸汽发生器,包括:

壳体,所述壳体内部形成有储水腔,所述壳体上设置有用于向所述储水腔内供水的进水管接头、用于排气的蒸汽管接头和用于排水的出水结构,所述进水管接头设有进水阀;

开关机构,设置在所述储水腔内,所述开关机构随所述储水腔的水位动作,用于开启或关闭所述蒸汽管接头;

液位检测检测装置,用于检测所述储水腔内水位信息;

控制器,用于根据所述水位信息,控制接设在所述进水管接头上的进水阀使所述储水腔内的水位处于产生蒸汽时的水位区间内;

其中所述水位区间的下限值高于所述出水结构出口的水位线,所述水位区间的上限低于所述开关机构执行关闭所述蒸汽管接头动作开始时所对应的水位线。

所述壳体包括上盖和下盖,所述上盖和所述下盖扣合形成所述壳体,所述蒸汽管接头和所述开关机构位于所述上盖上,

所述开关机构包括设置在所述上盖内壁上的限位结构和可活动地设置在所述限位结构内的浮块,所述浮块具有封堵所述蒸汽管接头的第一工作位,和开启所述蒸汽管接头的第二工作位,

所述浮块可随所述储水腔内的水位变化在所述限位结构内上下滑动。

所述限位结构包括:

形成在所述上盖内壁上的限位筋,所述限位筋围绕所述蒸汽管接头所在的位置设置;

盖板,可拆卸地设置在所述限位筋上,将所述浮块限制在所述限位结构内;

所述限位筋和所述盖板上均设置有连通结构,使所述限位结构内部与所述储水腔连通。

所述上盖内壁上设置有围挡,所述围挡位于所述限位筋内侧,

所述围挡内侧围成气流通道,所述蒸汽口通过所述围挡与所述储水腔连通,

所述浮块处于所述第一工作位时抵靠在所述围挡上,并将所述气流通道封堵。

所述出水结构包括设置在所述壳体上的出水管接头,和设置在所述储水腔内并与所述储水腔外部连通的虹吸结构。

所述虹吸结构包括:

设置在所述下盖上的虹吸管,所述虹吸管的出口端穿出到所述下盖的外侧;

套管,设置在所述上盖的内壁上,所述虹吸管的入口端伸入到所述套管的内部,所述套管内周壁与所述虹吸管的外周壁之间供水流通;

其中,所述虹吸管和所述套管的长度均小于所述上盖的顶壁与所述下盖的底壁之间的距离。

所述水位区间的上限值所对应的第一液位高度低于所述虹吸管的高度。

所述上盖上还设置有透气结构,在大气压强作用下,外部空气可通过所述透气结构进入到所述储水腔内。

所述下盖内侧设置有加热器,用于对水加热产生蒸汽;

所述上盖上设置有感温包,用于检测所述储水腔内的温度。

所述水位区间的下限值所对应的第二液位高度高于所述加热器的高度。

一种衣物处理装置,包括上述任一项所述的蒸汽发生器。

一种衣物处理装置,包括:

洗涤筒组件;以及与所述洗涤筒组件相连的烘干风道和进水盒;

上述任一项所述的蒸汽发生器,其中,

所述蒸汽管接头与所述烘干风道连通,所述出水管接头与所述进水盒连通,所述虹吸结构与所述洗涤筒组件相连。

如图4-1-1、图4-1-2和图4-3所示,本发明提供一种蒸汽发生器,包括:

壳体,壳体内部形成有储水腔,壳体上设置有用于向储水腔内供水的进水管接头11、用于排气的蒸汽管接头12和用于排水的出水结构,进水管接头11设有进水阀,且进水管接头11与进水管路连接,蒸汽管接头12与洗涤筒内部连通;开关机构,设置在储水腔内,开关机构随储水腔的水位动作,用于开启或关闭蒸汽管接头12;液位检测检测装置6,用于检测储水腔内水位信息;控制器,用于根据水位信息,控制接设在进水管接头上的进水阀使储水腔内的水位处于产生蒸汽时的水位区间内;其中水位区间的下限值高于出水结构出口的水位线,水位区间的上限低于所述开关机构执行关闭蒸汽管接头动作开始时所对应的水位线。

壳体包括上盖1和下盖2,上盖1和下盖2扣合形成壳体,在本实施例中,进水管接头11和蒸汽管接头12设置在上盖1上,并位于上盖1的顶部或靠近顶壁的位置。

如图4-1-3、图4-1-4、图4-1-5所示,开关机构位于上盖1上,开关机构包括设置在上盖1内壁上的限位结构和可活动地设置在限位结构内的浮块31,浮块31具有封堵蒸汽管接头12的第一工作位,和开启蒸汽管接头12的第二工作位,浮块31可随储水腔内的水位变化在限位结构内上下滑动。

优选地,浮块31为泡沫块或其他轻质材质制成的块状结构,能够漂浮在水面上,且质量较轻的结构。

限位结构包括:形成在上盖1内壁上的限位筋13,限位筋13围绕蒸汽管接头12所在的位置设置,浮块31可以在限位筋13围成的空间内自由滑动不会受到限位筋13的影响;盖板32,可拆卸地设置在限位筋13上,将浮块31限制在限位结构内。

限位筋13和盖板32上均设置有连通结构,使限位结构内部与储水腔连通,使水和水蒸气能够进入到限位结构内,从而可以顺利的筒水位控制浮块31,以及使蒸汽可顺利从蒸汽管接头12流出。优选地,限位筋13靠近上盖1顶壁的位置设置通孔形成连通结构,或者,限位筋13设置多个,多个限位筋13间隔一定距离设置,相邻限位筋13之间的间隔形成连通结构;盖板32为镂空结构,镂空结构形成连通结构供水流通。

优选地,上盖1内壁上设置有围挡14,围挡14位于限位筋13内侧,围挡14内侧围成气流通道,蒸汽口通过围挡14与储水腔连通,围挡14改变蒸汽管接头12在上盖1内侧的连通口的位置,使蒸汽管接头12在上盖1内侧连通口的位置凸出于上盖1的内壁,浮块31 处于第一工作位时抵靠在围挡14上,并将气流通道封堵。围挡14的设置使浮块31能够更容易将蒸汽管接头12封堵,并使封堵效果更好。

出水结构包括设置在壳体上的出水管接头21,和设置在储水腔内并与储水腔外部连通的虹吸结构,优选地,出水管接头21设置在下盖2的侧壁上,用于与洗衣机的水盒连通。

虹吸结构包括:

设置在下盖2上的虹吸管22,虹吸管22的出口端穿出到下盖2的外侧,具体从下盖2的底壁穿出构成虹吸管22接头;

套管15,设置在上盖1的内壁上,虹吸管22的入口端伸入到套管15的内部,套管15内周壁与虹吸管22的外周壁之间供水流通;

其中,虹吸管22和套管15的长度均小于上盖1的顶壁与下盖2的底壁之间的距离,使套管15和下盖2底壁之间有间隙,虹吸管22和套管15顶壁之间具有间隙,并且套管15 内径大于虹吸管22外径,套管15和虹吸管22之间也形成间隙,从而构成流通的通道。选地,水位区间的上限值所对应的第一液位高度低于虹吸管22的高度。

优选地,上盖1上还设置有透气结构4,在大气压强作用下,外部空气可通过透气结构 4进入到储水腔内,保证虹吸结构能够正常出水。进一步地,上盖1上设置有透气孔,透气结构4塞入到透气孔内,透气结构4为柔性材质,当壳体内部压强小时,透气结构4可变形使外部空气进入到壳体内部,而内部气压和外部平衡时,透气结构4封堵透气孔,可以避免水或蒸汽溢出。进一步地,当壳体内压强过大,例如,蒸汽压力过大,可将透气结构4从透气孔内挤出,从而通过透气孔泄压,避免过大压力将壳体撑破。蒸汽发生器停止进水后,储水腔内充满水,储水腔通过透气结构4与外界大气压连通,虹吸结构在储水腔内发生虹吸效应,通过虹吸管22接头排出储水腔内剩余的水,显著减少储水腔中的滞留水,可以避免储水腔内因为滞留水产生细菌及防止蒸汽发生器组件出现冻裂情况。

在其他实施例中,储水腔停止进水后开关机构未完全封堵蒸汽管接头12,则可以不用设置透气结构4以及上盖1上的透气孔,通过蒸汽管接头12即可向壳体内通入空气。

下盖2内侧设置有加热器5,用于对水加热产生蒸汽;上盖1上设置有感温包7,用于检测储水腔内的温度。优选地,水位区间的下限值所对应的第二液位高度高于加热器5的高度。

本发明还提供一种衣物处理装置,包括上述蒸汽发生器,在本实施例中衣物处理装置为洗烘一体机,优选为热泵式洗烘一体机。

具体地,衣物处理装置包括:

洗涤筒组件;以及与洗涤筒组件相连的烘干风道和进水盒;

上述蒸汽发生器,其中,进水管接头11连接洗衣机的进水管路,蒸汽管接头12与烘干风道连通,出水管接头21与进水盒连通。虹吸结构与洗涤筒组件相连,优选地,洗涤筒组件包括外筒和内筒,虹吸结构的虹吸管22的出口端通过管路与外筒相连,优选连通至外筒底部的排水口处,当洗涤筒组件的排水口关闭时,虹吸管22流出的水可进入到外筒内,当排水口开启时,虹吸管22流出的水可直接从排水口排出。

实施例4-4

目前现有加设蒸汽发生器的衣物处理装置,往往造成管路布局复杂化,另外现有水盒中的衣物处理剂在水中往往不能得到充分稀释混合。本发明采用将向水盒组件进水的管路经蒸汽发生器接设,并在水盒组件与蒸汽发生器之间的管路上加设文丘里管,一方面能够在想衣物处理桶进水时保证蒸汽发生器内外气压平衡,还能够充分混合稀释水盒组件中的衣物处理剂;另一方面也能够简化衣物处理装置内部管路等结构的布局。

本实施例提供一种用于衣物处理装置的蒸汽发生器,所述衣物处理装置包括水盒组件,所述蒸汽发生器包括壳体,

所述壳体形成有储水腔;

所述壳体上设有文丘里管出水接头,其中所述文丘里管出水接头的进水口与所述储水腔连接,所述文丘里管出水接头的出水口与所述水盒组件连接,所述文丘里管出水接头的进气口直接或间接连通外界大气;

虹吸结构,其一端连通至所述储水腔内部,另一端连通至所述储水腔外部。

所述壳体包括:相互配合形成所述储水腔的上盖和下盖;

所述上盖设有输出蒸汽的蒸汽管接头;

所述下盖设置所述文丘里管出水接头。

所述蒸汽发生器还包括:设置在所述储水腔内部且位于所述蒸汽管接头入口侧的蒸汽口开关组件,

所述蒸汽口开关组件用于在所述储水腔内水位介于预设水位区间值时,通过所述储水腔内水位所对应的水压调节所述蒸汽管接头入口的开度,其中当所述储水腔内水位小于等于所述预设水位区间值下限值时,所述蒸汽管接头入口全开;当所述储水腔内水位大于等于所述预设水位区间值上限值时,所述蒸汽管接头入口全关。

所述蒸汽口开关组件包括:

安装座,所述安装座设置在所述上盖内壁上,所述安装座形成有水平布置的蒸汽通道,所述蒸汽通道连通所述储水腔与所述蒸汽管接头入口;所述安装座还形成有竖直布置的浮子通道,所述浮子通道的上端口与所述蒸汽通道连通,下端口延伸至所述安装座的下部;

浮子,可运动的设置在所述浮子通道;

盖板,所述盖板盖设在所述下端口,且所述盖板与所述浮子通道配合限位所述浮子,所述盖板上设有连通所述浮子通道与所述储水腔的过水孔。

所述蒸汽口开关组件还包括:挡板,

所述挡板沿所述蒸汽通道横断面方向封挡在所述蒸汽通道与所述浮子通道连通处,其中所述挡板的上部与所述蒸汽通道连接,所述挡板的下部朝向所述浮子通道内部;

当所述储水腔内水位大于等于所述预设水位区间值上限值时,所述浮子处于所述浮子通道上部并与所述挡板下部抵触以全关所述蒸汽管接头入口。

所述虹吸结构包括:外管和内管;

所述外管的第一端接设在所述上盖内侧,所述外管的第二端朝向下方;所述内管的第一端沿经所述外管的第二端套设在所述外管内部,另一端穿设在所述下盖上并连通至所述储水腔的外部。

所述上盖还设有向蒸汽发生器内输入水的进水接头,

其中所述进水接头与所述文丘里管出水接头位于所述壳体的同侧。

所述蒸汽发生器还包括:

电加热器,所述电加热器固定在所述下盖侧壁上,所述电加热器的加热管沿平行于所述下盖底壁方向铺设;

液位探针,用于检测所述储水腔内水位。

一种衣物处理装置,所述衣物处理装置包括上述中任意一项所述的蒸汽发生器。

所述衣物处理装置还包括:衣物处理桶和烘干组件,

所述烘干组件包括:烘干风机以及连通所述烘干风机和所述衣物处理桶的烘干风道,其中所述蒸汽发生器的蒸汽管接头与所述烘干风道连接。

为进一步阐述本发明中的技术方案,现结合图4-1-1至图4-1-5及4-4-1所示,提供了如下具体实施例。

如图4-1-1至图4-1-5所示,在本实施例中提供了一种用于衣物处理装置的蒸汽发生器,其中衣物处理装置包括水盒组件。该衣物处理装置的蒸汽发生器主要包含有:壳体以及在壳体相应位置设置的盖板32、泡沫块、虹吸结构、文丘里管结构、液位探针6、感温包7、电加热器5,电加热固定架8等。

壳体形成有储水腔;壳体上设有文丘里管出水接头21,其中文丘里管出水接头21的进水口与储水腔连接,文丘里管出水接头21的出水口与水盒组件连接,文丘里管出水接头21 的进气口直接或间接连通外界大气;虹吸结构,其一端连通至储水腔内部,另一端连通至储水腔外部。该蒸汽发生器能够将该衣物处理装置中的管路连接方式进行了优化,将通向水盒组件中的进水先经蒸汽发生器后再流入水盒组件中,并利用文丘里管结构实现对该处供水的融入部分空气,使其产生一定气泡等促进衣物处理剂在水盒组件中的溶解。

在一些可选地方式中,该壳体包括:相互配合形成储水腔的上盖1和下盖2。上盖1设有输出蒸汽的蒸汽管接头12;下盖2设置文丘里管出水接头21。

为防止向水盒组件和衣物处理桶内进水时,水会从蒸汽管接头12处流出,蒸汽发生器还包括:设置在储水腔内部且位于蒸汽管接头12入口侧的蒸汽口开关组件。蒸汽口开关组件用于在储水腔内水位介于预设水位区间值时,通过储水腔内水位所对应的水压调节蒸汽管接头12入口的开度,其中当储水腔内水位小于等于预设水位区间值下限值时,蒸汽管接头 12入口全开;当储水腔内水位大于等于预设水位区间值上限值时,蒸汽管接头12入口全关。

蒸汽口开关组件包括:安装座10,安装座10设置在上盖1内壁上,安装座10形成有水平布置的蒸汽通道,蒸汽通道连通储水腔与蒸汽管接头12入口,安装座10还形成有竖直布置的浮子通道13,浮子通道13的上端口与蒸汽通道连通,下端口延伸至安装座10的下部;浮子31,可运动的设置在浮子通道13;盖板32,盖板32盖设在下端口,且盖板32与浮子通道13配合限位浮子31,盖板32上设有连通浮子通道13与储水腔的过水孔,该过水孔能够将储水腔水位达到一定高点时,使水进入浮子通道13,并在水位降到一定低点时,使浮子通道内的水流回储水腔。

优选地,浮子31为一泡沫块,利用向衣物处理桶内进水时的水浮力将泡沫块浮起,将蒸汽管接头12堵住,保证一定供水压力并防止水经蒸汽管接头12外流。

进一步优选地,蒸汽口开关组件还包括:挡板14。挡板14沿蒸汽通道横断面方向封挡在蒸汽通道与浮子通道13连通处,其中挡板14的上部与蒸汽通道连接,挡板14的下部朝向浮子通道13内部。当所述储水腔内水位大于等于所述预设水位区间值上限值时,所述浮子处于所述浮子通道13上部并与所述挡板14下部抵触以全关所述蒸汽管接头12入口。

蒸汽发生器的虹吸结构包括:外管15和内管22。外管15的第一端接设在上盖1内侧,外管15的第二端朝向下方;内管22的第一端沿经外管15的第二端套设在外管15内部,另一端穿设在下盖2上并连通至储水腔的外部。

外管与内管同轴套设且沿竖直方向设置在壳体中,外管的第一端与上盖1内侧顶壁连接;内管的第二端穿设在下盖2底壁的最低处。

在一些可选地方式中,上盖1还设有向蒸汽发生器内输入水的进水接头,其中进水接头与文丘里管出水接头21位于壳体的同侧。蒸汽发生器还包括:电加热器5,电加热器5通过电加热固定架8固定在下盖2侧壁上,电加热器5的加热管沿平行于下盖2底壁方向铺设;液位探针6,用于检测储水腔内水位。

在本实施例中,蒸汽发生器进水管接头11通过橡胶管与进水阀连接,蒸汽管接头12 通过橡胶管与烘干风道连接,蒸汽发生器出水接头通过橡胶管与水盒组件连接,内管通过橡胶管与衣物处理桶连接;文丘里管结构通过橡胶管与大气连通。

衣物处理装置的蒸汽发生器进水后,泡沫块堵住蒸汽管接头12,蒸汽发生器在蒸汽发生器出水接头上设计有文丘里管结构,优点是当泡沫块完全堵住蒸汽管接头12时,蒸汽发生器可以通过文丘里管结构与外界大气压连通。

衣物处理装置的蒸汽发生器进水时,蒸汽发生器文丘里管出水接头21、内管及蒸汽管接头12会出水,文丘里管结构处不会出水;在水的浮力作用下,盖板32上的泡沫块浮起并堵住蒸汽管接头12,减少蒸汽管接头12出水量,减少水压的分散,增大蒸汽发生器出水接头出水量及水压,优点是保证水进入水盒组件时有足够的水压。

衣物处理装置的蒸汽发生器停止进水后,蒸汽发生器内充满水,优选的蒸汽发生器通过文丘里管结构与外界大气压连通,虹吸结构在蒸汽发生器发生虹吸效应,通过内管排出蒸汽发生器内剩余的水,显著减少蒸汽发生器中的滞留水,优点是可以避免蒸汽发生器内因为滞留水产生细菌及防止蒸汽发生器出现冻裂情况。

如图4-4所示,在本实施例中提供了一种衣物处理装置,该衣物处理装置包括实施例1 中任一种蒸汽发生器。此外,衣物处理装置还包括:衣物处理桶和烘干组件,烘干组件包括:烘干风机以及连通烘干风机和衣物处理桶的烘干风道,其中蒸汽发生器的蒸汽管接头12与烘干风道连接。

该衣物处理装置的蒸汽发生器通过蒸汽发生器进水管与进水阀连接,通过蒸汽管与烘干风道连接,通过文丘里管出水接头21与水盒组件连接,通过虹吸结构的内管与衣物处理桶连接。

如图4-1-1至图4-1-5所示,衣物处理装置进水时,进水阀工作,水通过蒸汽发生器进水管进入到蒸汽发生器内后,随着蒸汽发生器内水位不断地上升,水会通过虹吸结构及文丘里管出水接头21分别进入衣物处理桶及水盒组件中,文丘里管结构不会出水;在水浮力的作用下,盖板32上的泡沫块浮起并堵住蒸汽管接头12,减少蒸汽管接头12出水量,减少水压的分散,增大进入水盒组件的水量及水压,从而便于洗涤剂等顺着水流进入到衣物处理桶内洗涤衣物。

蒸汽发生器上盖1设计有两个接头,分别为蒸汽发生器的进水管接头11和蒸汽管接头 12;蒸汽发生器下盖2有两个接头,分别为蒸汽发生器文丘里管出水接头21和内管;蒸汽发生器通过各接头及各橡胶管分别与进水阀、烘干风道、水盒组件及衣物处理桶连接,实现为一种衣物处理装置进水及产生蒸汽的功能。

衣物处理装置的蒸汽发生器停止进水后,蒸汽发生器内充满水,泡沫块完全堵住蒸汽管接头12,为了虹吸结构能够实现虹吸功能,排出蒸汽发生器内剩余的水,蒸汽发生器出水接头上设计有文丘里管结构,文丘里管结构通过橡胶管与衣物处理装置上能够透气部件连接,或者直接与大气连通,从而蒸汽发生器与外界大气压连通;

衣物处理装置的蒸汽发生器停止进水后,蒸汽发生器与外界大气压连通,虹吸结构在蒸汽发生器发生虹吸效应,通过内管排出蒸汽发生器内剩余的水,显著减少蒸汽发生器中的滞留水,可以避免蒸汽发生器内因为滞留水产生细菌及防止蒸汽发生器出现冻裂情况。

【水路模块】

实施例5-1

本实施例提供一种热泵式洗烘一体机,包括:

用于盛装衣物的内筒和容纳所述内筒于其中的外筒;

水路模块,所述水路模块包括进水阀组件,所述进水阀组件包括:

相连通的第一进水阀接头和第一进水管路,所述第一进水阀接头的出水经所述第一进水管路经过水盒组件再进入所述内筒;

相连通的第二进水阀接头和第二进水管路,所述第二进水阀接头的出水经所述第二进水管路经过蒸汽发生模块再进入所述内筒或所述外筒。

所述水盒组件设置在所述外筒的上部且包括水盒以及分别与所述水盒连通的喷淋进水接头和喷淋出水接头,所述内筒设有第一门封接头和第二门封接头,所述第一进水管路包括水盒进水管、三通接头、第一喷淋管、第二喷淋管和第三喷淋管,所述水盒进水管两端分别与所述第一进水阀接头和所述喷淋进水接头相连接,所述第一喷淋管两端分别与所述喷淋出水接头和所述三通接头相连接,所述第二喷淋管与所述三通接头和所述第一门封接头相连接,所述第三喷淋管与所述三通接头和所述第二门封接头相连接。

所述蒸汽发生模块包括蒸汽盒组件,所述蒸汽盒组件设在所述外筒的上部且包括具有蒸汽进水接头、蒸汽出水接头、蒸汽接头和第一虹吸接头的蒸汽盒,所述水盒组件包括水盒以及分别与水盒连通的盒进水接头和盒出水接头,所述热泵式洗烘一体机还设有与所述内筒连通的热泵模块,所述热泵模块设有具有烘干风道接头的烘干风道部件,所述外筒设有第二虹吸接头和筒进水接头,所述第二进水管路包括蒸汽盒进水管、蒸汽盒出水管、蒸汽管、筒进水管和虹吸管,且所述第二进水管路具有第一支路、第二支路和第三支路,所述述蒸汽盒进水管两端分别与所述第二进水阀接头和所述蒸汽进水接头相连接,在所述第一支路中,所述蒸汽盒出水管两端分别与蒸汽出水接头和所述盒进水接头相连接,所述筒进水管两端分别与所述盒出水接头和所述筒进水接头相连接,在所述第二支路中,所述蒸汽管两端分别与所述蒸汽接头和所述烘干风道接头相连接,在所述第三支路中,所述虹吸管分别与所述第一虹吸接头和所述第二虹吸接头相连接。

所述进水阀组件还包括:

相连通的第三进水阀接头和第三进水管路,所述第三进水阀接头的出水经所述第三进水管路经过出风口滤网再进入所述外筒;

相连通的第四进水阀接头和第四进水管路,所述第四进水阀接头的出水经所述第四进水管路经过热泵模块的两器组件再进入所述外筒。

所述外筒的上部设有所述出风口滤网、滤网喷淋接头和与所述滤网喷淋接头连通的滤网喷淋喷头,所述出风口滤网供所述热泵模块的烘干气流经过,所述第三进水管路包括滤网喷淋管,所述滤网喷淋管分别与所述第三进水阀接头和所述滤网喷淋接头相连接。

所述两器组件设置在所述外筒的上部,所述两器组件包括蒸发器、冷凝器、喷淋头、两器盒体和两器盒盖,所述蒸发器和所述冷凝器安装在由所述两器盒体和所述两器盒盖相固定所形成的容纳空间中,所述喷淋头固定于所述两器盒盖上并用于对所述蒸发器的翅片进行喷淋,所述两器盒盖设有与所述喷淋头相连通的两器喷淋接头,所述两器盒体设有用于排出喷淋水的排水接头,所述外筒的下部设置一连通所述外筒的接水接头,所述第四进水管路包括翅片喷淋管、第一导水管、连接管和第二导水管,所述翅片喷淋管两端分别与所述第四进水阀接头和所述两器喷淋接头相连接,所述第一导水管的两端分别与所述排水接头和所述连接管相连接,所述连接管的两端分别与所述第一导水管和所述第二导水管相连接,所述第二导水管分别与所述连接管和所述接水接头相连接。

所述接水接头设置在所述外筒的下部且贯通所述外筒,所述接水接头的接水入口与所述第二导水管相连接,所述接水接头的接水出口与所述外筒的内壁相切。

沿所述外筒的轴向方向,所述水盒组件和所述蒸汽发生模块位于所述外筒上部的一侧,所述出风口滤网和所述两器组件位于所述外筒上部的相对另一侧。

所述进水阀组件还包括均相互连通的总进水管和多个分水管以及支撑固定板,多个所述分水管分别对应地与一进水阀接头相连,在所述支撑固定板开设有多个分别与各个进水阀接头插接配合的插接孔。

所述热泵式洗烘一体机还包括依次相连的排水软接头、排水泵和排水管,所述外筒的下部设有与所述外筒相连通的出水接头,所述排水软接头的两端与所述出水接头和所述排水泵相连接。

参考图5-1-1至图5-1-13,本发明一实施例提供了一种热泵式洗烘一体机,该热泵式洗烘一体机包括用于盛装衣物的内筒3和容纳内筒3于其中的外筒23和水路模块,水路模块包括进水阀组件71,进水阀组件71包括相连通的第一进水阀接头711和第一进水管路712,第一进水阀接头711的出水经第一进水管路712经过水盒组件72再进入内筒3,对于通过第一进水管路712进入内筒3的具体方式,举例来说,可以是由第一进水阀接头711排出的水在第一进水管路712的导流下进入水盒组件72后再通过对内筒3相关部件进行喷淋而进入内筒3。进水阀组件71还包括相连通的第二进水阀接头713和第二进水管路714,第二进水阀接头713的出水经第二进水管路714经过蒸汽发生模块再进入内筒3,对于通过第二进水管路714进入内筒3或外筒23的具体方式,举例来说,可以是由第二进水阀接头713排出的水在第二进水管路714的导流下进入蒸汽发生模块后进入水盒组件72再以在水盒组件 72中被加热后的热水而进入外筒23,由此可知,本发明的热泵式洗烘一体机利用第一进水阀接头711和第二进水阀接头713分别对应连通及控制两条管路的水流能分别使常温水和热水进入内筒3和外筒23进而实现不同功能,因此,在具备多种功能的基础上,还简化了整机的管路布局和降低了管路成本。

重点参考图5-1-2、图5-1-3和图5-1-13,具体地,水盒组件72设置在外筒23的上部且包括水盒721以及分别与水盒721连通的喷淋进水接头722和喷淋出水接头723,内筒3 设有第一门封接头31和第二门封接头32,第一进水管路712包括水盒进水管7121、三通接头7122、第一喷淋管7123、第二喷淋管7124和第三喷淋管7125,该水盒进水管7121可采用为漂洗橡胶管,各个喷淋管均可采用橡胶管,水盒进水管7121两端分别与第一进水阀接头711和喷淋进水接头722相连接,第一喷淋管7123两端分别与喷淋出水接头723和三通接头7122相连接,第二喷淋管7124与三通接头7122和第一门封接头31相连接,第三喷淋管7125与三通接头7122和第二门封接头32相连接,可以理解的是,在内筒3上还进一步设置分别与第一门封接头31和第二门封接头32相连接第一门封喷头(未图示)和第二门封喷头(未图示),这样的话,第一门封接头31和第一门封接头31通过第一进水管路712接收第一进水阀接头711的出水能够实现分别对玻璃碗及门封的喷淋。

重点参考图5-1-4和图5-1-13,具体地,蒸汽发生模块包括蒸汽盒组件61,该蒸汽盒组件61设在外筒23的上部且包括具有蒸汽进水接头、蒸汽出水接头、蒸汽接头和第一虹吸接头(未图示)的蒸汽盒611,水盒组件72包括水盒721以及分别与水盒721连通的盒进水接头7211和盒出水接头7212,热泵式洗烘一体机还设有与内筒3连通的热泵模块,热泵模块设有具有烘干风道接头(未图示)的烘干风道部件47,外筒23设有第二虹吸接头234 和筒进水接头235,第二进水管路714包括蒸汽盒进水管7141、蒸汽盒出水管7142、蒸汽管7143、筒进水管7144和虹吸管7145,且第二进水管路714具有第一支路、第二支路和第三支路,蒸汽盒进水管7141两端分别与第二进水阀接头713和蒸汽进水接头相连接,在第一支路中,蒸汽盒出水管7142两端分别与蒸汽出水接头(未图示)和盒进水接头7211相连接,筒进水管7144两端分别与盒出水接头7212和筒进水接头235相连接,因而,第二进水阀接头713的出水能够通过上述第一支路实现蒸汽对水盒721中的常温水加热得到的蒸汽水供应至外筒23实现热水洗涤功能,有助于对洗衣粉的充分溶解以及对特殊材质衣物洗涤时的呵护,在第二支路中,蒸汽管7143两端分别与蒸汽接头和烘干风道接头相连接,可知的是,该烘干风道接头位于内筒烘干气流循环通道之中,因而,第二进水阀接头713的出水能够通过上述第二支路实现蒸汽盒611中的蒸汽供应至内筒3实现蒸汽护理功能,在第三支路中,虹吸管7145分别与第一虹吸接头和第二虹吸接头234相连接,如此的话,虹吸管7145 用于将蒸汽盒611中剩下的多余水排至外筒23,从而通过上述第三支路实现蒸汽盒611中的滞留水被排至外筒23,避免了蒸汽盒611在低温环境下被冻裂的不利情况。需要说明的是,上述三个支路,可以根据实际需要而导通或关闭。综上所述,通过第二进水阀接头713、第二进水管路714和蒸汽发生模块的管路布局,能够实现热水洗涤、蒸汽护理和蒸汽盒防冻三个功能,而且管路结构简洁、不复杂,无需过度增大整机占用空间。

重点参考图5-1-13,进一步地,进水阀组件71还包括相连通的第三进水阀接头715和第三进水管路716以及相连通的第四进水阀接头717和第四进水管路718,第三进水阀接头 715的出水经第三进水管路716经过出风口滤网236再进入外筒23,对于通过第三进水管路 716进入外筒23的具体方式,举例来说,可以是由第三进水阀接头715排出的水在第三进水管路716的导流下直接对出风口滤网236进行喷淋而进入外筒23;第四进水阀接头717 的出水经第四进水管路718经过热泵模块的两器组件44再进入外筒23,对于通过第四进水管路718进入外筒23的具体方式,举例来说,可以是由第四进水阀接头717排出的水在第四进水管路718的导流下直接进入两器组件44再对蒸发器441的翅片喷淋后进入外筒23,由此可知,本发明的热泵式洗烘一体机在利用上述第一进水阀接头711和第二进水阀接头713分别对应连通及控制两条管路的水流来实现不同功能基础上,还采用第三进水阀接头 715和第四进水阀接头717分别对应连通及控制两条管路的水流来获得更多功能,因此,在具备多种功能的基础上,整机的管路布局仍比较简单,不会额外过度地增加整机的体积。

重点参考图5-1-5和图5-1-13,具体地,外筒23的上部设有出风口滤网236、滤网喷淋接头237和与滤网喷淋接头237连通的滤网喷淋喷头(未图示),出风口滤网236供热泵模块的烘干气流经过,从而出风口滤网236可以避免灰尘等杂质进入热泵模块的驱动风机和内筒3,延长驱动风机的使用寿命,提高洗涤效果。第三进水管路716包括滤网喷淋管7161,滤网喷淋管7161分别与第三进水阀接头715和滤网喷淋接头237相连接,因此,通过第三进水管路716的简洁的管路布局直接将第三进水阀接头715的出水引至滤网喷淋喷头,使得具有足够的水压对出风口滤网236进行彻底喷洗,有效提高出风口滤网236的过滤效果。

重点参考图5-1-6至图5-1-9和图5-1-13,具体地,两器组件44设置在外筒23的上部,两器组件44包括蒸发器441、冷凝器442、喷淋头445、两器盒体443和两器盒盖444,蒸发器441和冷凝器442安装在由两器盒体443和两器盒盖444相固定所形成的容纳空间中,喷淋头445固定于两器盒盖444上并用于对蒸发器441的翅片进行喷淋,两器盒盖444设有与喷淋头445相连通的两器喷淋接头4441,两器盒体443设有用于排出喷淋水的排水接头 4431,外筒23的下部设置一连通外筒23的接水接头233,第四进水管路718包括翅片喷淋管7181、第一导水管741、连接管742和第二导水管743,翅片喷淋管7181两端分别与第四进水阀接头717和两器喷淋接头4441相连接,第一导水管741的两端分别与排水接头4431 和连接管742相连接,连接管742的两端分别与第一导水管741和第二导水管743相连接,第二导水管743分别与连接管742和接水接头233相连接,这样的话,通过第四进水管路 718的简洁的管路布局直接将第四进水阀接头717的出水引入两器组件44排至外筒23,使得具有足够的水压对蒸发器441的翅片进行喷淋,保证热泵模块的正常工作,并且通过各导水管和连接管742能够可靠、快捷地排出喷淋水,避免喷淋水的积存。

重点参考图5-1-10和图5-1-11,优选地,接水接头233设置在外筒23的下部且贯通外筒23,接水接头233的接水入口与第二导水管743相连接,接水接头233的接水出口与外筒23的内壁相切,由于喷淋蒸发器441的翅片之后的废水经与外筒23的内壁相切的接水接头233的进入外筒23并沿着外筒23内壁排至外筒23外,从而避免废水进入内筒3而污染衣物和内筒3。

重点参考图5-1-2、图5-1-5和图5-1-6,优选地,沿外筒23的轴向方向,水盒组件72和蒸汽发生模块位于外筒23上部的一侧,出风口滤网236和两器组件44位于外筒23上部的相对另一侧,由于外筒23为圆柱体形,因此,沿外筒23的轴向方向相对对称地布置相应部件于其上部,能够充分利用上部的空余空间,减少整机占用空间。

重点参考图5-1-1,优选地,进水阀组件71还包括均相互连通的总进水管(未图示)和多个分水管(未图示)以及支撑固定板719,多个分水管分别对应地与一进水阀接头相连,可知的是,进水阀组件71通过电磁阀等开关来开通或关断各进水阀接头的出水,在支撑固定板719开设有多个分别与各个进水阀接头插接配合的插接孔7191,因此,进水阀组件71的支撑固定板719能加强进水阀组件71的整体强度,并使各进水阀接头获得有力支撑,保障各进水阀出水的稳定顺畅。

重点参考图5-1-12,进一步优选地,对于上述任一种热泵式洗烘一体机,热泵式洗烘一体机还包括依次相连的排水软接头75、排水泵76和排水管77,该排水软接头75具体可采用橡胶软接头以提高允许其随外筒23进行一定摇摆运动的自由度,外筒23的下部设有与外筒23相连通的出水接头,排水软接头75的两端与出水接头和排水泵76相连接,因此,对于上述各管路所供应至内筒3或外筒23的水流都能被快捷地排出,保障热泵式洗烘一体机的上述各种功能的可靠实现。

实施例5-2

本实施例提供一种热泵式洗烘一体机,包括:

用于盛装衣物的内筒和容纳所述内筒于其中的外筒;

热泵模块,其包括两器组件,且所述两器组件包括蒸发器、冷凝器、两器盒体和两器盒盖,所述蒸发器和所述冷凝器安装在由所述两器盒体和所述两器盒盖相固定所形成的容纳空间中;

烘干风机组件,其包括驱动烘干气流流动的驱动风机,且所述驱动风机驱动所述烘干气流从所述容纳空间中流出;

所述两器盒体设有用于排出冷凝水的排水接头,所述排水接头位于所述烘干气流相对于所述容纳空间的流出方向的下游;

水路模块,其包括导水管组件,所述导水管组件的进水端和排水端分别与所述排水接头和所述外筒相连通。

所述两器盒体的底部设置有凹陷部,所述排水接头两端具有的进水口和出水口分别与所述凹陷部和所述进水端相连通。

所述蒸发器和所述冷凝器相互平行且各自面对所述凹陷部的一侧与所述凹陷部相间隔,所述烘干气流垂直地先后经过所述蒸发器和所述冷凝器。

所述导水管组件包括依次相连接的第一导水管、连接管和第二导水管,所述第一导水管与所述排水接头相连接的一端设为所述进水端,所述第二导水管远离所述连接管的一端设为所述排水端。

所述连接管设为一直管且在中间部位设有一固定架,所述固定架设置有一第一螺纹孔,所述外筒上设有与所述第一螺纹孔相对应的第二螺纹孔,所述热泵式洗烘一体机还包括螺纹件,所述螺纹件螺纹连接所述第一螺纹孔和所述第二螺纹孔。

所述第一导水管的中部位置设有弹性伸缩管,所述第二导水管接近所述外筒的一段设为凸出状。

在所述外筒的下部设置一贯通所述外筒的接水接头,所述接水接头的接水入口与所述第二导水管相连接,所述接水接头的接水出口与所述外筒的内壁相切。

所述第一导水管、所述连接管和所述第二导水管均固定于所述外筒上且沿重力方向依次相连,所述进水端和所述排水端在所述重力方向上的投影至少部分重合。

在所述外筒上设有多个位于同一竖直线的卡扣,且至少一个所述卡扣卡接所述第二导水管的外周。

所述热泵模板还包括导风弯头腔;

所述烘干风机组件包括容纳所述风机于其中的风机容纳腔;

在所述两器盒体两侧各开设一通孔,在所述内筒上前后两端分别设有第一内筒孔和第二内筒孔;

所述外筒包括前外筒体和后外筒体,所述后外筒体上设有一与所述风机容纳腔和所述第二内筒孔相连通的外筒出风孔,所述导风弯头腔和所述风机容纳腔相对于所述两器盒体相对设置且分别与各自相邻的一所述通孔和所述第一内筒孔或所述外筒出风孔相连通,所述导风弯头腔的体积向着所述第一内筒孔的方向逐渐减小。

参考图5-2-1至图5-2-4,图5-1-10至图5-1-11,本发明一实施例提供了一种热泵式洗烘一体机,该热泵式洗烘一体机包括用于盛装衣物的内筒3和容纳内筒3于其中的外筒23、热泵模块、烘干风机组件43和水路模块。热泵模块包括两器组件44,且两器组件44 包括蒸发器441、冷凝器442、两器盒体443和两器盒盖444,蒸发器441和冷凝器442安装在由两器盒体443和两器盒盖444相固定所形成的容纳空间中,烘干风机组件43包括驱动烘干气流流动的驱动风机431,驱动风机431驱动烘干气流从容纳空间中流出,从而可知的是,上述容纳空间形成有烘干气流通道,在热泵式洗烘一体机运行时,蒸发器441和冷凝器442在冷媒的配合作用下,冷凝器442在烘干气流通道释放热量,驱动风机431与烘干气流通道连接,驱动风机431向烘干气流通道持续送风,驱动烘干气流循环地经过内筒3,达到烘干衣物的效果。上述两器盒体443设有用于排出冷凝水的排水接头4431,该冷凝水为气流循环通过蒸发器441时在其表面凝露出水珠并滴落至两器盒体443中而形成,排水接头 4431位于烘干气流相对于容纳空间的流出方向的下游,该流出方向与驱动风机431的送风方向相同,这样的话,由于排水接头4431的出水方向与烘干气流流动方向一致,因此,烘干气流流动能加快冷凝水从排水接头4431排出,提高冷凝水排出效率。水路模块包括导水管组件74,导水管组件74的进水端和排水端分别与排水接头4431和外筒23相连通,从而,两器盒体443中的冷凝水通过导水管组件74能被快捷地排至外筒23,保障热泵模块的正常工作,综上,本发明热泵式洗烘一体机能够可靠、高效地排出冷凝水,简化了冷凝水排出管路的布局。

重点参考图5-2-2,优选地,两器盒体443的底部设置有凹陷部4432,排水接头4431两端具有的进水口和出水口分别与凹陷部4432和进水端相连通,因此,冷凝水积聚于凹陷部4432,不仅能防止冷凝水落于角落等部位而导致无法完全排出,而且冷凝水在自身重力和驱动风机431作用下能被快速排出。

进一步地,蒸发器441和冷凝器442相互平行且各自面对凹陷部4432的一侧与凹陷部4432相间隔,也就是说,蒸发器441和冷凝器442在两器盒体443中相对于凹陷部4432为悬空固定,有利于冷凝水滴落至上述凹陷部4432,上烘干气流垂直地先后经过蒸发器441 和冷凝器442,这样的话,蒸发器441和冷凝器442的各自迎风面与依次经过的烘干气流流出方向相垂直,使得驱动风机431驱动烘干气流的效率高。

重点参考图5-2-1,具体地,导水管组件74包括依次相连接的第一导水管741、连接管 742和第二导水管743,第一导水管741与排水接头4431相连接的一端设为进水端,第二导水管743远离连接管742的一端设为排水端,也就是说,冷凝水排出管路设置为三个管件相连即可实现冷凝水被引导至外筒23内并被排出,因此,冷凝水排出管路的布局被大大简化。

优选地,连接管742设为一直管且在中间部位设有一固定架7421,固定架7421设置有一第一螺纹孔7422,外筒23上设有与第一螺纹孔7422相对应的第二螺纹孔(未图示),热泵式洗烘一体机还包括螺纹件,螺纹件螺纹连接第一螺纹孔7422和第二螺纹孔,如此的话,由于连接管742起到连接第一导水管741和第二导水管743作用,其位置稳固性对于各管连接可靠性至关重要,因此,通过在连接管742上设置被固定至外筒23的固定架7421,提高了连接管742在外筒23上固定的稳固性。

重点参考图5-2-1,优选地,第一导水管741的中部位置设有弹性伸缩管7411,第二导水管743接近外筒23的一段设为凸出状,这样的话,该弹性伸缩管7411既使第一导水管741便于弯折而改变走向,又缓冲了外筒23对第一导水管741的碰撞力,提升了第一导水管741的装配牢固性;将第二导水管743连接外筒23的末端设为凸出状能引导冷凝水接近垂直地流入外筒23,防止存有滞留冷凝水的死角。

进一步较优地,在外筒23的下部设置一贯通外筒23的接水接头233,在本实施例中,接水接头233设置在前外筒体231的下部,接水接头233的接水入口与第二导水管743相连接,接水接头233的接水出口与外筒23的内壁相切,由于冷凝水经与外筒23的内壁相切的接水接头233进入外筒23并沿着外筒23内壁排至外筒23外,从而避免冷凝水进入内筒3 而打湿衣物。

重点参考图5-2-1,优选地,第一导水管741、连接管742和第二导水管743均固定于外筒23上且沿重力方向依次相连,在本实施例中,外筒23包括前外筒体231和后外筒体232,前外筒体231和后外筒体232可以是一体的也可以是分体的,并且导水管组件74装配在前外筒体231上,因而具有结构稳定、装配简便的优点,进水端和排水端在竖直方向上的投影至少部分重合,需知的是,该重力方向也可理解为竖直方向,从而冷凝水在从两器盒体443至外筒23这个过程中几乎只沿一个方向即重力方向流动,保证了其流动过程所受阻力最小,提高了冷凝水的排出效率。

进一步地,在外筒23尤其是上述前外筒体231上设有多个位于同一竖直线的卡扣2311,且至少一个卡扣2311卡接第二导水管743的外周,卡扣2311能够加固第二导水管743与前外筒体231的固定,卡扣2311设为多个则可兼容不同形状的第二导水管743。

重点参考图5-2-1和图5-2-3,具体优选地,对于上述任何一种热泵式洗烘一体机,热泵模板还包括导风弯头腔46;烘干风机组件43包括容纳风机于其中的风机容纳腔432;在两器盒体443两侧各开设一通孔,在内筒3上前后两端分别设有第一内筒孔(未图示)和第二内筒孔(未图示);外筒23包括前外筒体231和后外筒体232,后外筒体232上设有一与风机容纳腔432和第二内筒孔相连通的外筒出风孔(未图示),另外,需了解的是,风机容纳腔432和外筒出风孔之间需设置一连通彼此的导风管,导风弯头腔46和风机容纳腔432 相对于两器盒体443相对设置且分别与各自相邻的一通孔和第一内筒孔或外筒出风孔相连通,导风弯头腔46的体积向着第一内筒孔的方向逐渐减小,依次相连通的两器组件44、导风弯头腔46、内筒3、风机容纳腔432形成烘干气流循环流动的烘干气流循环通道,其中,图5-2-3中箭头表示了烘干气流的流动方向,因此,通过以上设置,形成烘干气流的整个结构紧凑,导风弯头腔46设为上述渐缩的楔形,能加快进入内筒3的烘干气流的流速从而提高烘干效率。

【散热风机固定架】

实施例6

本实施例提供一种用于热泵式衣物处理设备的支架,所述支架用于固定压缩机的散热风机和卡接管线,包括:

安装底板;

与所述安装底板一侧固定连接的安装框架,所述安装底板和所述安装框架之间形成固定所述散热风机的安装空间;

管夹,设于所述安装框架的远离所述安装底板的侧部上方,所述管夹用于卡接管线于其上。

所述支架还包括在所述安装框架与所述安装底板相背的一侧设有的喇叭型出风罩,所述喇叭型出风罩设有入风口和出风口,所述喇叭型出风罩沿所述入风口到出风口方向形成渐缩结构。

所述支架还包括设于在所述安装框架的与所述管夹位于同一侧的加强板,所述加强板与所述安装框架和所述管夹相连,所述加强板上设有多个沿竖直方向平行的突筋。

所述安装底板还包括一对相对设置的侧夹持块,所述侧夹持块从所述安装底板向上伸出以对安装于一对所述侧夹持块之间的所述散热风机进行夹持,各个所述侧夹持块的顶边均沿竖直方向向上倾斜地与所述安装框架相连。

所述安装底板还包括至少一个装配通孔,所述装配通孔设置于临近所述安装框架远离所述安装框架的侧面的位置上。

在所述安装底板背对所述安装框架的底面上设有一第一加强凸筋和多个垂直于所述第一加强凸筋且相互间隔的第二加强凸筋,所述第二加强凸筋的延伸方向与所述排风方向相平行。

所述管线为热泵式衣物处理设备的排水管或进水管。

一种热泵式衣物处理设备,包括:

壳体;

布置于所述壳体中的如上述任一项所述的用于热泵式衣物处理设备的支架;

布置于所述壳体中的内筒和容纳所述内筒于其中的外筒;

与所述外筒的底部连通以排出所述外筒中的水的排水管;

与所述内筒相连通以向所述内筒中供应水的进水管;

所述压缩机设置在所述壳体内;

所述散热风机被固定在所述安装底板和所述安装框架之间并朝向所述压缩机吹风,从而对所述压缩机散热,且所述管夹卡接所述排水管或所述进水管。

所述安装框架上设有多个用于对所述散热风机固定连接的装配孔;对应的,所述散热风机上设有多个固定孔,所述多个装配孔与所述多个固定孔一一对应通过固定件固定连接。

所述热泵式衣物处理设备还包括减振阻尼器,在所述壳体的底板上固定有阻尼器底座,所述减振阻尼器位于所述外筒的下方且两端分别与所述阻尼器底座和所述外筒相连;

热泵式衣物处理设备还包括依次相连的排水软接头、排水泵和所述排水管,所述外筒的下部设有与其相连通的出水接头,所述排水软接头的两端与所述出水接头和所述排水泵相连接,所述管夹卡接所述排水管,所述排水管在所述壳体内相对间隔地经过所述减振阻尼器,所述压缩机、所述用于热泵式衣物处理设备的支架和所述阻尼器底座均固定在所述底板上。

所述壳体背对所述外筒的衣物取放口的背壳板上设有面对所述散热风机的散热板,所述散热板位于所述散热风机经过所述压缩机后的排风的下游且其上设有多个散热孔。

参考图6-1至图6-4,作为本发明的一个目的,本发明一实施例提供了一种用于热泵式衣物处理设备的支架11,其用于固定压缩机的散热风机453和卡接管线,其包括安装底板 111、安装框架112以及管夹113,安装框架112与安装底板111一侧固定连接,安装底板111和安装框架112之间形成固定散热风机453的安装空间,管夹113设于安装框架112的远离安装底板111的侧部上方,该安装底板111的侧部沿垂直于安装底板111的方向向上延伸并与散热风机453的侧面相抵接,管夹113用于卡接管线于其上。管夹113可以弹性变形,从而管线进入管夹113的开口过程使管夹113的自由端弹性变形而使开口变大,待管线进入开口后,在弹性恢复力作用下,管夹113牢固箍夹住管线的外径。因此,本发明用于热泵式衣物处理设备的支架11既具有能够稳靠地固定散热风机453又将管线良好限位的优点。

重点参考图6-1、图6-3和图6-4,优选地,用于热泵式衣物处理设备的支架11还包括在安装框架112与安装底板111相背的一侧设有的喇叭型出风罩114,出风罩114设有入风口(未图示)和出风口1141,出风罩114沿入风口到出风口方向形成渐缩结构,散热风机 453的排风在出风罩114的引导下用于对压缩机进行散热,因此,出风罩114能对风机的排风进行挤压和导向,有效提高排风的速率和距离。

重点参考图6-1和图6-2,优选地,用于热泵式衣物处理设备的支架11还包括设于在安装框架112的与管夹113位于同一侧的加强板115,加强板115与安装框架112和管夹113相连,加强板115上设有多个沿竖直方向平行的突筋1151,由于设置该加强板115,能提高管夹113对管线的支撑力度,并提升整体用于热泵式衣物处理设备的支架11的强度,减小散热风机工作时引起的振动。

重点参考图6-3和图6-4,优选地,安装底板111还包括一对相对设置的侧夹持块116,侧夹持块116从安装底板111向上伸出以对安装于一对侧夹持块116之间的散热风机453 进行夹持,各个侧夹持块116的顶边均沿竖直方向向上倾斜地与安装框架112相连,如此的话,通过设置一对侧夹持块116能够更好地对散热风机453的一对相对侧部进行夹持,从而施加将散热风机453保持固定于安装底板上的夹持力,从而减少散热风机453因受到意外外力而引起移位的风险,并且将顶边设为倾斜状,对于沿竖直方向向着安装底板111安装的散热风机453的两侧部逐渐增大夹持力从而起到了引导散热风机453被安装到准确位置的作用。

重点参考图6-4,优选地,安装底板111还包括至少一个装配通孔117,装配通孔117设置于临近安装框架112远离安装框架112的侧面的位置上,该装配通孔117由于设置成远离安装框架112,不存在障碍物阻碍对装配通孔117中装配螺钉等固定件,因此,能提高装配效率,并且,在装配通孔117中的固定件相对于安装框架112的支撑力矩也相应增大,提高了用于热泵式衣物处理设备的支架11的固定稳定性。

重点参考图6-1,优选地,在安装底板111背对安装框架112的底面上设有一第一加强凸筋118和多个垂直于第一加强凸筋118且相互间隔的第二加强凸筋119,第二加强凸筋119 的延伸方向与排风方向相平行,如此的话,各加强凸筋能增强用于热泵式衣物处理设备的支架11的强度,并且多个由相邻第一加强凸筋118和第二加强凸筋119围成的方形凹槽具有缓冲风机运行振动的作用,从而不仅减小用于热泵式衣物处理设备的支架11受风机运行振动的不利影响而且使得风机运行平稳。

具体地,所述管线为热泵式衣物处理设备的排水管77或进水管,因此,用于热泵式衣物处理设备的支架11能对排水管77或进水管良好限位,避免了排水管77或进水管在壳体1中走线的凌乱,有助于减小排水管77或进水管的空间占用并杜绝了热泵式衣物处理设备工作的安全隐患。

重点参考图6-5至图6-9,作为本发明的另一个目的,本发明另一实施例提供了一种热泵式衣物处理设备,其包括壳体1、布置于壳体1中以上任一种的用于热泵式衣物处理设备的支架11、布置于壳体1中的用于盛装衣物的内筒和容纳内筒于其中的外筒23、排水管77、进水管(未图示)以及压缩机451,该壳体1为中空矩形体状,排水管77位于外筒的下方并与外筒23相连通以排出外筒23中的水,与所述内筒相连通以向所述内筒中供应水的进水管,上述压缩机451设置在壳体1内,该压缩机451既可以设置于壳体的底板1.1上且位于外筒下方,排水管77经过用于热泵式衣物处理设备的支架11,则此情形下,用于热泵式衣物处理设备的支架11固定散热风机453并卡接排水管77,该压缩机451也可以设置于壳体的上部且位于外筒23上方,进水管经过用于热泵式衣物处理设备的支架11,则此情形下,用于热泵式衣物处理设备的支架11固定散热风机453并卡接进水管,也就是说,无论是压缩机451布置在壳体的上部或者下部,用于热泵式衣物处理设备的支架11均可以实现在利用所固定的散热风机453对压缩机451散热的同时采用管夹113对进水管或排水管进行良好地限位。散热风机453被固定在安装底板111和安装框架112之间并朝向压缩机451吹风,吹出的风对压缩机451散热,,该用于热泵式衣物处理设备的支架11具有以上任一种用于热泵式衣物处理设备的支架11所具有的有益效果,在此不再赘述,因此,热泵式衣物处理设备既能稳靠地固定散热风机453又能将排水管77或进水管良好限位,确保获得优良的散热效果和整齐且可靠的管线排布。

优选地,在安装框架112上设有多个与位于其中的风机固定连接的装配孔1121,对应的,散热风机453上设有多个固定孔,多个装配孔1121与多个固定孔固定一一对应通过固定件固定连接,固定件可以是螺钉、螺栓等螺纹件,装配孔1121和固定孔可以都设为螺纹孔,因此,散热风机453能被稳固地固定在安装框架112上,减少工作时的震动。

重点参考图6-5至图6-8,优选地,热泵式衣物处理设备还包括减振阻尼器52,在壳体 1的底板1.1上固定有阻尼器底座1.11,减振阻尼器52位于外筒的下方且两端分别与阻尼器底座1.11和外筒23相连;热泵式衣物处理设备还包括依次相连的排水软接头75、排水泵76和排水管77,该排水软接头75可采用橡胶软接头,外筒23的下部设有与其相连通的出水接头,排水软接头75的两端与出水接头和排水泵76相连接,管夹113卡接排水管77,排水管77在壳体1内相对间隔地经过减振阻尼器52,由于热泵式衣物处理设备的空间限制,排水管77和减振阻尼器52均布置在外筒23下方,排水管77经过减振阻尼器52且两者位置靠近,容易相互干涉,当热泵式洗烘一体工作时,减振阻尼器52会上下伸缩,将很容易与排水管77摩擦,甚至会有磨破排水管77造成机内漏水的风险,而本发明热泵式衣物处理设备采用的用于热泵式衣物处理设备的支架11上的管夹113能抬高并固定排水管77,可使排水管77避空减振阻尼器52,防止了排水管77与减振阻尼器52之间的摩擦,规避了机内漏水的风险;且压缩机451、用于热泵式衣物处理设备的支架11和阻尼器底座1.11均固定在底板1.1上,这样就实现了紧凑、有序的空间布置,可以减小壳体1所占空间,并使散热风机453接近压缩机451,散热风机453的排风吹向压缩机451,实现了为压缩机451散热降温的效果。

重点参考图6-9,优选地,壳体1背对外筒的衣物取放口的背壳板上设有面对散热风机 453的散热板1.2,散热板1.2位于散热风机453经过压缩机451后的排风的下游且其上设有多个散热孔1.21,因此,经过压缩机451后的排风被迅速经各个散热孔1.21排出至壳体1外,进而确保压缩机451散热降温具有很好效果。另外,作为进一步的改进,多个散热孔1.21排列成具有共同圆中心的多圈,同一圈的散热孔1.21具有相同形状,且各圈的散热孔1.21的面积相对于圆中心由近至远逐渐增大,两两相邻且均经过各圈中每一散热孔1.21的中心线的两半径所夹中心角均设为相同,两两经过相邻两圈散热孔1.21的各自在周向上的中心线的两圆周对应的两半径值差值均设为相等,这样的话,多个散热孔1.21的形状及排布的设置,符合空气动力学原理,因此,尤其有助于经过压缩机451后的排风被迅速排出至壳体1外,进一步提高对压缩机451的散热降温效果。

【滤网喷淋控制方法】

本实施例提供一种带有烘干功能的衣物处理装置,其包括筒体、烘干风道、滤网和喷淋清洗单元、控制装置;其中,

所述烘干风道与筒体形成烘干空气循环流路,用于烘干空气;

所述滤网设置在所述烘干空气循环流路中,用于过滤烘干空气;

所述喷淋清洗单元包括用于向所述滤网喷淋的喷淋装置,所述喷淋装置包括多个朝向所述滤网不同区域的喷水口;

所述控制装置控制所述喷水口实现多种喷淋方式,所述多种喷淋方式包括持续性喷淋和间歇性喷淋;

所述多种喷淋方式可被控制根据滤网脏堵需要以其中的一种方式运行或其中的多种方式交替运行;

所述间歇性冲洗为使所述喷淋装置的喷水口间歇性喷出冲洗介质;

所述持续性冲洗为使所述喷淋装置的喷水口持续性喷出冲洗介质。

所述喷淋装置设置有用于控制所述喷淋装置喷淋方式的进水阀;通过控制进水阀使所述喷水口实现所述持续性喷淋和间歇性喷淋。

所述滤网为凸向烘干风道的曲面结构且设置在所述筒体出风口处;所述喷淋装置包括喷淋件,所述喷淋件设置在所述滤网的上方,所述喷水口形成朝向所述滤网上部斜向上倾斜的喷淋面,所述喷淋面至所述滤网过滤面的喷淋间距从上到下逐渐增大。

一种用于上述任一项所述衣物处理装置的烘干滤网冲洗的控制方法,在执行烘干程序之前或者在执行烘干程序中,若监测到滤网需要清理,根据清理需要选择间歇性冲洗模式或持续性冲洗模式运行或两者按照预设周期交替对所述滤网实施清洗;

所述间歇性冲洗模式为控制所述喷淋进水阀间歇开闭实现所述喷淋装置的喷水口间歇性喷出冲洗介质;

所述持续性冲洗模式为控制所述喷淋进水阀持续开启实现所述喷淋装置的喷水口持续性喷出冲洗介质。

包括以下步骤:

所述间歇性冲洗模式执行的时间为t1,所述持续性冲洗模式执行的时间为t2,获取滤网清洗总时间为t;

若t≤t1,则只执行t的间歇性冲洗模式;

若t1<t<t1+t2,则执行t1的间歇性冲洗模式,执行t-t1的续性冲洗模式;

若t≥t1+t2,则周期交替执行t1的间歇性冲洗模式、t2的持续性冲洗模式,直至达到时间t。

还包括:

控制设定所述间歇性冲洗模式和所述持续性冲洗模式之间的间隔时间t3,控制进水阀在每个间歇性冲洗模式或者持续模式执行完之后保持关闭间隔时间t3再进行下一冲洗模式。

所述获取滤网清洗总时间为t包括:

获取上次烘干信息;

根据上次的烘干衣物重量W及烘干时长t0计算滤网清洗总时间t=kW+at0,其中,k为设定值,冲洗时长与烘干衣物重量W对应的比例系;a为设定值,为冲洗时长与烘干时长t0对应的比例系数。

若获取上次烘干信息不成功,设定固定冲洗时长T,所述的滤网清洗总时间为t=T。

所述监测到滤网需要清理的判断条件包括:在烘干程序执行设定周期后,判定所述滤网需要进行冲洗。

所述在烘干程序执行设定周期后为在烘干前的脱水分布阶段。

所述监测到滤网需要清理的判断条件包括:监测烘干系统的当前静压值K;将当前静压值K与初始静压值K

若所述当前静压值K≦n*K

其中,所述n为设定倍数,所述K

所述当前静压值K基于与所述当前烘干风机转速、当前烘干风机功率的函数关系确定所述烘干系统当前静压值K,所述函数关系包括:

K

其中:P为风机功率,r为风机转速;a

所述间歇性喷淋被控制在所述滤网面上形成从到下不断扩展的近似抛物状过流面,所述持续性喷淋被控制在所述滤网面上形成近似矩形状过流面,所述近似抛物状过流面和近似矩形状过流面叠合时覆盖整个滤网面的过滤区域;具体方案如实施例7-1-1和实施例7-1-2。

实施例7-1-1

为了方便理解本申请实施例提供的衣物处理设备,其内部加装热泵系统,提供烘干作用。

如图2-2-1a、图2-2-1b、图2-2-2所示,衣物处理设备包括壳体(图上未示出)和设置在壳体中的衣物处理桶以及为衣物处理桶和壳体之间的烘干风机组件43、两器组件44和连接风道,衣物处理桶包括内筒3和外筒23,烘干风机组件43、两器组件44和连接风道设置在外筒23的上方,外筒23的顶部设有外筒进风口22和外筒出风口21,烘干风机组件43、两器组件44连接在连外筒进风口22和外筒出风口21之间,具体地,外筒进风口22设置在外筒23的前筒上,外筒出风口21设置外筒的后筒上,连接风道包括第一风道41和第二风道42;第一风道41用于与外筒出风口21连接,第二风道42用于与外筒进风口22连接。两器组件44包括形成有换热腔的两器盒和设置于换热腔内的两器,即蒸发器和冷凝器,烘干气流流经两器盒时在换热腔中先后与蒸发器、冷凝器完成热交换(烘干空气流经蒸发器时被蒸发器冷却去湿气,流经冷凝器时被加热);由此外筒出风口21、第一风道41、烘干风机组件43、两器盒、第二风道42和外筒进风口22依次密封连接并连通形成衣物处理设设备的外部烘干风道,烘干风道与衣物处理桶形成烘干空气的循环流路,在烘干风机组件43作用下,烘干气流沿烘干流路循环流动,流经换热腔时与蒸发器、冷凝器先后完成热交换,流经外筒23时与衣物完成热交换而实现衣物的烘干效果。

进一步的,结合附图2-2-3、图2-2-4a、图2-2-4b、图2-2-5a、图2-2-5b,本实施例提供的衣物处理设备还包括滤网241,滤网241设置在所述烘干空气循环流路中,用于过滤烘干流路中烘干空气里掺杂的毛屑。烘干流路上装有用于驱动烘干空气流动的风机,提供烘干气流的流动动力。优选的,滤网安装在风机的进风端,也即筒体出风口处21,从而能够有效过滤烘干空气中的毛屑,避免其流入两器内影响换热。优选的滤网形成凸向外筒23的洗涤腔的曲面结构设置在外筒出风口21处以利于存留毛屑的空间和便于及时进行清理。

继续结合附图2-2-3、图2-2-4a、图2-2-4b、图2-2-5a、图2-2-5b、图2-2-6,本实施例提供的衣物处理设备还包括用于对所述滤网进行清洗的喷淋清洗单元;喷淋清洗单元设有喷淋进水管26,喷淋进水管26设有进水阀71。喷淋清洗单元设有喷水口朝向滤网的喷淋装置24。喷淋装置的喷淋件242设置在滤网241的上方,喷淋件242的喷水口被构造以发散的多方位喷向滤网241,以扩大清洗覆盖面,使清洗更加彻底,避免出现部分毛屑漏清理的情况。

进一步的,本发明还进一步发现,如图2-2-5a和图2-2-5b所示,当使滤网构造为凸向烘干风道的曲面结构、将喷淋件倾斜地设置在滤网的上方且使喷淋件的喷淋面至滤网过滤面的喷淋间距从上到下逐渐增大更加有利于在滤网上形成更大面积的过流面以及更薄的水膜,不但有利于对滤网进行全面覆盖式清洗,且有利于减少水膜的蒸发和破碎时间,可以大大提升后续烘干效率,减少用户等待时间和提升客户体验。

进一步的,本发明还进一步发现,巧妙的设计多种喷淋方式适应于不同的冲洗需求可比单一的冲洗方式有更好的冲洗效果:第一、防止烘干负载不大时,造成不必要的水量浪费和能量浪费;第二、避免因为喷水量过大导致滤网积水过多和水膜过厚,致使后期烘干效率降低和烘干时间延长。为此,本申请实施例提供了一种实现对滤网间歇性冲洗结合持续性冲洗滤网的控制装置,该控制装置可根据滤网清洗需要控制进水阀实现包括持续性喷淋和间歇性喷淋在内的多种喷淋方式,具体的控制可根据滤网脏堵的清洗需要以其中的一种方式运行或其中的多种方式交替运行,其中间歇性冲洗为使喷淋装置的喷水口间歇性喷出冲洗介质,持续性冲洗为使喷淋装置的喷水口持续性喷出冲洗介质。

作为本实施例控制装置控制进水口持续性冲洗和间歇性冲洗的可选的一种方案,本实施例控制装置通过控制进水阀的开闭时间(也可以进一步调节开闭开度)即可实现喷水口的持续性喷淋和间歇性喷淋。

如图2-2-5a至图2-2-6、图7-1-1a、图7-1-1b、图7-1-1c,申请实施例提供的烘干滤网冲洗时控制装置通过控制喷淋清洗单元的喷水口以间歇性冲洗和持续性冲洗的方式清洗烘干滤网的覆盖效果示意图。其中,图2-2-3中为本申请实施例提供的烘干滤网间歇性冲洗的覆盖效果示意图;间歇性冲洗为喷淋进水阀控制喷淋装置的喷水口2422间歇性喷出冲洗介质,此时滤网241的滤网面上形成从到下不断扩展的近似抛物状过流面,当控制装置控制喷淋进水阀使喷水口持续性喷出冲洗介质(如水)时,冲洗介质沿抛物线往下喷淋至滤网的中间区域,如此没有造成滤网大面积的水膜的形成,有利于快速回复压缩机的正常频率进行后续的烘干程序。如此,当滤网脏堵不严重时,可采用间歇喷洗模式。但滤网脏堵比较严重尤其是局部脏堵比较严重明时,可采用持续喷洗模式,此时水流压力比较大且水流钢性比较大,有利于快速冲洗掉脏堵。但作为一种性价比跟高的方式,当脏堵不十分严重,可采用间歇性冲洗和持续冲洗交替运行的方式,不但可以保证滤网的清洗效果,还能防止水膜过厚和造成不要的水源浪费、能量浪费、时间浪费(烘干时间过长)。

进一步优选的,参考附图7-1-1a,控制装置控制喷水口2422以单次间歇如0.5~1秒的频率喷出冲洗介质,使喷淋出的冲洗介质由于水压不足而偏离原本的路径,沿抛物线往下喷淋到滤网10中间区域有利于过滤面抛物线状过流面的形成。且控制装置还用于通过喷淋进水阀控制喷淋装置21喷淋t1时间的间歇性冲洗,t1时间在1~5秒之间,从而在t1时间内进行一次或多次间歇性冲洗。进一步参考图7-1-1b,图2-2-4为本申请实施例提供的烘干滤网持续性冲洗的覆盖效果示意图;持续性冲洗为喷淋进水阀控制喷淋装置的喷水口持续性喷出冲洗介质。喷淋进水阀控制喷淋装置的喷水口持续性喷出冲洗介质时,冲洗介质沿喷水口的角度直线向滤网的位于中间区域两侧的区域及部分中间区域进行冲洗。控制装置通过控制喷淋进水阀持续供水,使喷水装置喷淋t2时间持续性冲洗。t2时间在至少5秒以上,持续喷淋时间,目的是形成持续的直线水流对滤网10两侧进行冲洗。一并参考图7-1-1c,图 7-1-1c为本申请实施例提供的烘干滤网间歇性冲洗结合持续性冲洗的覆盖效果示意图;为了对滤网10全面覆盖冲洗,控制装置通过喷淋进水阀控制喷淋清洗单元以间歇性冲洗和持续性冲洗的方式清洗,并在设定冲洗时间t之间交替进行间歇性冲洗和持续性冲洗。具体的,控制装置还用于控制间歇性冲洗和持续性冲洗之间间隔时间t3。t3为控制反应时间;间隔时间t3时,持续性冲洗的水介质根据冲击的位置为滤网除中间区域的两侧及部分中间区域,利用滤网自身的中部凹陷,使喷出的水介质对滤网的两侧进行冲击,并在冲击后水介质沿中部凹陷向下自流;间隔时间t3后,间歇性冲洗的水介质与自流下的水介质相汇合,对滤网 10上的毛屑进行深度清除,保证滤网的通风效果。

实施例7-1-2

下面以上述实施例7-1-1所述衣物处理装置为示例,提供一种具体的冲洗控制方法实施例。

总的思路是:

在执行烘干程序之前或者在执行烘干程序中,若监测到滤网需要清理,根据清理需要选择间歇性冲洗模式或持续性冲洗模式运行或两者按照预设周期交替对所述滤网实施清洗;

所述间歇性冲洗模式为控制所述喷淋进水阀间歇开闭实现所述喷淋装置的喷水口间歇性喷出冲洗介质;

所述持续性冲洗模式为控制所述喷淋进水阀持续开启实现所述喷淋装置的喷水口持续性喷出冲洗介质。

具体的:

(1)在烘干程序之前或在烘干程序执行设定周期后,判定所述滤网是否需要进行冲洗和采用何种方式清洗。烘干程序之前本实施例优选的在烘干前的脱水分布阶段,在该阶段进行冲洗判断并实施冲洗,有利于提升烘干效率和烘干效果。当然,本领域技术人员可想到的,在烘干前的洗涤阶段或烘干前的漂洗阶段或烘干前的抖散阶段也均可以。无论如何,利用烘干前的这些阶段进行滤网的冲洗程序,都是有利于滤网的清洗并且减少后续烘干的等待时间和提升烘干效果。

(2)所述监测到滤网需要清理的判断包括:

监测烘干系统的当前静压值K;

将当前静压值K与初始静压值K

若所述当前静压值K≦n*K

其中,所述n为设定倍数,所述K

其中,对于当前静压值K的计算,本申请提供一种可选的实施方式:

即,根据静压值K与烘干风机转速、烘干风机功率的函数关系确定烘干系统当前静压值 K,该函数包括:

K=aP+br+c............................(1);

其中:P为风机功率,a为风机功率系数,r为风机转速,b为风机转速系数,c为常数;

需要说明的是,a、b、c是基于K的函数关系,针对不同的设定转速、设定功率通过神经网络学习和训练使K接近相应风洞试验实测值获得的对应于不同设定转速、设定功率的优选值,因此a、b、c并不是完全固定不变的常数,其与所选择的风机设定转速、风机设定功率有关。当风机设定转速不变、设定功率不变、a、b、c相对不变;当风机设定转速和设定功率发生变化,所对应的a、b、c可能并不相同。

通常情况下,在烘干系统相同的情况下,风机设定功率与设定转速为一一对应的关系,设定功率值可根据烘干风机在烘干系统中以对应设定转速运行测得。实际中由于在不同的运行阶段烘干负载及烘干性能的要求不同,满足不同烘干阶段烘干工作需求的风机设定转速n 不同。此外,考虑到风机功率在实际运行中由于滤网堵塞等原因,会因为风机负荷的变化使风机实际功率发生变化。为了能够根据烘干系统与烘干风机转速、风机功率的上述函数关系更精确的计算出烘干系统静压,我们惊讶的发现,对于某一设定转速而言,我们以对应该设定转速的设定功率作为分界点对K函数进行分段所计算结果更为准确。当然,不考虑程序的复杂性,理论上我们也可以将烘干系统静压值K与烘干风机转速、烘干风机功率的函数关系设为更多段函数,以提升该模型计算结果的精确度。

比如烘干风机设定转速n为4500RPM,对应的烘干风机设定功率Po为68W,那我们可以设定在保持风机设定转速是4500RPM不变情况下,以设定功率68W作为分界值将上述一次函数变成分段函数,即

(1)K

(2)K

也就是说,若烘干风机以设定转速4500RPM运行时,若当前功率P小于68W时,利用K

然后通过神经训练和学习分别获得对应上述分段函数K

(1)K

(2)K

如此,在设定转速4500RPM和设定功率68W下,当当前风机功率P小于68W时,我们可将当前风机功率P代入K

基于上述的计算思路,我们便可以得到对应不同设定转速、设定功率的多个分段函数曲线,我们将该些曲线储存在控制器中,判断时就可以调取所对应的分段函数曲线进行比对。如此通过当前转速、功率就可以查找对应的分段函数曲线以及相应的烘干系统静压值。如图 7-1-2所示实施例就是在设定转速为4500RPM、设定功率表为68W时得到的两段分段函数,其中横轴表示静压,纵轴表示功率。当我们需要确定烘干风机当前以设定转速4500RPM运行时,当前功率为70W时的烘干系统静压值,我们便查找对应的4500RPM的K的函数曲线,如图7-1-2可见,在设定转速4500RPM下,当前功率70W对应的烘干系统当前静压值为300pa。如此,只要获得当前风机转速、功率就可确定烘干系统当前静压值。解决了烘干系统实际静压难以测量导致利用烘干系统静压值进行滤网冲洗控制不易控制的难题。实际运行中,只需通过监测装置对风机的功率和转速进行监测便可确定出烘干系统的当前静压值,将其与系统的初始静压比较,从而便可判断滤网毛屑情况,主动及时进行滤网清理,大大提升了滤网清理的智能化。

本领域技术人员可理解的,K是静压,单位是pa,P为风机功率,单位是w,r为风机转速,单位为RPM,因此a作为风机功率系数,单位可取pa/w,b作为风机转速系数的单位可取pa/RPM,C是常数,单位可取pa。

通过这种方式确定烘干系统的当前静压值相比比直接用压力计确定静压,综合考虑了风机转速和风机功率的影响,更能准确的判断滤网脏堵程度和更准确的控制冲洗模式以及冲洗时间。

如此,只要获得当前风机转速、功率就可确定烘干系统当前静压值。通过这种方式确定烘干系统的当前静压值相比比直接用压力计确定静压,综合考虑了风机转速和风机功率与水膜的相互影响,更能准确的判断滤网脏堵程度和更准确的控制冲洗模式以及冲洗时间。实际运行中,只需通过监测装置对风机的功率和转速进行监测便可确定出烘干系统的当前静压值,将其与系统的初始静压比较,从而便可判断滤网毛屑情况,主动及时进行滤网清理,大大提升了滤网清理的智能化。

(3)关于滤网清洗总时长t的确定及控制,本申请提供的一种可选的实施方式有两种;

第一种:固定的冲洗时长=T;T为固定的时长,较长的设定时间,确保在滤网毛屑附着情况最恶劣的条件下仍然达到较好的冲洗效果,但是无法精确地控制喷淋的时长,在滤网毛屑情况附着情况较轻时仍然以T时长进行喷淋,对时间及水资源都会造成浪费。

第二种:计算的冲洗时长=t;通过上次的烘干衣物重量W及烘干时长t

优先采用第二种方式计算冲洗总时长,当无法获取上次烘干的信息时,采用第一种方式。

具体的,关于第二种滤网清洗总时长t的控制,本申请提供可选的实施方式包括如下步骤:

获取上次烘干信息;

根据上次的烘干衣物重量W及烘干时长t0计算滤网清洗总时间t=kW+at

需要说明的是,考虑到获取上次烘干信息可能有不成功的情况,本实施例还优选的若获取上次烘干信息不成功,设定的固定冲洗时长T,按照固定冲洗时长控制滤网清洗总时间,即t=T。

(4)对于喷淋方式的选择及控制

作为本申请优选的一种实施方式,为便于控制和有利形成均匀的薄的水膜,每一周期的持续冲洗时间预设为固定的t2,如至少5秒以上,间歇式冲洗总时长预设为固定的时长t1,如t1时间在1~5秒之间,进水阀的通断时间及通断频率是固定的,间歇性冲洗模式和所述持续性冲洗模式之间的间隔时间预设为固定的t3。作为可选的一种实施例,喷淋控制如下:

计算得出滤网清洗总时间t和设置间歇性冲洗模式执行的时间为t1,持续性冲洗模式执行的时间为t2,;

根据上述获得的滤网清洗总时间为t与间歇性冲洗模式执行的时间t1、持续性冲洗模式执行的时间为t2的关系控制冲洗模式:

若t≤t1,则只执行t的间歇性冲洗模式;

若t1<t<t1+t2,则执行t1的间歇性冲洗模式,执行t-t1的续性冲洗模式;

若t≥t1+t2,则周期交替执行t1的间歇性冲洗模式、t2的持续性冲洗模式,直至达到时间t,具体的,设定所述间歇性冲洗模式和所述持续性冲洗模式之间的间隔时间t3,控制进水阀在每个间歇性冲洗模式或者持续模式执行完之后保持关闭间隔时间t3再进行下一冲洗模式。

下面结合图7-1-3具体说明以上述实施方式为基础的完整控制流程实施例,图7-1-3 为本申请实施例提供的烘干滤网冲洗方法的方框图。该烘干滤网的冲洗方法包括以下步骤:

步骤一、运行烘干程序;

步骤二、获取上次烘干衣物重量W、烘干总时长t

步骤三、判断是否执行滤网冲洗,若是,则执行步骤四,若否则进入步骤六;判断是否执行滤网冲洗可以是累计运行多个周期的烘干后,在用户再次选择烘干程序时提醒用户,用户进行选择是否冲洗,或者通滤网冲洗判断逻辑进行判断。

步骤四、执行滤网冲洗步骤:

a、开启喷淋进水阀,间歇性冲洗方式t

b、间隔时间t

步骤a为间歇性冲洗控制,步骤b为持续性冲洗控制,其单独和结合的冲洗效果如图 7-1-1a、7-1-1b、7-1-1c所示。

步骤五、重复执行步骤四直至冲洗时间t结束,进入步骤六。

步骤六、运行烘干控制程序直至烘干结束。

以上方法中,优选的,间歇性冲洗为控制装置控制喷水口242以单次间歇0.5~1秒的频率喷出冲洗介质,使喷淋出的冲洗介质由于水压不足而偏离原本的路径,沿抛物线往下喷淋到滤网中间区域并形成抛物线状过流区域。且控制装置用于通过喷淋进水阀控制喷淋装置 21喷淋t1时间的间歇性冲洗,t1时间在1~5秒之间,从而在t1时间内进行一次或多次间歇性冲洗。

持续性冲洗为控制装置通过控制喷淋进水阀持续供水,使喷水装置喷淋t2时间持续性冲洗。t2时间在至少5秒以上,持续喷淋时间,目的是形成持续的直线水流对滤网两侧进行冲洗。

间歇性冲洗结合持续性冲洗为控制装置控制喷淋进水阀以设定频率间歇供水,在间歇供水t1时间后停止,间隔时间t3后启动持续性冲洗,持续性冲洗t2时间后停止,间隔时间 t3后启动间歇性冲洗。

本申请实施例只是1次间歇性冲洗加1次持续持续性冲洗,然后进行周期循环;当然可以是多次间歇性冲洗后进行1次较长时间的持续性冲洗,此时的间隔时间t3可忽略不计。

本申请实施例衣物处理设备采用的上述烘干滤网的冲洗方法,使烘干风道内部的烘干空气流通顺畅,能耗低,烘干效率高,烘干效果好,客户体验性好。

本实施例提供一种用于烘干滤网冲洗的控制方法,所述烘干滤网用于对洗衣机烘干系统的烘干气流进行过滤,所述烘干气流由烘干风机提供动力,所述滤网的清理采用喷淋方式冲洗,在所述洗衣机运行烘干程序前,所述控制方法包括如下控制步骤:

S1、启动烘干风机;

S2、确定烘干系统的当前静压值K;

S3、根据所确定的当前静压值K判断所述烘干滤网是否需要清理;若确定所述滤网需要清理时,执行步骤S4;

S4、停止烘干风机,先执行滤网冲洗清理程序。

所述洗衣机运行烘干程序前为烘干前的脱水分布阶段。

所述洗衣机运行烘干程序前为烘干前的洗涤阶段或烘干前的漂洗阶段或烘干前的抖散阶段。

所述根据所确定的当前静压值K判断所述滤网是否需要清理包括:

将当前静压值K与初始静压值K

若所述静压值K≦n*K

其中,所述n为设定倍数,所述K

所述监测烘干系统的当前静压值K包括:

获取当前烘干风机转速和烘干风机功率;

基于所述当前烘干风机转速、当前烘干风机功率确定所述当前烘干系统静压值K。

所述基于所述当前烘干风机转速、当前烘干风机功率确定所述当前烘干系统静压值K 为根据所述当前烘干风机转速、当前烘干风机功率的函数关系确定静压值,所述函数关系包括:

K=aP+br+c............................(1);

P为风机功率,r为风机转速;a为风机功率系数,b为风机转速系数,c为常数。

在所述S2步骤和所述S3步骤中保持烘干风机设定转速不变;

当监测到所述烘干风机功率衰减至初始功率的预设比例以下时,视为烘干滤网需要执行 S4步骤所述的滤网清理程序。

在脱水分布阶段,控制内筒以第一转速间断运行;

在执行滤网喷淋冲洗阶段,控制内筒以高于第一转速的第二转速转动。

所述滤网冲洗清理程序至少设有两种可选择的喷淋模式对所述滤网进行冲洗,所述两种可选择的喷淋模式包括间歇性喷淋模式和持续性喷淋模式。

所述间歇性喷淋模式和持续性喷淋模式被控制交替运行。

在所述S4步骤执行所述滤网冲洗过程中,实时判断洗衣机是否满足终止滤网冲洗程序条件,如果为否,返回到S4步骤继续执行滤网冲洗程序,如果为是,进入下一个洗衣机程序。

一种热泵洗衣机,包括装配在烘干系统的滤网、喷淋冲洗单元以及风机;所述风机用于驱动所述烘干系统内部的烘干空气循环流动穿过所述滤网时过滤掉所述烘干空气中掺杂的毛屑;所述喷淋冲洗单元包括用于向所述滤网喷淋的喷淋装置,以及控制所述喷淋装置的喷淋进水阀;所述烘干滤网冲洗装置还包括控制装置,所述控制装置用于根据上述任一项所述的方法控制所述喷淋进水阀对所述滤网实施喷淋冲洗;具体方案如实施例7-2-1和实施例 7-2-2。

实施例7-2-1

为了方便理解本申请实施例提供的衣物处理设备,其内部加装热泵系统,提供烘干作用。

如图2-2-1a、图2-2-1b、图2-2-2所示,衣物处理设备包括壳体(图上未示出)和设置在壳体中的衣物处理桶以及为衣物处理桶和壳体之间的烘干风机组件43、两器组件44和连接风道,衣物处理桶包括内筒3和外筒2,烘干风机组件43、两器组件44和连接风道设置在外筒2的上方,外筒2的顶部设有外筒进风口22和外筒出风口21,烘干风机组件43、两器组件44连接在连外筒进风口22和外筒出风口21之间,具体地,外筒进风口22设置在外筒2的前筒上,外筒出风口21设置外筒的后筒上,连接风道包括第一风道41和第二风道42;第一风道41用于与外筒出风口21连接,第二风道42用于与外筒进风口22连接。两器组件44包括形成有换热腔的两器盒和设置于换热腔内的两器,即蒸发器和冷凝器,烘干气流流经两器盒时在换热腔中先后与蒸发器、冷凝器完成热交换(烘干空气流经蒸发器时被蒸发器冷却去湿气,流经冷凝器时被加热);由此外筒出风口21、第一风道41、烘干风机组件 43、两器盒、第二风道42和外筒进风口22依次密封连接并连通形成衣物处理设设备的外部烘干风道,烘干风道与衣物处理桶形成烘干空气的循环流路,在烘干风机组件43作用下,烘干气流沿烘干流路循环流动,流经换热腔时与蒸发器、冷凝器先后完成热交换,流经外筒 2时与衣物完成热交换而实现衣物的烘干效果。

进一步的,结合附图2-2-3、图2-2-4a、图2-2-4b、图2-2-5a、图2-2-5b,本实施例提供的衣物处理设备还包括滤网241,滤网241设置在所述烘干空气循环流路中,用于过滤烘干流路中烘干空气里掺杂的毛屑。烘干流路上装有用于驱动烘干空气流动的风机,提供烘干气流的流动动力。优选的,滤网安装在风机的进风端,也即筒体出风口处21,从而能够有效过滤烘干空气中的毛屑,避免其流入两器内影响换热。优选的滤网形成凸向外筒2的洗涤腔的曲面结构设置在外筒出风口21处以利于存留毛屑的空间和便于及时进行清理。

继续结合附图2-2-3、图2-2-4a、图2-2-4b、图2-2-5a、图2-2-5b、图2-2-6,本实施例提供的衣物处理设备还包括用于对所述滤网进行清洗的喷淋清洗单元;喷淋清洗单元设有喷淋进水管26,喷淋进水管26设有进水阀71。喷淋清洗单元设有喷水口朝向滤网的喷淋装置24。喷淋装置的喷淋件242设置在滤网241的上方,喷淋件242的喷水口被构造以发散的多方位喷向滤网241,以扩大清洗覆盖面,使清洗更加彻底,避免出现部分毛屑漏清理的情况。

进一步的,本发明还进一步发现,如图2-2-5a和图2-2-5b所示,当使滤网构造为凸向筒体洗涤腔的曲面结构、将喷淋件倾斜地设置在滤网的上方且使喷淋件的喷淋面至滤网过滤面的喷淋间距从上到下逐渐增大更加有利于在滤网上形成更大面积的过流面以及更薄的水膜,不但有利于对滤网进行全面覆盖式清洗,且有利于减少水膜的蒸发和破碎时间,可以大大提升后续烘干效率,减少用户等待时间和提升客户体验。

进一步的,本发明还进一步发现,巧妙的设计多种喷淋方式适应于不同的冲洗需求可比单一的冲洗方式有更好的冲洗效果:第一、防止烘干负载不大时,造成不必要的水量浪费和能量浪费;第二、避免因为喷水量过大导致滤网积水过多和水膜过厚,致使后期烘干效率降低和烘干时间延长。为此,本申请实施例提供了一种实现对滤网间歇性冲洗结合持续性冲洗滤网的控制装置,该控制装置可根据滤网清洗需要控制进水阀实现包括持续性喷淋和间歇性喷淋在内的多种喷淋方式,具体的控制可根据滤网脏堵的清洗需要以其中的一种方式运行或其中的多种方式交替运行,其中间歇性冲洗为使喷淋装置的喷水口间歇性喷出冲洗介质,持续性冲洗为使喷淋装置的喷水口持续性喷出冲洗介质。

作为本实施例控制装置控制进水口持续性冲洗和间歇性冲洗的可选的一种方案,本实施例控制装置通过控制进水阀的开闭时间(也可以进一步调节开闭开度)即可实现喷水口的持续性喷淋和间歇性喷淋。

如图2-2-5a、图2-2-5b、图2-2-6、图7-1-1a、图7-1-1b、图7-1-1c,申请实施例提供的烘干滤网冲洗时控制装置通过控制喷淋清洗单元的喷水口以间歇性冲洗和持续性冲洗的方式清洗烘干滤网的覆盖效果示意图。其中,图2-2-3中为本申请实施例提供的烘干滤网间歇性冲洗的覆盖效果示意图;间歇性冲洗为喷淋进水阀控制喷淋装置的喷水口2422间歇性喷出冲洗介质,此时滤网241的滤网面上形成从到下不断扩展的近似抛物状过流面,当控制装置控制喷淋进水阀使喷水口持续性喷出冲洗介质(如水)时,冲洗介质沿抛物线往下喷淋至滤网的中间区域,如此没有造成滤网大面积的水膜的形成,有利于快速回复压缩机的正常频率进行后续的烘干程序。如此,当滤网脏堵不严重时,可采用间歇喷洗模式。但滤网脏堵比较严重尤其是局部脏堵比较严重明时,可采用持续喷洗模式,此时水流压力比较大且水流钢性比较大,有利于快速冲洗掉脏堵。但作为一种性价比跟高的方式,当脏堵不十分严重,可采用间歇性冲洗和持续冲洗交替运行的方式,不但可以保证滤网的清洗效果,还能防止水膜过厚和造成不要的水源浪费、能量浪费、时间浪费(烘干时间过长)。

进一步优选的,参考附图7-1-1a,控制装置控制喷水口2422以单次间歇如0.5~1秒的频率喷出冲洗介质,使喷淋出的冲洗介质由于水压不足而偏离原本的路径,沿抛物线往下喷淋到滤网10中间区域有利于过滤面抛物线状过流面的形成。且控制装置还用于通过喷淋进水阀控制喷淋装置21喷淋t1时间的间歇性冲洗,t1时间在1~5秒之间,从而在t1时间内进行一次或多次间歇性冲洗。进一步参考图7-1-1b,图2-2-4为本申请实施例提供的烘干滤网持续性冲洗的覆盖效果示意图;持续性冲洗为喷淋进水阀控制喷淋装置的喷水口持续性喷出冲洗介质。喷淋进水阀控制喷淋装置的喷水口持续性喷出冲洗介质时,冲洗介质沿喷水口的角度直线向滤网的位于中间区域两侧的区域及部分中间区域进行冲洗。控制装置通过控制喷淋进水阀持续供水,使喷水装置喷淋t2时间持续性冲洗。t2时间在至少5秒以上,持续喷淋时间,目的是形成持续的直线水流对滤网10两侧进行冲洗。一并参考图7-1-1c,图 7-1-1c为本申请实施例提供的烘干滤网间歇性冲洗结合持续性冲洗的覆盖效果示意图;为了对滤网10全面覆盖冲洗,控制装置通过喷淋进水阀控制喷淋清洗单元以间歇性冲洗和持续性冲洗的方式清洗,并在设定冲洗时间t之间交替进行间歇性冲洗和持续性冲洗。具体的,控制装置还用于控制间歇性冲洗和持续性冲洗之间间隔时间t3。t3为控制反应时间;间隔时间t3时,持续性冲洗的水介质根据冲击的位置为滤网除中间区域的两侧及部分中间区域,利用滤网自身的中部凹陷,使喷出的水介质对滤网的两侧进行冲击,并在冲击后水介质沿中部凹陷向下自流;间隔时间t3后,间歇性冲洗的水介质与自流下的水介质相汇合,对滤网 10上的毛屑进行深度清除,保证滤网的通风效果。

实施例7-2-2

目前的热泵洗衣机内部加装循环风式烘干装置,衣物烘干过程中伴随着毛屑的产生,为避免毛屑堵塞滤网,影响风的流动和影响蒸发器和冷凝器的烘干效果,如何智能判别滤网中毛屑积累情况,并能及时自动进行滤网冲洗,为循环风式烘干装置中的空白领域。为此,本申请实施例中提供了一种智能判别滤网中毛屑积累情况,及时自动进行滤网冲洗,达到智能识别、智能清理效果的烘干滤网冲洗控制方法。

下面以上述实施例1所述衣物处理装置为示例,提供一种具体的冲洗控制方法实施例。

总的思路是:

S1、启动烘干风机;

S2、确定烘干系统的当前静压值K;

S3、根据所确定的当前静压值K判断所述烘干滤网是否需要清理;若确定所述滤网需要清理时,执行步骤S4;

S4、停止烘干风机,先执行滤网冲洗清理程序。

具体的:

(1)本实施例优选的在烘干前的脱水分布阶段进行冲洗判断并实施冲洗,有利于提升烘干效率和烘干效果。当然,本领域技术人员可想到的,在烘干前的洗涤阶段或烘干前的漂洗阶段或烘干前的抖散阶段也均可以。无论如何,利用烘干前的这些阶段进行滤网的冲洗程序,都是有利于滤网的清洗并且减少后续烘干的等待时间和提升烘干效果。

(2)所述监测到滤网需要清理的判断包括:

监测烘干系统的当前静压值K;

将当前静压值K与初始静压值K0进行比较;

若所述当前静压值K≦n*K0,判定所述滤网需要进行冲洗;

其中,K0为所述烘干系统在所述烘干风机设定转速时的初始静压值,n为设定倍数。

烘干系统的静压值,本申请创新地考虑到烘干风机转速和功率对烘干系统静压的影响,优选的将烘干风机出风口处的烘干风道的静压值设定为烘干系统的静压值以更准确的进行烘干系统静压的计算;相应的,初始静压值设定为烘干系统初始运行时烘干风机初始速度对应的静压值。对于通过热泵模块提供烘干能量的洗衣机来说,烘干系统初始运行是压缩机未启动前,烘干风机以初始速度运转时的烘干系统静压。

虽然,利用压力计检测压力是本领域公知的压力检测手段,但本领域技术人员可知晓的,静压是由于分子不规则运动对其流经的过流壁面所产生的压能。对于终端用户来说,洗衣机烘干风道内安装这样的检测装置并不具有可操作性,因此烘干运行中烘干系统的静压值相比出厂前的实验测量是非常难以检测的,因此,本申请创新地考虑到烘干风机转速和烘干风机功率对烘干系统静压的影响,建立一个有关烘干系统当前静压和烘干风机当前功率、烘干风机当前转速的函数模型,以建模的方式计算出静压值,这无疑对提升滤网控制的智能化是极为有利的。

本实施例提供的一种实施方式是根据静压值K与烘干风机转速、烘干风机功率的函数关系确定烘干系统当前静压值K,该函数包括:

K=aP+br+c............................(1);

其中:P为风机功率,a为风机功率系数,r为风机转速,b为风机转速系数,c为常数;

需要说明的是,a、b、c是基于K的函数关系,针对不同的设定转速、设定功率通过神经网络学习和训练使K接近相应风洞试验实测值获得的对应于不同设定转速、设定功率的优选值,因此a、b、c并不是完全固定不变的常数,其与所选择的风机设定转速、风机设定功率有关。当风机设定转速不变、设定功率不变、a、b、c相对不变;当风机设定转速和设定功率发生变化,所对应的a、b、c可能并不相同。

通常情况下,在烘干系统相同的情况下,风机设定功率与设定转速为一一对应的关系,设定功率值可根据烘干风机在烘干系统中以对应设定转速运行测得。实际中由于在不同的运行阶段烘干负载及烘干性能的要求不同,满足不同烘干阶段烘干工作需求的风机设定转速n 不同。此外,考虑到风机功率在实际运行中由于滤网堵塞等原因,会因为风机负荷的变化使风机实际功率发生变化。为了能够根据烘干系统与烘干风机转速、风机功率的上述函数关系更精确的计算出烘干系统静压,我们惊讶的发现,对于某一设定转速而言,我们以对应该设定转速的设定功率作为分界点对K函数进行分段所计算结果更为准确。当然,不考虑程序的复杂性,理论上我们也可以将烘干系统静压值K与烘干风机转速、烘干风机功率的函数关系设为更多段函数,以提升该模型计算结果的精确度。

比如烘干风机设定转速n为4500RPM,对应的烘干风机设定功率Po为68W,那我们可以设定在保持风机设定转速是4500RPM不变情况下,以设定功率68W作为分界值将上述一次函数变成分段函数,即

(1)K1=a1 P+b1 r+c1(r=4500RPM,P小于68W时);

(2)K2=a2P+b2r2+c2;(r=4500RPM,P大于或等于68W时);

也就是说,若烘干风机以设定转速4500RPM运行时,若当前功率P小于68W时,利用K1=a1 P+b1 r+c1函数求K1,若当前功率P大于68W时采用K2=a2P+b2r2+c2函数求K2。

然后通过神经训练和学习分别获得对应上述分段函数K1的a1、b1、c1优选值和K2的 a2、b2、c2的优选值,其中a1=-100/3,b1=0.5c1=383;a2=-100/9,b2=0.3c2=-228;即:

(1)K1=-100/3*P+0.5r+383(r=4500RPM,P小于68W时);

(2)K2=-100/9*P+0.3r2+228(r=4500RPM,P大于或等于68W时);

如此,在设定转速4500RPM和设定功率68W下,当当前风机功率P小于68W时,我们可将当前风机功率P代入K1中计算烘干系统静压值,当当前风机功率P大于68W时,我们可将当前风机功率P代入K2求烘干系统静压值。如,当我们设定转速为4500RPM、当前功率表为70W时,我们得到静压值为300pa。

基于上述的计算思路,我们便可以得到对应不同设定转速、设定功率的多个分段函数曲线,我们将该些曲线储存在控制器中,判断时就可以调取所对应的分段函数曲线进行比对。如此通过当前转速、功率就可以查找对应的分段函数曲线以及相应的烘干系统静压值。如图 7-1-2所示实施例就是在设定转速为4500RPM、设定功率表为68W时得到的两段分段函数,其中横轴表示静压,纵轴表示功率。当我们需要确定烘干风机当前以设定转速4500RPM运行时,当前功率为70W时的烘干系统静压值,我们便查找对应的4500RPM的K的函数曲线,如图7-1-2可见,在设定转速4500RPM下,当前功率70W对应的烘干系统当前静压值为300pa。如此,只要获得当前风机转速、功率就可确定烘干系统当前静压值。通过这样的烘干系统静压确定方式,综合考虑了风机转速和风机功率与水膜的相互影响,更能准确的判断滤网脏堵程度和更准确的控制冲洗模式以及冲洗时间。解决了烘干系统实际静压难以测量导致利用烘干系统静压值进行滤网冲洗控制不易控制的难题。实际运行中,只需通过监测装置对风机的功率和转速进行监测便可确定出烘干系统的当前静压值,将其与系统的初始静压比较,从而便可判断滤网毛屑情况,主动及时进行滤网清理,大大提升了滤网清理的智能化。

本领域技术人员可理解的,K是静压,单位是pa,P为风机功率,单位是w,r为风机转速,单位为RPM,因此a作为风机功率系数,单位可取pa/w,b作为风机转速系数的单位可取pa/RPM,C是常数,单位可取pa。

(3)关于滤网清洗总时长t的确定及控制的优化

本申请提供的可选的实施方式有两种;

第一种:固定的冲洗时长=T;T为固定的时长,较长的设定时间,确保在滤网毛屑附着情况最恶劣的条件下仍然达到较好的冲洗效果,但是无法精确地控制喷淋的时长,在滤网毛屑情况附着情况较轻时仍然以T时长进行喷淋,对时间及水资源都会造成浪费。

第二种:计算的冲洗时长=t;通过上次的烘干衣物重量W及烘干时长to计算t=aw×to; aw为W对应的比例系数。各重量范围对应不同等级W,每个重量等级W对应不同的比例系数 aw,通过获取衣物重量,获取对应的重量等级W,再通过与烘干时长的关系式,计算需要的冲洗时长t。烘干过程中产生的毛屑量与烘干衣物的重量及烘干时长正相关,因此通过上次烘干的参数,判断滤网的毛屑情况,从而有计划地进行滤网冲洗。从而保障滤网冲洗效果的同时,节省冲洗时间,减少冲洗介质的使用量。

优先采用第二种方式计算冲洗总时长,当无法获取上次烘干的信息时,采用第一种方式。

具体的,关于第二种滤网清洗总时长t的控制,本申请提供可选的实施方式包括如下步骤:

获取上次烘干信息;

根据上次的烘干衣物重量W及烘干时长t0计算滤网清洗总时间t=kW+at0,其中,k为设定值,冲洗时长与烘干衣物重量W对应的比例系数;a为设定值,为冲洗时长与烘干时长t0对应的比例系数。

需要说明的是,考虑到获取上次烘干信息可能有不成功的情况,本实施例还优选的若获取上次烘干信息不成功,设定的固定冲洗时长T,按照固定冲洗时长控制滤网清洗总时间,即t=T。

(4)对于喷淋方式的选择及控制

作为本申请优选的一种实施方式,为便于控制和有利形成均匀的薄的水膜,每一周期的持续冲洗时间预设为固定的t2,如至少5秒以上,间歇式冲洗总时长预设为固定的时长t1,如t1时间在1~5秒之间,进水阀的通断时间及通断频率是固定的,间歇性冲洗模式和所述持续性冲洗模式之间的间隔时间预设为固定的t3。作为可选的一种实施例,喷淋控制如下:

计算得出滤网清洗总时间t和设置间歇性冲洗模式执行的时间为t1,持续性冲洗模式执行的时间为t2,;

根据上述获得的滤网清洗总时间为t与间歇性冲洗模式执行的时间t1、持续性冲洗模式执行的时间为t2的关系控制冲洗模式:

若t≤t1,则只执行t的间歇性冲洗模式;

若t1<t<t1+t2,则执行t1的间歇性冲洗模式,执行t-t1的续性冲洗模式;

若t≥t1+t2,则周期交替执行t1的间歇性冲洗模式、t2的持续性冲洗模式,直至达到时间t,具体的,设定所述间歇性冲洗模式和所述持续性冲洗模式之间的间隔时间t3,控制进水阀在每个间歇性冲洗模式或者持续模式执行完之后保持关闭间隔时间t3再进行下一冲洗模式。

控制装置通过喷淋进水阀控制喷淋冲洗单元以间歇性喷淋和持续性喷淋的模式冲洗,并在设定冲洗时间之间交替进行间歇性喷淋和持续性喷淋。设定的冲洗时间根据监测烘干系统中静压力的变化而调整,根据监测烘干系统中静压力数值智能判别滤网中毛屑积累情况,及时自动进行滤网冲洗。这种交替的采用持续性喷淋和间歇性喷淋对滤网可以实现全面覆盖冲洗并避免水膜过厚影响烘干效果和烘干效率。

下面结合图7-2具体说明以上述实施方式为基础的完整控制流程实施例,图7-2为本申请实施例提供的烘干滤网冲洗方法的控制流程图。

具体的,参考图7-2,图7-2为本申请实施例提供的烘干前滤网冲洗的控制方法的整体步骤框图。在烘干前的某阶段判断滤网需要执行清理逻辑控制时,滤网清理逻辑可以与当前阶段的逻辑控制并行。例如,在烘干前的脱水分布阶段判断需要进行滤网清理,用户使用热泵洗衣机进行衣物烘干处理,选择洗涤烘干模式,智能识别和智能清理包括以下几个步骤:

步骤一,运行至烘干前脱水阶段;

步骤二,开启排水装置,排水至空桶水位;

步骤三,进入脱水分布阶段:

a、内筒以分布阶段第一转速、转动停止时序运行;

分布阶段以内筒较低转速顺逆时针转动,使筒内衣物均匀分布。分布阶段第一转速一般取值范围为30RPM~50RPM。

b、启动风机,运行至设定转速;此时的烘干系统的初始静压值为KO。

c、实时监测监测烘干系统的当前静压值K,并也实时监测风机当前功率P。

通过控制单元接收风机电机反馈的电流、电压、功率等参数可计算风机当前功率P。

监测当前静压值K为初始静压值KO的n倍和/或监测当前功率P衰减至比如初始功率的 85%以下时,执行滤网冲洗逻辑步骤四,否则继续进行风机功率检测;

步骤四、执行滤网冲洗控制:

a、风机转速降至0rpm;

b、内筒以高于第一转速的第二转速转动;

以高于分布阶段第一转速的第二转速转动,使筒内均匀分布的衣物贴于内筒壁面上,并且以较高转速转动内筒壁面滤网冲洗时喷淋装置将水喷淋进入内筒,溅湿衣物,实现用内筒反射水,再一次冲洗,转速越高反射水的力越大。

c、以间歇性喷淋和持续性喷淋控制喷淋装置,持续多个周期;

d、返回步骤三;

步骤五、直到分布阶段结束,进入脱水升速阶段阶段。

通过以上方法,在烘干前的某阶段判断滤网是否需要执行清理逻辑控制,及时获取滤网中的毛屑积累情况,达到烘干前的智能识别、智能清理效果。

本申请实施例衣物处理设备采用的上述烘干滤网的冲洗方法,使烘干风道内部的烘干空气流通顺畅,能耗低,烘干效率高,烘干效果好,客户体验性好。

实施例7-3

本实施例提供一种烘干设备,包括

烘干系统,所述烘干系统包括烘干风道,所述烘干风道内设有风机,所述烘干风道的流路内还设有滤网;

滤网清洗单元,所述滤网清洗单元包括喷淋装置,所述喷淋装置用于对所述滤网进行喷淋清洗;

控制系统,所述控制系统在滤网冲洗程序中通过获取所述风机的运行功率来计算衰减系数,并根据所述衰减系数来判断是否达到滤网清洗条件;当达到滤网清洗条件后,所述控制系统根据所述衰减系数来计算预计冲洗时长,并在所述预计冲洗时长内控制所述喷淋装置对所述滤网进行喷淋清洗。

所述控制方法包括

在执行滤网冲洗程序时,获取所述风机的运行功率,根据所述运行功率来计算衰减系数 a;

根据所述衰减系数来判断是否达到滤网清洗条件;当达到滤网清洗条件时,根据所述衰减系数计算预计冲洗时长;

控制所述喷淋装置对所述滤网进行喷淋清洗,直至达到所述滤网清洗时长。

所述获取所述风机的运行功率,根据所述运行功率来计算衰减系数a,包括

获取风机的运行功率p,根据运行功率P与额定功率P

所述根据所述衰减系数来判断是否达到滤网清洗条件,包括

获取冲洗时长调整系数B;

比较衰减系数a与冲洗时长调整系数B的大小;当a≥B时,判断未达到滤网冲洗条件;当a<B时,判断达到滤网冲洗条件。

所述获取冲洗时长调整系数B,包括

获取待烘干衣物的重量,根据待烘干衣物的重量确定冲洗时长调整系数B;

所述获取待烘干衣物的重量,根据待烘干衣物的重量确定冲洗时长调整系数B,包括

根据待烘干衣物重量与冲洗时长调整系数的预设对应关系,确定当前待烘干衣物重量在所述预设对应关系中所位于的重量范围;

根据所述重量范围所对应的冲洗时长调整系数B,确定为当前待烘干衣物重量所对应的冲洗时长调整系数B。

所述根据所述衰减系数计算预计冲洗时长,包括

预计冲洗时长t满足:t1=A×(B-a),其中A为冲洗时长阈值。

当所述喷淋装置对所述滤网进行喷淋冲洗的时长达到所述预计冲洗时长后,所述控制方法还包括

计算风机的分钟功率值P

若达到结束滤网清洗程序的设定条件,退出滤网清洗程序;若未达到滤网清洗程序的设定条件,控制喷淋装置继续对所述滤网进行喷淋清洗直至达到所述预计冲洗时长。

所述计算风机的分钟功率值P

控制风机以额定转速运行,获取风机功率P;

根据公式P

比较分钟功率值P

设定分钟功率值P

本实施例在实施例一的烘干设备的基础上还提出了一种烘干设备的控制方法,如图 7-3-1所示的控制流程图,所述控制方法包括步骤S1~S3,其中:

S1,在执行滤网冲洗程序时,获取所述风机的运行功率,根据所述运行功率来计算衰减系数a;

S2,根据所述衰减系数来判断是否达到滤网清洗条件;当达到滤网清洗条件时,根据所述衰减系数计算预计冲洗时长;

S3,控制所述喷淋装置对所述滤网进行喷淋清洗,直至达到所述滤网清洗时长。

本实施例中,通过风机的运行功率来计算功率衰减系数,并根据衰减系数来确定是否达到滤网冲洗条件,从而对滤网堵塞状态的智能判断,当达到滤网清洗条件时,进一步根据衰减系数来计算预计冲洗时长,从而可以根据滤网堵塞状态来进行确定冲洗时长实现高效滤网清洗。

在一个具体实施方式中,滤网衰减系数的计算方式为:获取风机的运行功率p,根据运行功率P与额定功率P0计算衰减系数a,衰减系数a满足:a=P/P0。

进一步可选地,如图7-3-2所示的控制流程图,步骤S2包括步骤S21~S22,其中:

S21,获取冲洗时长调整系数B;

S22,比较衰减系数a与冲洗时长调整系数B的大小;当a≥B时,判断未达到滤网冲洗条件;当a<B时,判断达到滤网冲洗条件。

本实施例中的冲洗时长调整系数B在一些实施方式中可设定为固定的系数,例如取值 0.7~0.8,当B=0.8时,表示风机功率衰减至额定功率的80%以下时才进行冲洗,在80%以上时,判断为不影响正常运行,不进行冲洗。

在另一些实施方式中冲洗时长调整系数B可设定为根据待烘干衣物重量来确定。如图 7-3-2所示的控制流程图,步骤S21包括步骤S211,其中:

S211,获取待烘干衣物的重量,根据待烘干衣物的重量确定冲洗时长调整系数B。

本实施例中的冲洗时长调整系数B与待烘干衣物的重量级别W为一一对应关系,通过获取衣物重量后根据重量范围进行等级划分W,如0~1kg(包含)为W1、1~2kg(包含)为W2、 2~3kg(包含)为W3...,从而获取B1、B2、B3...。

进一步可选地,步骤S211包括步骤S2111~S2112,其中:

S2111,根据待烘干衣物重量与冲洗时长调整系数的预设对应关系,确定当前待烘干衣物重量在所述预设对应关系中所位于的重量范围;

S2112,根据所述重量范围所对应的冲洗时长调整系数B,确定为当前待烘干衣物重量所对应的冲洗时长调整系数B。

进一步可选地,如图7-3-2所示的控制流程图,步骤S2包括步骤S23,其中:

预计冲洗时长t满足:t1=A×(B-a),其中A为冲洗时长阈值。

本实施例中,当通过计算获得衰减系数a与冲洗时长调整系数B的大小后,当a≥B时,此时计算的冲洗时长为0,进一步说明a≥B时未达到滤网冲洗条件,无需对滤网进行冲洗;当a<B时,此时计算的冲洗时长>0,进一步说明a<B达到滤网冲洗条件,需要对滤网进行冲洗,当达到滤网冲洗条件时通过公式t1=A×(B-a)即可根据滤网堵塞情况来准确预计冲洗时长。

进一步可选地,当所述喷淋装置对所述滤网进行喷淋冲洗的时长达到所述预计冲洗时长后,如图7-3-2所示的控制流程图,所述控制方法还包括步骤S4~S5,其中:

S4,计算风机的分钟功率值Pn,根据分钟功率值Pn判断是否达到结束滤网冲洗程序的设定条件;

S5,若达到结束滤网清洗程序的设定条件,退出滤网清洗程序;若未达到滤网清洗程序的设定条件,控制喷淋装置继续对所述滤网进行喷淋清洗直至达到所述预计冲洗时长。

本实施例中,在达到滤网冲洗条件后,为了进一步保证滤网冲洗达到预期效果,需要对风机的功率值进行检测,通过风机的分钟功率值来反映滤网的冲洗效果。当达到预计清洗时间后,在启动风机前需要静止设定时间t2,避免冲洗滤网过程中挂在滤网上的水珠影响分钟功率值的检测。当根据风机的分钟功率值确定滤网清洗效果较好,若达到结束滤网的设定条件则结束滤网清洗,若未达到则继续进行清洗,继续清洗时长可选的为继续清洗之前计算的时间,还可根据当前滤网清洁程度重新计算滤网清洗时间。

进一步可选地,判断是否达到结束滤网清洗条件的在一个具体实施方式中,如图7-3-2 所示的控制流程图,步骤S4还包括步骤S41~S43,其中,包括

S41,控制风机以额定转速运行,获取风机功率P;

S42,根据公式Pn=P/n来计算分钟功率值Pn,其中n为风机在额定转速下的运行时间;

S43,比较分钟功率值Pn与设定分钟功率值PA的大小,当Pn≥PA时判断达到结束滤网冲洗程序的设定条件。设定分钟功率值PA的大小为85%~95%P0,P0为风机的额定功率。

实施例7-4

本实施例提供一种用于烘干滤网冲洗的控制方法,所述烘干滤网用于对洗衣机烘干系统的烘干气流进行过滤,所述烘干气流由烘干风机提供动力,所述滤网的清理采用喷淋方式冲洗,在所述洗衣机运行烘干程序时,所述控制方法包括如下控制步骤:

S1、运行烘干程序,使烘干风机以设定转速运行,压缩机频率以设定功率运行,并获取烘干风机初始功率P

S2、当烘干系统运行预设时间T后,控制烘干风机以第一设定转速运行;

S3、在所述烘干风机第一转速下实时检测烘干风机功率P并与所述初始功率P

S4、判断烘干系统压缩机实际运行时长t与所述预设烘干总时长t

S5、执行滤网冲洗控制;

上述S3步骤中a为影响烘干系统正常工作的功率衰减系数,上述S4步骤中所述b为烘干时长系数。

所述S3步骤中,若P>aP

所述S4步骤中,若t>bt

所述b取15~20%,所述a取80~85%,所述T取10~15分钟。

所述S5步骤执行的滤网冲洗控制包括:

S51、降低烘干风机转速和压缩机频率,使烘干风机以第二转速运行和压缩机以第二频率运行;

S52、对滤网进行冲洗直至冲洗结束。

在所述S52步骤后,还包括:

S61、升高烘干风机转速到所述第一设定转速;

S62、在所述烘干风机第一设定转速下实时检测烘干风机功率并计算每m时间的功率上升值ΔP

当ΔP

S71、根据ΔP

S72、维持压缩机当前频率运行同时持续判断烘干风机功率;当烘干风机功率衰减至cP

S73、控制烘干系统暂停运行;

S8、继续运行烘干系统直至烘干程序结束。

所述S71步骤根据ΔP

所述S1步骤中运行烘干程序为单烘干模式。

本实施例提供一种热泵式衣物处理装置的控制装置,其包括一个或多个处理器以及存储有程序指令的非暂时性计算机可读存储介质,当所述一个或多个处理器执行所述程序指令时,所述一个或多个处理器用于实现根据上述任意一项所述的方法。

本实施例提供一种非暂时性计算机可读存储介质,其上存储有程序指令,当所述程序指令被一个或多个处理器执行时,所述一个或多个处理器用于实现根据上述任一项所述的方法。

本实施例提供一种热泵式衣物处理装置,其采用上述任一项所述的方法,或包括权利要求9所述的控制装置,或具有根据上述所述的非暂时性计算机可读存储介质。

本实施例提供一种如上述所述的热泵式衣物处理装置,其特征在于:其设有烘干系统,所述烘干系统包括:热泵系统、烘干风机、烘干风道、烘干滤网及喷淋清洗单元;

烘干风道,连通在滚筒的进出风口之间形成空气循环流通的空间,用于烘干空气的流通;

烘干风机,设置在所述烘干风道中,提供烘干空气的循环动力;

烘干滤网,设置在滚筒的出风口处或烘干风道中,用于过滤烘干空气;

滤网清洗单元,带有进水阀的喷淋装置,用于对滤网进行清洗;

所述控制装置包括:

检测单元,用于采集烘干系统的参数信息,包括烘干风机的转速信息、烘干风机的功率信息、压缩机的频率信息;

存储单元,用于储存烘干系统的设定参数,包括不同烘干阶段的烘干风机的设定转速信息、烘干风机的设定功率信息、压缩机的设定频率信息以及烘干时长信息;

计时单元,用于对烘干系统的运行时间及过滤网冲洗时间进行计时;

处理单元,用于根据检测单元、储存单元和计时单元的信息进行计算、分析和处理。

本实施例还提供一种在烘干运行中完成烘干滤网冲洗后的控制方法,所述烘干滤网用于对洗衣机烘干系统的烘干气流进行过滤,所述烘干气流由烘干风机提供动力,所述滤网的清理采用喷淋方式冲洗,

在烘干运行中完成烘干滤网冲洗后,先升高烘干风机转速到预设转速,再判断烘干风机功率在设定时间内的上升值是否达到设定值,只有当烘干风机功率达到设定值,才升高压缩机频率,使其恢复到当前烘干阶段的设定频率继续运行烘干系统直至烘干程序结束。

所述在烘干运行中完成烘干滤网冲洗后,先升高烘干风机转速到预设转速,再判断烘干风机功率在设定时间内的上升值是否达到设定值,只有当烘干风机功率达到设定值,才升高压缩机频率,使其恢复到当前烘干阶段的设定频率继续运行烘干系统直至烘干程序结束,包括:

S61、升高烘干风机转速到所述第一设定转速;

S62、在所述烘干风机第一设定转速下实时检测烘干风机功率并计算每m时间的功率上升值ΔP

当ΔP

S71、根据ΔP

S72、维持压缩机当前频率运行同时持续判断烘干风机功率;当烘干风机功率衰减至cP

S73、控制烘干系统暂停运行;

S8、继续运行烘干系统直至烘干程序结束。

所述S71步骤根据ΔP

在S61步骤前进行的滤网冲洗步骤包括:

S51、降低烘干风机转速和压缩机频率,使烘干风机以第二转速运行和压缩机以第二频率运行;

S52、对滤网进行冲洗直至冲洗结束。

在S51步骤之前还包括如下烘干滤网冲洗判断步骤:

S1、运行烘干程序,使烘干风机以设定转速运行,压缩机频率以设定功率运行,并获取烘干风机初始功率P

S2、当烘干系统运行预设时间T后,控制烘干风机以第一设定转速运行;

S3、在所述烘干风机第一转速下实时检测烘干风机功率P并与所述初始功率P

S4、判断烘干系统压缩机实际运行时长t与所述预设烘干总时长t

S5、执行滤网冲洗控制;

上述S3步骤中a为影响烘干系统正常工作的功率衰减系数,上述S4步骤中所述b为烘干时长系数。

所述b取15~20%,所述a取80~85%,所述T取10~15分钟。

所述S4步骤中运行烘干程序为单烘干模式。

本实施例还提供一种热泵式衣物处理装置的控制装置,其包括一个或多个处理器以及存储有程序指令的非暂时性计算机可读存储介质,当所述一个或多个处理器执行所述程序指令时,所述一个或多个处理器用于实现根据上述任意一项所述的方法。

本实施例还提供一种非暂时性计算机可读存储介质,其上存储有程序指令,当所述程序指令被一个或多个处理器执行时,所述一个或多个处理器用于实现根据上述中任一项所述的方法。

本实施例还提供一种热泵式衣物处理装置,其特征在于,其采用上述任一项所述的方法,或包括上述所述的控制装置,或具有根据权利要求9所述的非暂时性计算机可读存储介质。

本实施例还提供一种如上述所述的热泵式衣物处理装置,其设有烘干系统,所述烘干系统包括:热泵系统、烘干风机、烘干风道、烘干滤网及喷淋清洗单元;

烘干风道,连通在滚筒的进出风口之间形成空气循环流通的空间,用于烘干空气的流通;

烘干风机,设置在所述烘干风道中,提供烘干空气的循环动力;

烘干滤网,设置在滚筒的出风口处或烘干风道中,用于过滤烘干空气;

滤网清洗单元,带有进水阀的喷淋装置,用于对滤网进行清洗;

所述控制装置包括:

检测单元,用于采集烘干系统的参数信息,包括烘干风机的转速信息、烘干风机的功率信息、压缩机的频率信息;

存储单元,用于储存烘干系统的设定参数,包括不同烘干阶段的烘干风机的设定转速信息、烘干风机的设定功率信息、压缩机的设定频率信息以及烘干时长信息;

计时单元,用于对烘干系统的运行时间及过滤网冲洗时间进行计时;

处理单元,用于根据检测单元、储存单元和计时单元的信息进行计算、分析和处理。

如图7-3-3所示,一种用于烘干滤网冲洗的控制方法,烘干滤网用于对洗衣机烘干系统的烘干气流进行过滤,烘干气流由烘干风机提供动力,滤网的清理采用喷淋方式冲洗,其在洗衣机运行烘干程序时,控制方法包括如下控制步骤:

S1、运行烘干程序,使烘干风机以设定转速运行,压缩机频率以设定功率运行,并获取烘干风机初始功率P

S2、当烘干系统运行预设时间T后,控制烘干风机以第一设定转速运行;

S3、在所述烘干风机第一转速下实时检测烘干风机功率P并与所述初始功率P

S4、判断烘干系统压缩机实际运行时长t与所述预设烘干总时长t

S5、执行滤网冲洗控制;

上述S3步骤中a为影响烘干系统正常工作的功率衰减系数,上述S3步骤中b为烘干时长系数。

具体的:

(1)S1步骤:运行烘干程序,使烘干风机以设定转速运行,压缩机频率以设定功率运行,并获取烘干风机初始功率P

为了保证烘干程序的正常运行以及运行效果,滤网冲洗程序可以在在烘干程序之前,也可以在烘干程序中进行判定所述滤网是否需要进行冲洗和采用何种方式清洗。但面临的问题是如何使滤网的冲洗程序能够减少后续烘干的等待时间和提升烘干效果。本申请提供的实施例是用户使用该衣物处理装置进行衣物烘干处理,选择单烘干模式的情况下进行烘干程序中的滤网冲洗控制程序。

刚启动时烘干系统的初始参数以设定参数运行,如风机以设定转速运行、压缩机以设定频率运行,风机初始功率按照烘干滤网在没有脏堵的情况下,风机在设定转速运行时检测的功率。随着滤网脏堵情况的加剧,风机功率逐渐降低,因此可以通过对比实时功率与初始功率的关系,判断滤网的脏堵情况。

此外,预设烘干总时长t

(2)S2步骤中使烘干系统运行预设T时间后控制烘干风机以第一设定转速运行是本发明考虑烘干启动升温的过程中筒内温度波动较大,影响风机功率的判断,选择在烘干运行稳定一段时间后进行,T时间为烘干运行至烘干系统稳定后的时间,优选的T取10~15分钟。

此时的烘干风机的第一设定转速可以大于或等于或小于烘干系统启动时的设定参数。

(3)S3步骤中在烘干风机第一转速下实时检测烘干风机功率P并与所述初始功率P

(4)S4步骤中判断烘干系统压缩机实际运行时长t与所述预设烘干总时长t

(5)S5步骤中执行滤网冲洗控制;

包括如下控制:

S51、降低烘干风机转速和压缩机频率,使烘干风机以第二转速运行和压缩机以第二频率运行;

S52、对滤网进行冲洗直至冲洗结束。

具体的,对滤网进行冲洗方式可采用以开A秒停B秒的时序控制滤网喷淋装置进水阀开启停止,持续10周期的方式进行;滤网冲洗方法没有限定,可以通过水作为介质以任何的方式对烘干滤网进行清洗。

上述实施例1的冲洗方式都可以采用。

为避免滤网冲洗时,冲洗的水进入风道系统,对烘干系统造成不可逆损伤,需要设定烘干风机以较低的转速运行,同时为匹配当前风量,设定压缩机以较低的频率运行。为此,执行冲洗程序时我们优选的降低烘干风机转速和压缩机频率,使烘干风机以第二转速运行和压缩机以第二频率运行。

进一步的,在完成S5步骤滤网冲洗结束后为保证烘干效果的后续操作程序,还优选的进行如下步骤S6-S8,包括:

S61、升高烘干风机转速到所述第一设定转速;

S62、在所述烘干风机第一设定转速下实时检测烘干风机功率并计算每m时间的功率上升值ΔP

当ΔP

S71、根据ΔP

S72、维持压缩机当前频率运行同时持续判断烘干风机功率;当烘干风机功率衰减至cP

S73、控制烘干系统暂停运行;

S8、继续运行烘干系统直至烘干程序结束。

上述步骤S61中的ΔPo为功率上升设定值,一般设定每分钟上升1W作为判断。滤网冲洗完后由于滤网被水膜覆盖,此时烘干系统风量较低,不适宜以较高的压缩机频率运行,随水膜的减少,风机功率逐渐升高,压缩机的频率可以逐渐恢复。

上述S71步骤根据ΔP

可以理解的,ΔP

当然对于风机功率的变化的监测,并不局限于本实施例所给的ΔP

S61步骤中升高烘干风机转速到所述第一设定转速是为了更加准确检测和对比风机功率的变化。

步骤S72中的功率衰减系数c直接反映滤网冲洗后的水膜情况,当水膜覆盖严重时将影响烘干系统的正常工作,此时烘干系统需要停止运行,优选的,通过烘干系统停止运行使烘干系统静置一段时间,待水膜由于自身重量下落破除后方可继续运行。功率衰减系数c本实施例优选取60~65%,m为烘干系统静置的时长,本实施例优选取5~10分钟范围内是更有利的。

滤网冲洗后通过S6-S7步骤在设定时间范围内对风机功率的上升值达到设定值的判断,调节压缩机频率,最终使压缩机恢复到其当前阶段的设定频率运行并继续运行烘干系统直至烘干程序结束。如此可以避免压缩机在水膜没有完全破裂时过早回复设定功率,导致烘干效果降低和烘干时间延长、能耗增加。

本领域技术人员可知悉的,“当前阶段的设定参数”根据该阶段烘干参数和烘干性能调节要求所设定的压缩机频率,具体确定方式属于本领域公知的,在这不作详细说明。

此外,需要说明的是:本申请的aP

本申请实施例衣物处理设备采用的上述烘干滤网的冲洗方法,使烘干风道内部的烘干空气流通顺畅,能耗低,烘干效率高,烘干效果好,客户体验性好。

【蒸汽发生控制方法】

实施例8

针对现有具有蒸汽护理功能的衣物处理设备往往通过增设蒸汽护理单元来实现,从而导致整机成本增加的问题,本实施例提出了一种带热泵烘干功能的衣物处理设备,本实施例的衣物处理设备可选的为烘干机或洗烘一体机。

本实施例提出一种带热泵烘干功能的衣物处理设备,所述衣物处理设备包括外筒和可转动的设置在所述外筒中的内筒,所述外筒的底部设有加热装置;

所述衣物处理设备还包括烘干系统,所述烘干系统包括热泵模块、烘干风机和冷凝水通道,所述热泵模块包括冷凝器,所述冷凝水通道的一端与所述衣物处理设备的进水阀连通,另一端沿所述外筒的筒壁延伸至与所述外筒的底部连通;

所述衣物处理设备还包括控制系统,所述衣物处理设备在执行蒸汽护理程序时,所述控制系统控制所述进水阀进水,所述进水阀流出的水由所述冷凝水通道进入所述外筒的底部,当所述外筒底部的水位达到加热水位后所述控制系统控制所述进水阀停止进水;当所述进水阀停止进水后,所述控制系统控制加热装置加热,使水温处于设定水温范围内;当水温处于设定水温范围时,所述控制系统控制热泵模块启动,控制内筒以第一转速转动,控制烘干风机以第一风机转速运行;所述控制系统还获取冷凝器温度和外筒风口温度,计算冷凝器与外筒进风口的温差下降量,当所述温差下降量达到设定温度后,控制内筒以小于第一转速的第二转速转动,控制烘干风机以大于第一风机转速的第二风机转速运行;当满足蒸汽护理的结束条件时所述控制系统控制所述加热装置停止加热,控制所述热泵模块和所述烘干风机持续运行直至达到烘干结束的条件。

所述衣物处理设备还包括温度检测装置,所述温度检测装置用于检测外筒底部的水温。

所述控制方法包括:

控制进水阀进水,当进水至加热水位后停止进水;

控制加热装置加热使水温处于设定水温范围内;

当水温处于设定水温范围时控制热泵模块启动,控制内筒以第一转速转动,控制烘干风机以第一风机转速运行;

获取冷凝器温度T

当满足蒸汽护理的结束条件时控制加热装置停止加热,控制所述热泵模块和所述烘干风机持续运行直至达到烘干结束的条件。

所述计算冷凝器与外筒进风口的温差下降量,包括

计算冷凝器与外筒进风口的温差ΔT,满足ΔT=T

计算每隔设定时间内的温差平均值

所述内筒在第一转速下以第一转停比正反交替转动;

所述内筒在第二转速下以第二转停比正反交替转动。

所述控制进水阀进水,当进水至加热水位后停止进水,包括

控制进水阀开启A秒后关闭,B秒后判断水位是否达到加热水位,当判断达到加热水位时,停止进水,否则继续进水。

设定进水阀的流量为q1,冷凝水通道的最大出水流量为q2,满足:q1×A≤q2×B,其中A为进水阀开启时间,B为进水阀关闭时间。

在进水过程中,还控制内筒以第三转速转动,第三转速>第二转速。

所述控制加热装置加热使水温处于设定水温范围内,包括:

持续获取外筒底部的水温;

当外筒底部的水温达到第一设定水温时,控制加热装置在水温上升至第二设定水温时停止加热,在水温下降至第三设定水温时恢复加热;

所述第一设定水温≤第三设定水温<第二设定水温。

控制加热装置加热过程中,所述控制方法还包括:

持续对外筒底部的水位进行监测;

判断外筒底部的水位是否低于安全水位,若低于安全水位,控制加热装置停止加热,所述安全水位<加热水位≤最高水位;

判断是否满足蒸汽护理的结束条件,若满足蒸汽护理结束条件,结束蒸汽护理阶段;若不满足蒸汽护理的结束条件,控制进水阀补水至加热水位后再次启动加热装置。

如图8-1所示,本实施例的衣物处理设备包括外筒23和可转动的设置在外筒23中的内筒3,外筒23的底部设有加热装置11;衣物处理设备还包括烘干系统,烘干系统包括冷凝水通道44、热泵模块4和烘干风机和,冷凝水通道44的一端与衣物处理设备的进水阀连通,另一端沿外筒23的筒壁延伸至与外筒23的底部连通;本实施例的衣物处理设备还包括控制系统,衣物处理设备在执行蒸汽护理程序时,控制系统控制进水阀进水,进水阀流出的水由冷凝水通道44进入外筒23的底部,当外筒23底部的水位达到加热水位后控制系统控制进水阀停止进水;当进水阀停止进水后,控制系统控制加热装置11加热,使水温处于设定水温范围内;当水温处于设定水温范围时,控制系统控制热泵模块4启动,控制内筒以第一转速转动,控制烘干风机以第一风机转速运行;控制系统还获取冷凝器温度和外筒23风口温度,计算冷凝器与外筒23进风口的温差下降量,当温差下降量达到设定温度后,控制内筒以小于第一转速的第二转速转动,控制烘干风机以大于第一风机转速的第二风机转速运行;当满足蒸汽护理的结束条件时控制系统控制加热装置11停止加热,控制热泵模块4和烘干风机持续运行直至达到烘干结束的条件。

本实施例的外筒23用于储存洗涤水,其底部带有排水机构,用于将洗涤后的水排干,排水机构可选的为排水阀或排水泵将外筒23内的废水排出外界。本实施例的内筒3安装在外筒23内部,其筒壁上带有多个通孔,多个通过与外筒23空间连通。在洗涤或漂洗程序中,水通过通孔进入内筒3,进行衣物洗涤或漂洗;脱水程序中,内筒3带动衣物高速旋转产生离心力挤出衣物的水分,经连通孔流入外筒23。水加热装置11设置在内筒3底部,并位于内筒3和外筒23之间的空间,用于对洗涤水进行加热,本实施例的加热装置结构内带有水温感温检测元件或设有单独的温度检测装置来检测外筒底部的水温。加热装置11的加热方式可选的为电阻加热。

如图8-1所示,为防止加热装置11干烧,加热时需要确保加热装置11位于液面以下,并留有足够的水位余量。加热时水分蒸发,当水位下降到安全水位L以下时,需要立即停止水加热并及时补水,以防干烧。根据电气安全规范,加热装置11与内筒3底部留有足够的距离。因此,在内筒3底部到安全水位之间设定加热水位R,并以内筒3底部以下的最高水位作为加热水位上限H,以水加热装置11以上的安全水位L作为加热水位下限,在其范围内进行水加热,可以用于产生蒸汽的同时,避免内筒3衣物与筒底的水接触。本实施例中的安全水位L和最高水位H具有一定余量的波动范围,而不是一个固定的水位值。可选地,最高水位H到内筒3底部的切线距离取0~5毫米,优选5毫米;安全水位L到加热装置11上端面的距离取5~10毫米,优选10毫米。

本实施例的烘干系统系统包括烘干风机、风道和热泵模块4,烘干风机将内筒3中的空气通过烘干风道输送至热泵模块4后经过冷凝加热形成干热空气后通过烘干风道又重新送回至内筒3中从而形成循环,本实施例的热泵模块4包括压缩机、节流装置、冷凝器及蒸发器,通过压缩机及节流装置使制冷剂在蒸发器中气化吸热以及在冷凝器中凝结放热,以蒸发器作为冷源,冷凝器作为热源。

本实施例的衣物处理设备还包括进水阀组件71,进水阀组件包括一个或多个进水阀713,当有多个进水阀713时,不同进水阀连通不同的管路,例如,本实施例的衣物处理设备为洗烘一体机时,有的进水阀用于衣物洗涤进水,有的进水阀用于对热泵模块4中的滤网进行喷淋洗涤的进水,有的进水阀用于对热泵模块4中的冷凝器进行降温进水,有的进水阀用于加热装置产生蒸汽的进水。进水阀烘干系统包括冷凝水通道44,冷凝水通道44的一端与其中一个进水阀713连通,另一端沿外筒23的筒壁延伸至与外筒23的底部连通;在预热阶段中,当外筒23的水位低于安全水位时,控制系统还控制进水阀进水,进水阀流出的水由冷凝水通道44进入外筒23的底部,当外筒23的水位达到加热水位后控制系统控制进水阀停止进水。

本实施例中的冷凝水通道44被构造为承接并收集蒸发器产生的冷凝水,用于将烘干过程中产生的冷凝水导向内筒3与外筒23之间。在烘干风机的作用下经过冷凝器的热风被送往内筒3,经过衣物时将衣物水分蒸发,再将带有水分的空气送回蒸发器中,空气中的水分经蒸发器吸热后遇冷凝结成水,产生的冷凝水经过冷凝通道流向筒底,排出系统外干燥后的空气再经过热源送往内筒3,形成循环。本实施例通过将冷凝水通道44与进水阀相连,由进水阀流程的水经冷凝水通道44沿外筒23壁面流向外筒23底部,在对筒内环境进行预热时,由进水阀进入外筒23的水无需经过内筒3后此进入外筒23,而是直接从设于外筒23的冷凝水通道44进入外筒23,避免由内筒3进水后增加衣物湿度而导致烘干时间延长。

本实施例在蒸汽护理初期,在筒内环境温度较低的情况下通过加热外筒底部的水温来提高筒内环境温度,然后在水不断产生蒸汽的条件下结合热泵模块对衣物进行烘干,既提高了热泵烘干的效率,也提高了蒸汽护理的效率,同时将热泵烘干和水加热结合达到降低了蒸汽护理的能效,减少蒸汽护理成本,符合用户预期。

本实施例在实施例一和实施例二的衣物处理设备的基础上提出了一种衣物处理设备的蒸汽护理方法,如图8-2所示的控制流程图,控制方法包括步骤S1~S4,其中:

S1,控制进水阀进水,当进水至加热水位后停止进水;

本实施例中,在进行蒸汽护理时需要对水加热产生蒸汽,本实施例在外筒底部设置加热装置,通过加热装置对水加热产生水蒸气对衣物进行蒸汽护理。因此首先需要控制进水阀进水,注入的外筒中水的水位需达到加热水位,加热水位满足高于安全水位并低于最高水位。当未达到进入预热阶段的设定条件时,说明洗衣机内部环境较高,此时进行热泵烘干的效率高,因此直接启动热泵模块进入烘干阶段。

S2,控制加热装置加热使水温处于设定水温范围内;

本实施例中,当水位达到加热水位后,控制加热装置加热,随着水位升高,筒内环境温度升高,但由于需要产生蒸汽对衣物进行蒸汽护理,因此需要将水位升高到能产生水蒸气的设定水温范围,设定水温范围可选的为70℃~80℃。

S3,当水温处于设定水温范围时控制热泵模块启动,控制内筒以第一转速转动,控制烘干风机以第一风机转速运行;

本实施例中,当水温达到设定水温范围后,此时水加热升温产生蒸汽,控制内筒以较高转速的第一转速转动,避免加热过程中断续产生的蒸汽过早附着在衣物上,造成衣物的不均匀护理,可选地,控制内筒在第一转速下以第一转停比正反交底转动;同时控制烘干风机以较低的第一风机转速运行并启动热泵模块,能够使筒内热流均匀循环,通过热泵模块对衣物进行均匀预热,提高护理效率。第一风机转速范围500RPM到1500RPM,优选1000RPM。

S4,获取冷凝器温度T

本实施例中用于计算冷凝器与外筒进风口的温差下降量的一个具体的实施方式为:计算冷凝器与外筒进风口的温差ΔT,满足ΔT=T

可选的,每分钟计算一次温差平均值。

本实施例中,系统中循环风的流向是由风机出口到两器盒443,经过冷凝器加热后,再通过第二风道42送入筒内,在筒底加热阶段启动热泵系统,由于空气中水分较少,系统处于平衡状态,冷凝器温度与外筒进风口温度的差值ΔT为稳定的值,当产生的蒸汽量大于蒸发器的除湿量时,经过冷凝器的循环风中水分过多,此时温差会下降,如图8-4所示温差曲线图,当温差下降量D

S5,当满足蒸汽护理的结束条件时控制加热装置停止加热,控制所述热泵模块和所述烘干风机持续运行直至达到烘干结束的条件。

本实施例中,当满足蒸汽护理的条件时,由于筒内环境中还存在蒸汽,以及经蒸汽护理后衣物表面湿润,因此需要对衣物进行烘干,此时需继续运行热泵模块和风机,直至达到烘干结束的条件。本实施例中烘干结束条件可根据进出风的温度和或湿度差来进行判定,由于烘干判干为现有烘干领域较常规的技术,在此不再赘述。

进一步可选地,如图8-3所示的控制流程图,步骤S1中包括步骤S11,其中,

S11,控制进水阀开启A秒后关闭,B秒后判断水位是否达到加热水位,当判断达到加热水位时,停止进水,否则继续进水。

本实施例中,在进水时控制进水阀以设定的进水时序进水,当进水至加热水位后停止进水。本实施例中以设定的进水时序进水的原因是,进水阀开启时间太长容易产生较大的水流,经过冷凝水通道进入外筒空间时,冲击外筒壁面从而溅入内筒内部。因此,需要以间歇开关的方式进水,开启和停止的时间关系通过进水阀的流量q1与冷凝水通道进入外筒空间的最大水流量q2的关系决定,需控制q1×A≤q2×B,其中A为开启进水阀的时间,B为关闭进水阀的时间,以免进水过快淹没冷凝水通道,甚至蔓延至其他地方。进水阀开启时间可选的为10~20秒,进水阀关闭时间可选的为1~5秒。

进一步可选地,如图8-3所示的控制流程图,在进水过程中,还控制内筒以第三转速转动,第三转速≥第二转速。

本实施例中进水时内筒以第三转速转动,可减少进水时溅入内筒的概率,但转速太高产生离心力较大,容易使衣物产生褶皱,因此限定第三转速的范围为60RPM~120RPM,优选90RPM。

进一步可选地,如图8-3所示的控制流程图,步骤S2中包括步骤S21~S22,其中,

S21,持续获取外筒底部的水温;

S22,当外筒底部的水温达到第一设定水温时,控制加热装置在水温上升至第二设定水温时停止加热,在水温下降至第三设定水温时恢复加热;所述第一设定水温≤第三设定水温<第二设定水温。

本实施例中,当水温T≥第一设定水温时,控制加热装置以第三设定水温时开启、第二设定水温时关闭的时序控制水加热器开启关闭,加热装置开启将筒底水加热至第二设定水温时时,停止加热,当水温下降至第三设定水温时恢复加热,这样能使水温维持在适合的范围内,在降低能耗的同时保证持续产生蒸汽。

进一步可选地,为了保证加热装置始终处于安全水位范围内,防止加热装置干烧,如图 8-3所示的控制流程图,步骤S3中还包括S31~S33,其中:

S31,持续对外筒底部的水位进行监测;

S32,判断外筒底部的水位是否低于安全水位,若低于安全水位,控制加热装置停止加热,所述安全水位<加热水位≤最高水位;

S33,当判断外筒底部的水位低于安全水位时,判断是否满足蒸汽护理的结束条件,若满足蒸汽护理结束条件,结束蒸汽护理阶段;若不满足蒸汽护理的结束条件,控制进水阀补水至加热水位后再次启动加热装置。

【烘干控制方法】

实施例9-1

本实施例提供一种用于衣物处理设备的衣物判干方法,包括以下步骤:

S1:当衣物处理设备进入判干阶段,以设定采样频率检测衣物处理设备中烘干风机的功率、转速;

S2:根据所述采样频率下的所述烘干风机的功率、转速来获得衣物处理设备烘干系统的静压值,并检测压缩机的频率;

S3:根据衣物处理设备内衣物重量的称重值、所述静压值和压缩机的频率,获得衣物处理设备的判干温差;

S4:当所述判干温差大于衣物处理设备进风口与出风口的温差时,确定衣物处理设备中的衣物被烘干。

在所述步骤S1之前还包括:

S0:在衣物满足烘干条件时,检测衣物处理设备内衣物的重量。

其中所述步骤S0包括:

当衣物满足烘干条件时,检测衣物处理设备中的水量,当衣物处理设备中的水量小于预设阈值时,执行称重命令并检测衣物处理设备内衣物重量,当衣物处理设备中的水量大于预设阈值时,打开衣物处理设备的排水结构,当衣物处理设备达到空桶水量时,执行称重命令并检测衣物处理设备内衣物重量。

其中所述步骤S2包括:通过所述烘干风机的功率、转速函数关系获得衣物处理设备烘干系统的静压值。

其中所述函数关系为:

所述静压值=aP+br+c;

其中a为烘干风机功率系数,P为烘干风机功率,b为烘干风机转速系数,c为常数,r为烘干风机转速。

其中所述步骤S3包括:通过在衣物处理设备中预设的衣物处理设备内衣物重量的称重值、所述静压值和压缩机的频率与所述判干温差的映射关系表来获得所述判干温差。

其中在所述映射关系表中所述压缩机频率为可变值。

其中在所述映射关系表中所述压缩机频率为固定值。

在所述步骤S3后,当所述判干温差小于衣物处理设备进风口与出风口的温差时,继续执行所述步骤S1-S2,直至所述判干温差大于衣物处理设备进风口与出风口的温差。

一种用于衣物处理设备的衣物判干装置,包括存储器和处理器;

所述存储器用于存储计算机程序;

所述处理器,用于当执行所述计算机程序时,实现根据上述任一项所述的方法。

一种衣物处理设备,其采用了根据上述任一项所述的方法,或包括根据上述所述的装置。

图9-1-1是根据本发明的一个示例性的实施例的用于衣物处理设备的衣物判干方法的流程图。本发明通过采用变频风机+变频压缩机机的方案,可通过变频风机采集的功率值及转速值计算烘干系统静压值,从而得出过滤器中毛屑量,根据毛屑量调整判干温度,有效抑制判干温度的漂移,通过衣物重量调整判干,提升烘干均匀度,根据压缩机的工作频率及静压值计算烘干判干温度的差值。

如图9-1-1所示,

在步骤S0处,在衣物满足烘干条件时,检测衣物处理设备内衣物的重量。

在步骤S1处,当衣物处理设备进入判干阶段,以设定采样频率检测衣物处理设备中烘干风机的功率、转速;

在步骤S2处,根据所述采样频率下的所述烘干风机的功率、转速来获得衣物处理设备烘干系统的静压值,并检测压缩机的频率;其中功率值可以根据采样频率来确定,例如可以选取某个采样频率下的功率值,或者一段时间不同采样频率下功率值的平均值等;

在步骤S3处,根据衣物处理设备内衣物重量的称重值、所述静压值和压缩机的频率,获得衣物处理设备的判干温差;

在步骤S4处,当所述判干温差大于衣物处理设备进风口与出风口的温差时,判断衣物处理设备中的衣物被烘干。

图9-1-2是根据本发明的一个示例性的实施例的用于衣物处理设备的衣物判干方法的实施流程图。其中,

在S31处,衣物处理装置(或衣物处理设备)开始烘干;

在S32处,检测桶内水量;

在S33处,判断是否满足称重水量,如果不满足执行排水指令,指导排水到空桶水位;如果满足则执行称重命令;

在S34处,执行称重命令,记录称重值为M

在S35处,判断烘干阶段是否达到判干阶段,如果没有到达判干阶段,则继续执行烘干流程直到达到判干阶段,如果到达判干阶段则进入判干流程;

在S36处,控制器检测单元,开始检测烘干风机的功率、转速,采样频率为T1;

在S37处,根据S36采样数据,通过图4的功率、转速和静压函数关系得出静压K值;其中所述函数关系为:所述静压值=aP+br+c,其中a为烘干风机功率系数,P为烘干风机功率, b为烘干风机转速系数,c为常数,r为烘干风机转速;

在S38处,检测压缩机频率F;

在S39处,根据称重值M、K值、频率值,通过表1的映射关系得到判干温差;

在S310处,衣物处理设备中的控制单元采集进风口感温包和出风口感温包温度;计算进风口温度减去出风口温度的差值;

在S311处,判断差值T和判干温差的关系;如果满足T小于t1,则可判定衣物被烘干;若大于等于t1;则从S36开始继续判断。

根据本发明的一个或多个实施例,其中表1为压缩机频率F,衣物称重值M,静压K,判干温差t的映射关系表。在表1中,压缩机的频率为可变值。

表1

图9-1-3是根据本发明的一个示例性的实施例的某转速下静压K和功率关系图。图9-1-3 示出了在某个转速下烘干系统静压K和压缩机功率的关系图,其中横轴表示静压,纵轴表示功率。根据图9-1-3,可以获得在某个转速下烘干系统的静压值。

本实施例提供的一种实施方式是根据静压值K与烘干风机转速、烘干风机功率的函数关系确定烘干系统当前静压值K,该函数包括:

K=aP+br+c;

其中:P为风机功率,a为风机功率系数,r为风机转速,b为风机转速系数,c为常数;

需要说明的是,a、b、c是基于K的函数关系,针对不同的设定转速、设定功率通过神经网络学习和训练使K接近相应风洞试验实测值获得的对应于不同设定转速、设定功率的优选值,因此a、b、c并不是完全固定不变的常数,其与所选择的风机设定转速、风机设定功率有关。当风机设定转速不变、设定功率不变、a、b、c相对不变;当风机设定转速和设定功率发生变化,所对应的a、b、c可能并不相同。

通常情况下,在烘干系统相同的情况下,风机设定功率与设定转速为一一对应的关系,设定功率值可根据烘干风机在烘干系统中以对应设定转速运行测得。实际中由于在不同的运行阶段烘干负载及烘干性能的要求不同,满足不同烘干阶段烘干工作需求的风机设定转速n 不同。此外,考虑到风机功率在实际运行中由于滤网堵塞等原因,会因为风机负荷的变化使风机实际功率发生变化。为了能够根据烘干系统与烘干风机转速、风机功率的上述函数关系更精确的计算出烘干系统静压,惊讶的发现,对于某一设定转速而言,以对应该设定转速的设定功率作为分界点对K函数进行分段所计算结果更为准确。当然,不考虑程序的复杂性,理论上也可以将烘干系统静压值K与烘干风机转速、烘干风机功率的函数关系设为更多段函数,以提升该模型计算结果的精确度。

比如烘干风机设定转速n为4500RPM,对应的烘干风机设定功率Po为68W,那可以设定在保持风机设定转速是4500RPM不变情况下,以设定功率68W作为分界值将上述一次函数变成分段函数,即

(3)K

(4)K

也就是说,若烘干风机以设定转速4500RPM运行时,若当前功率P小于68W时,利用K

然后通过神经训练和学习分别获得对应上述分段函数K

(3)K

(4)K

如此,在设定转速4500RPM和设定功率68W下,当当前风机功率P小于68W时,可将当前风机功率P代入K

基于上述的计算思路,便可以得到对应不同设定转速、设定功率的多个分段函数曲线,将该些曲线储存在控制器中,判断时就可以调取所对应的分段函数曲线进行比对。如此通过当前转速、功率就可以查找对应的分段函数曲线以及相应的烘干系统静压值。如图9-1-3所示实施例就是在设定转速为4500RPM、设定功率表为68W时得到的两段分段函数,其中横轴表示静压,纵轴表示功率。当需要确定烘干风机当前以设定转速4500RPM运行时,当前功率为 70W时的烘干系统静压值,便查找对应的4500RPM的K的函数曲线,如图9-1-3可见,在设定转速4500RPM下,当前功率70W对应的烘干系统当前静压值为300pa。如此,只要获得当前风机转速、功率就可确定烘干系统当前静压值。通过这样的烘干系统静压确定方式,综合考虑了风机转速和风机功率与水膜的相互影响,更能准确的判断滤网脏堵程度和更准确的控制冲洗模式以及冲洗时间。解决了烘干系统实际静压难以测量导致利用烘干系统静压值进行滤网冲洗控制不易控制的难题。实际运行中,只需通过监测装置对风机的功率和转速进行监测便可确定出烘干系统的当前静压值.

本领域技术人员可理解的,K是静压,单位是pa,P为风机功率,单位是w,r为风机转速,单位为RPM,因此a作为风机功率系数,单位可取pa/w,b作为风机转速系数的单位可取pa/RPM, C是常数,单位可取pa。

根据本发明的一个或多个实施,其中在衣物处理设备的控制系统中,存储的衣物称重值 M,静压K,判干温差t的映射关系表如表2所示,其中表2中压缩机的频率为固定的F1。

表2

此时,用于衣物处理设备的衣物判干方法的实施流程如下:

在S41处,衣物处理装置开始烘干;

在S42处,检测桶内水量;

在S43处,判断是否满足称重水量,如果不满足执行排水指令,指导排水到空桶水位;如果满足则执行称重命令;

在S44处,执行称重命令,记录称重值为M

在S45处,判断烘干阶段是否达到判干阶段,如果没有到达判干阶段,则继续执行烘干流程直到达到判干阶段,如果到达判干阶段则进入判干流程;

在S46处,衣物处理设备的控制器检测单元(或控制系统),开始检测烘干风机的功率、转速,采样频率为T1;

在S47处,根据S46采样数据,通过图9-1-3的功率、转速和静压函数关系得出静压K值;

在S48处,检测压缩机频率F;

在S49处,根据称重值M、K值、频率值,通过表2的映射关系得到判干温差;

在S410处,控制单元采集进风口感温包和出风口感温包温度;计算进风口温度-出风口温度的差值;

在S411处,判断差值T和判干温差的关系;如果满足T小于t1,则可判定衣物被烘干;若大于等于t1;则从S46开始继续判断。

根据本发明的一个实施例,其中计算静压和判干温度的方法可以互换;烘干过程中开始采样的时间点可以在判干前也可以在烘干开始后。

根据本发明的一个或多个实施例,还提供了一种用于衣物处理设备的衣物判干装置,包括存储器和处理器;所述存储器用于存储计算机程序;所述处理器,用于当执行所述计算机程序时,实现上述的衣物判干方法。

根据本发明的一个或多个实施例,还提供了一种衣物处理设备,其采用了上述的判干方法,或包括上述的判干装置。

根据本发明的一个或多个实施例,本发明的方法中的衣物判干方案的控制逻辑可以使用存储在非暂时性计算机和/或机器可读介质(例如硬盘驱动器、闪存、只读存储器、光盘、数字多功能磁盘、高速缓存、随机存取存储器和/或任何其他存储设备或存储磁盘)上的编码的指令(例如,计算机和/或机器可读指令)来实现如本发明以上方法的流程的处理,在非暂时性计算机和/或机器可读介质中存储任何时间期间(例如,延长的时间段、永久的、短暂的实例、临时缓存和/或信息高速缓存)的信息。如本文所使用的,术语“非暂时性计算机可读介质”被明确定义为包括任何类型的计算机可读存储设备和/或存储盘,并且排除传播信号并排除传输介质。

根据本发明的一个或多个实施例,本发明的衣物判干方案可以使用控制电路、(控制逻辑、主控系统或控制模块)来实现,其可以包含一个或多个处理器,也可以在内部包含有非暂时性计算机可读介质。具体地,主控系统或控制模块可以包括微控制器MCU。用于实现本发明方法的处理的处理器可以诸如但不限于一个或多个单核或多核处理器。(一个或多个) 处理器可包括通用处理器和专用处理器(例如,图形处理器、应用处理器等)的任何组合。处理器可与其耦接和/或可包括计存储器/存储装置,并且可被配置为执行存储在存储器/存储装置中的指令,以实现在本发明中控制器上运行的各种应用和/或操作系统。

实施例9-2

本实施例提供一种用于衣物处理设备的衣物判干方法,包括:

S1:检测衣物处理设备中烘干风机的参数;

S2:根据所述烘干风机的参数获得衣物处理设备烘干系统的静压值,并检测压缩机的频率;

S3:根据所述静压值和压缩机的频率,获得衣物处理设备的判干温差,

S4:当所述判干温差大于衣物处理设备进风口与出风口的温差时,判断衣物处理设备中的衣物被烘干。

其中,所述烘干风机的参数包括在采样频率下所述烘干风机的功率、转速。

其中,在所述步骤S2中,通过所述烘干风机的功率、转速的函数关系或查表关系获得衣物处理设备烘干系统的静压值。

其中所述函数关系为

所述静压值=aP+br+c;

其中a为烘干风机功率系数,P为烘干风机功率,b为烘干风机转速系数,c为常数,r为烘干风机转速。

其中所述步骤S3包括:通过在衣物处理设备中预设的所述静压值和压缩机的频率与所述判干温差的映射关系表来获得所述判干温差。

其中在所述映射关系表中所述压缩机频率为可变值。

其中在所述映射关系表中所述压缩机频率为固定值。

其中,所述步骤S1包括:当衣物处理设备进入烘干判干阶段时,检测衣物处理设备中烘干风机的参数。

其中,所述步骤S1包括:当衣物处理设备开始烘干时,检测衣物处理设备中烘干风机的参数。

其中,通过所述判干温差与所述静压值和压缩机的频率的函数关系来来获得所述判干温差。

其中,通过构建所述判干温差与所述静压值和压缩机的频率的神经网络模型来获得所述判干温差。

在所述步骤S3后,当所述判干温差小于衣物处理设备进风口与出风口的温差时,继续执行所述步骤S1-S2,直至所述判干温差大于衣物处理设备进风口与出风口的温差。

一种用于衣物处理设备的衣物判干装置,包括存储器和处理器;

所述存储器用于存储计算机程序;

所述处理器,用于当执行所述计算机程序时,实现根据上述任一项所述的方法。

一种衣物处理设备,其采用了根据上述任一项所述的方法,或包括根据上述所述的装置。

图9-2-1是根据本发明的一个示例性的实施例的用于衣物处理设备的衣物判干方法的流程图。如图9-2-1所示,

在步骤S1处,检测衣物处理设备中烘干风机的参数;所述烘干风机的参数包括所述烘干风机的功率、转速和采样频率;

在步骤S2处,根据所述烘干风机的参数获得衣物处理设备烘干系统的静压值,并检测压缩机的频率;所述烘干风机的参数包括在采样频率下所述烘干风机的功率、转速;

在步骤S3处,根据所述静压值和压缩机的频率,获得衣物处理设备的判干温差;通过所述烘干风机的功率、转速的函数关系获得衣物处理设备烘干系统的静压值;通过在衣物处理设备中预设的所述静压值和压缩机的频率与所述判干温差的映射关系表来获得所述判干温差;

在步骤S4处,当所述判干温差大于衣物处理设备进风口与出风口的温差时,判断衣物处理设备中的衣物被烘干。

图9-2-2是根据本发明的一个示例性的实施例的用于衣物处理设备的衣物判干方法的实施流程图。其中,

在S31处,衣物处理设备开始烘干;

在S32处,烘干过程中,达到烘干判干阶段;

在S32处,控制器检测单元,开始检测烘干风机的功率、转速,采样频率为T1;

在S34处,根据S33采样数据,通过图4的功率、转速和静压函数关系得出静压K值;其中所述函数关系为所述静压值=aP+br+c;

其中a为烘干风机功率系数,P为烘干风机功率,b为烘干风机转速系数,c为常数,r为烘干风机转速;

在S35处,检测压缩机频率F;

在S36处,根据S34的K值和S35的频率值,通过表14查表的方式得到判干温差;

在S37处,控制单元采集进风口感温包和出风口感温包温度;计算进风口温度-出风口温度的差值;

在S38处,判断差值T和判干温差的关系;如果满足T小于t1,则可判定衣物被烘干;若大于等于t1;则从S33开始继续判断。

根据本发明的一个或多个实施例,其中表1为压缩机频率F,静压K,判干温差t的映射关系表。在表1中,压缩机的频率为可变值。

表1

图9-2-3是根据本发明的一个示例性的实施例的某转速下静压K和功率关系图。

图9-2-3示出了在某个转速下烘干系统静压K和压缩机功率的关系图,其中横轴表示静压,纵轴表示功率。根据图4,可以获得在某个转速下烘干系统的静压值。

本实施例提供的一种实施方式是根据静压值K与烘干风机转速、烘干风机功率的函数关系确定烘干系统当前静压值K,该函数包括:

K=aP+br+c;

其中:P为风机功率,a为风机功率系数,r为风机转速,b为风机转速系数,c为常数;

需要说明的是,a、b、c是基于K的函数关系,针对不同的设定转速、设定功率通过神经网络学习和训练使K接近相应风洞试验实测值获得的对应于不同设定转速、设定功率的优选值,因此a、b、c并不是完全固定不变的常数,其与所选择的风机设定转速、风机设定功率有关。当风机设定转速不变、设定功率不变、a、b、c相对不变;当风机设定转速和设定功率发生变化,所对应的a、b、c可能并不相同。

通常情况下,在烘干系统相同的情况下,风机设定功率与设定转速为一一对应的关系,设定功率值可根据烘干风机在烘干系统中以对应设定转速运行测得。实际中由于在不同的运行阶段烘干负载及烘干性能的要求不同,满足不同烘干阶段烘干工作需求的风机设定转速n 不同。此外,考虑到风机功率在实际运行中由于滤网堵塞等原因,会因为风机负荷的变化使风机实际功率发生变化。为了能够根据烘干系统与烘干风机转速、风机功率的上述函数关系更精确的计算出烘干系统静压,惊讶的发现,对于某一设定转速而言,以对应该设定转速的设定功率作为分界点对K函数进行分段所计算结果更为准确。当然,不考虑程序的复杂性,理论上也可以将烘干系统静压值K与烘干风机转速、烘干风机功率的函数关系设为更多段函数,以提升该模型计算结果的精确度。

比如烘干风机设定转速n为4500RPM,对应的烘干风机设定功率Po为68W,那可以设定在保持风机设定转速是4500RPM不变情况下,以设定功率68W作为分界值将上述一次函数变成分段函数,即

(5)K

(6)K

也就是说,若烘干风机以设定转速4500RPM运行时,若当前功率P小于68W时,利用K

然后通过神经训练和学习分别获得对应上述分段函数K

(5)K

(6)K

如此,在设定转速4500RPM和设定功率68W下,当当前风机功率P小于68W时,可将当前风机功率P代入K

基于上述的计算思路,便可以得到对应不同设定转速、设定功率的多个分段函数曲线,将该些曲线储存在控制器中,判断时就可以调取所对应的分段函数曲线进行比对。如此通过当前转速、功率就可以查找对应的分段函数曲线以及相应的烘干系统静压值。如图9-2-3所示实施例就是在设定转速为4500RPM、设定功率表为68W时得到的两段分段函数,其中横轴表示静压,纵轴表示功率。当需要确定烘干风机当前以设定转速4500RPM运行时,当前功率为 70W时的烘干系统静压值,便查找对应的4500RPM的K的函数曲线,如图9-2-3可见,在设定转速4500RPM下,当前功率70W对应的烘干系统当前静压值为300pa。如此,只要获得当前风机转速、功率就可确定烘干系统当前静压值。通过这样的烘干系统静压确定方式,综合考虑了风机转速和风机功率与水膜的相互影响,更能准确的判断滤网脏堵程度和更准确的控制冲洗模式以及冲洗时间。解决了烘干系统实际静压难以测量导致利用烘干系统静压值进行滤网冲洗控制不易控制的难题。实际运行中,只需通过监测装置对风机的功率和转速进行监测便可确定出烘干系统的当前静压值.

本领域技术人员可理解的,K是静压,单位是pa,P为风机功率,单位是w,r为风机转速,单位为RPM,因此a作为风机功率系数,单位可取pa/w,b作为风机转速系数的单位可取pa/RPM, C是常数,单位可取pa。

根据本发明的一个或多个实施,其中在衣物处理设备的控制系统中,存储静压K,判干温差t的映射关系表如表2所示,其中表2中压缩机的频率为固定的F1。

表2

此时,用于衣物处理设备的衣物判干方法的实施流程如下:

在S41处,衣物处理设备开始烘干;

在S42处,烘干过程中,达到烘干判干阶段;

在S43处,控制器检测单元(或衣物处理设备的控制系统),开始检测烘干风机的功率、转速,采样频率为T1;

在S44处,根据S43采样数据,通过图4的功率、转速和静压函数关系得出静压K值;

在S45处,检测压缩机频率F;

在S46处,根据S44的K值和S45的频率值,通过表2查表的方式得到判干温差;

在S47处,控制单元采集进风口感温包和出风口感温包温度;计算进风口温度-出风口温度的差值;

在S48处,判断差值T和判干温差的关系;如果满足T小于t1,则可判定衣物被烘干;若大于等于t1;则从S43开始继续判断。

根据本发明的一个或多个实施,当衣物处理设备开始烘干时,检测衣物处理设备中烘干风机的参数,存储在衣物处理设备控制系统中静压值和压缩机的频率与判干温差的映射关系表中压缩机的频率为可变值。具体的实施过程如下:

在S51处,衣物处理设备开始烘干;

在S52处,控制器检测单元,开始检测烘干风机的功率、转速,采样频率为T1;

在S53处,根据S52采样数据,通过图3的功率、转速和静压函数关系得出静压K值;

在S54处,检测压缩机频率F;

在S55处,根据S53的K值和S54的频率值,通过表1查表的方式得到判干温差;

在S56处,控制单元采集进风口感温包和出风口感温包温度;计算进风口温度-出风口温度的差值;

在S57处,判断差值T和判干温差的关系;如果满足T小于t1,则可判定衣物被烘干;若大于等于t1;则从S52开始继续判断。

根据本发明的一个或多个实施,当衣物处理设备开始烘干时,检测衣物处理设备中烘干风机的参数,存储在衣物处理设备控制系统中静压值和压缩机的频率与判干温差的映射关系表中压缩机的频率为固定值。具体的实施过程如下:

在S61处,衣物处理设备开始烘干;

在S62处,控制器检测单元,开始检测烘干风机的功率、转速,采样频率为T1;

在S63处,根据S62采样数据,通过功率、转速和静压查表关系得出静压K值;

在S64处,检测压缩机频率F;

在S65处,根据S63的K值和S64的频率值,通过表2查表的方式得到判干温差;

在S66处,控制单元采集进风口感温包和出风口感温包温度;计算进风口温度-出风口温度的差值;

在S67处,判断差值T和判干温差的关系;如果满足T小于t1,则可判定衣物被烘干;若大于等于t1;则从S62开始继续判断。

根据本发明的一个或多个实施,当衣物处理设备开始烘干时,检测衣物处理设备中烘干风机的参数,根据静压值和压缩机的频率与判干温差,通过函数关系或神经网络等算法方式得到判干温差。具体的实施过程如下:

在S71处,衣物处理设备开始烘干;

在S72处,控制器检测单元,开始检测烘干风机的功率、转速,采样频率为T1;

在S73处,根据S72采样数据,通过功率、转速和静压查表关系获函数得出静压K值;

在S74处,检测压缩机频率F;

在S75处,根据S73的K值和S74的频率值,通过函数关系或神经网络等算法方式得到判干温差;

在S76处,控制单元采集进风口感温包和出风口感温包温度;计算进风口温度-出风口温度的差值;

在S771处,判断差值T和判干温差的关系;如果满足T小于t1,则可判定衣物被烘干;若大于等于t1;则从S72开始继续判断;

根据本发明的一个实施例,其中计算静压和判干温度的方法可以互换;烘干过程中开始采样的时间点可以在判干前也可以在烘干开始后。

根据本发明的一个或多个实施例,还提供了一种用于衣物处理设备的衣物判干装置,包括存储器和处理器;所述存储器用于存储计算机程序;所述处理器,用于当执行所述计算机程序时,实现上述的衣物判干方法。

根据本发明的一个或多个实施例,还提供了一种衣物处理设备,其采用了上述的判干方法,或包括上述的判干装置。

实施例9-3

本实施例提供一种烘干除皱方法,包括以下步骤:

持续检测滚筒的进风口的气流温度、出风口的气流温度以及两者的的气流温差;

确定单位时间内,所述气流温差的最大值及最小值;

根据确定的所述单位时间内的气流温差的最大值及最小值的差值确定标定温度;

根据检测的所述单位时间内的所述气流温差以及所述标定温度确定衣物的烘干状态;

根据所述衣物的烘干状态,确定对所述衣物进行除皱的开始节点。

所述根据确定的所述单位时间内的所述气流温差的最大值及最小值的差值确定所述标定温度包括:

在确定的所述单位时间内检测的所述气流温差的最大值与最小值的差值小于等于第一设定值时,将确定的所述单位时间内的所述气流温差的平均值确定为判断所述衣物进入稳定烘干状态的第一标定温度,且将确定的所述第一标定温度与第二设定值的差值确定为判断所述衣物进入稳定烘干状态末期的第二标定温度,所述标定温度包括所述第一标定温度和所述第二标定温度。

所述根据检测的所述单位时间内的所述气流温差以及所述标定温度确定所述衣物的烘干状态包括:

在确定所述第一标定温度后,确定所述衣物进入所述稳定烘干状态,且在任一所述单位时间内检测的所述气流温差小于等于所述第二标定温度时,确定所述衣物进入所述稳定烘干状态末期。

所述根据所述衣物的烘干状态,确定对所述衣物进行除皱的开始节点包括:

在所述衣物处于所述稳定烘干状态末期,通过向所述滚筒内释放蒸汽对所述衣物进行除皱。

所述通过蒸汽对所述衣物进行除皱包括:

通过蒸汽发生装置产生蒸汽并向所述滚筒内释放蒸汽对所述衣物进行除皱。

所述通过所述蒸汽发生装置产生蒸汽向所述滚筒内释放蒸汽对所述衣物进行除皱还包括:

检测所述蒸汽发生装置内的水温;

在所述蒸汽发生装置的水温达到设定值时,控制所述蒸汽发生装置按照第一设定时间开启所述蒸汽发生装置,按照第二设定时间关闭所述蒸汽发生装置。

还包括:

在向所述滚筒内释放蒸汽时,烘干风机及所述滚筒的内筒以低于所述稳定烘干状态的转速运行。

一种洗干一体机,其特征在于,包括:滚筒、烘干系统、蒸汽发生装置以及温度检测装置、控制装置;其中,

所述滚筒上设置有相对的出风口和进风口,所述烘干系统通过所述出风口及所述进风口与所述滚筒连接形成烘干通道;所述蒸汽发生装置用于对所述滚筒内的衣物进行除皱;

所述温度检测装置用于持续检测所述出风口与所述进风口的气流温差;

所述控制装置用于确定单位时间内,所述气流温差的最大值及最小值;

根据确定的所述单位时间内的所述气流温差的最大值及最小值的差值确定标定温度;并根据持续检测所述气流温差,确定所述单位时间内的所述气流温差以及所述标定温度确定衣物的烘干状态;

根据所述衣物的烘干状态,确定控制所述蒸汽发生装置对所述衣物进行除皱的开始节点。

所述烘干系统包括风机、热源以及冷源;其中,

所述烘干风机将所述滚筒内的空气自所述出风口抽出且经所述冷源冷却并经所述热源加热后自所述进风口送回至所述滚筒内,以形成所述烘干通道。

所述烘干系统为热泵烘干系统或电加热烘干系统;

所述烘干系统为热泵烘干系统时,所述冷源为蒸发器,所述热源为冷凝器;

所述烘干系统为电加热烘干系统时,所述冷源为冷凝水管,所述热源为电加热器。

所述蒸汽发生装置设置在所述滚筒底部并通过蒸汽通道与所述滚筒连接。

所述控制装置控制所述蒸汽发生装置向所述滚筒内释放蒸汽时,还控制所述烘干风机及驱动所述滚筒内筒的电机降低转速。

参考图9-3,图9-3示出了烘干除皱方法的流程图,该烘干除皱方法包括以下步骤:

步骤001:持续检测滚筒的进风口的气流温度、出风口的气流温度以及两者的的气流温差;

步骤002:确定单位时间内,气流温差的最大值及最小值;

步骤003:根据确定的单位时间内的气流温差的最大值及最小值的差值确定标定温度;

步骤004:根据检测的单位时间内的气流温差以及标定温度确定衣物的烘干状态;

步骤005:根据衣物的烘干状态,确定是否对衣物进行除皱。

在本申请实施方案中,检测滚筒的进风口、出风口的气流温差,包括:

首先说明一下气流温差的含义,在本申请实施方案中,气流温差是指滚筒的进风口、出风口分别在设定的检测时间内的一个均值温度之间的差值,例如,设定的检测时间为1分钟,滚筒的进风口在1分钟时间内的均值温度标记为T1,滚筒的出风口在1分钟时间内的均值温度标记为T2,气流温差标记为ΔT,则计算气流温差的公式为:ΔT=T1-T2。

确定单位时间内,气流温差的最大值及最小值包括:

前述已经提到如何计算气流温差,那么在一个连续的单位时间段内,比如5分钟、10 分钟或者15分钟,这是一个设定好的确定时间段,在该时间段内,获取气流温差在该时间段内的最大值和最小值即可。在此,我们可以将气流温差的最大值标记为Δtmax,同时将气流温差的最小值标记为Δtmin。

根据确定的单位时间内的气流温差的最大值及最小值的差值确定标定温度包括:

在确定的单位时间内检测的气流温差的最大值与最小值的差值小于等于第一设定值时,将确定的单位时间内的气流温差的平均值确定为判断衣物进入稳定烘干状态的第一标定温度,且将确定的第一标定温度与第二设定值的差值确定为判断衣物进入稳定烘干状态末期的第二标定温度,标定温度包括第一标定温度和第二标定温度。

在一个具体实施例中,该第一设定值设定为1℃,将气流温差的最大值与最小值的差值标记为n(计算公式为:n=ΔTmax-Δtmin),当n≤1℃时,将确定的单位时间内的气流温差的平均值确定为第一标定温度,第一标定温度标记为T,作为判断衣物进入稳定烘干状态的判定温度。在确定为第一标定温度后,将确定的第一标定温度与第二设定值的差值确定为第二标定温度,其中,第二设定值标记为N,第二设定值根据滚筒负载重量而发生变化,滚筒负载重量越大,第二设定值越小,反之,滚筒负载重量越小,第二设定值越大,第二设定值的范围在5℃-10℃,第二标定温度表示为(T-N)℃,在任一单位时间内检测的气流温差小于等于第二标定温度时,即ΔT≤(T-N)℃时,确定衣物进入稳定烘干状态末期。

根据检测的单位时间内的气流温差以及标定温度确定衣物的烘干状态包括:在确定第一标定温度后,确定衣物进入稳定烘干状态,且在任一单位时间内检测的气流温差小于等于第二标定温度时,确定衣物处于稳定烘干状态末期。前述提到,气流温差标记为ΔT,当任一单位时间内检测的气流温差ΔT≤(T-N)℃时,判定衣物处于稳定烘干状态末期。

根据衣物的烘干状态,确定对衣物进行除皱的开始节点包括:

在衣物处于稳定烘干状态末期,通过蒸汽对衣物进行除皱,避免衣物在稳定烘干状态末期由于长时间烘干而出现褶皱。

通过蒸汽对衣物进行除皱包括:

通过蒸汽发生装置产生蒸汽对衣物进行除皱。蒸汽发生装置向滚筒内释放蒸汽,蒸汽会沾湿衣物,以此通过蒸汽对衣物进行除皱。

通过蒸汽发生装置产生蒸汽对衣物进行除皱还包括:

检测蒸汽发生装置内的水温;在蒸汽发生装置的水温达到设定值时,控制蒸汽发生装置按照第一设定时间开启蒸汽发生装置,按照第二设定时间关闭蒸汽发生装置。举例来说,检测蒸汽发生装置内的水温达到T3℃时,T3℃为可产生蒸汽的温度,则控制蒸汽发生装置以隔A秒开启、隔B秒关闭的加热时序进行控制,A秒为第一设定时间,B秒为第二设定时间。

在向滚筒内释放蒸汽时,烘干风机及滚筒的内筒以低于稳定烘干状态的转速运行,适当降低烘干风机的风速以及滚筒的内筒的转速,能够使蒸汽与衣物接触更加充分,使衣物受热更加均匀。

在本申请实施方案中,当确定衣物处于稳定烘干状态末期时,通过向滚筒内释放蒸汽对衣物进行熨烫,避免衣物在稳定烘干状态末期由于长时间烘干而出现褶皱。

另外,本申请提供了一种洗干一体机,该洗干一体机包括:滚筒、烘干系统、蒸汽发生装置以及温度检测装置、控制装置。其中,滚筒上设置有相对的出风口和进风口,烘干系统通过出风口及进风口与滚筒连接形成烘干通道。蒸汽发生装置用于对滚筒内的衣物进行除皱。温度检测装置用于持续检测出风口与进风口的气流温差。控制装置用于确定单位时间内,气流温差的最大值及最小值;根据确定的所述单位时间内的气流温差的最大值及最小值的差值确定标定温度;并根据检测的单位时间内的气流温差以及标定温度确定衣物的烘干状态;以及根据衣物的烘干状态,确定控制蒸汽发生装置对衣物进行除皱的开始节点。

温度检测装置检测滚筒的进风口、出风口的气流温差,包括:检测滚筒的进风口、出风口分别在设定的检测时间内的一个均值温度之间的差值,例如,设定的检测时间为1分钟,滚筒的进风口在1分钟时间内的均值温度标记为T1,滚筒的出风口在1分钟时间内的均值温度标记为T2,气流温差标记为ΔT,则计算气流温差的公式为:ΔT=T1-T2。

确定单位时间内,气流温差的最大值及最小值包括:在一个连续的单位时间段内,比如 5分钟、10分钟或者15分钟,这是一个设定好的确定时间段,在该时间段内,获取气流温差在该时间段内的最大值和最小值即可。在此,我们可以将气流温差的最大值标记为Δtmax,同时将气流温差的最小值标记为Δtmin。

根据确定的单位时间内的气流温差的最大值及最小值的差值确定标定温度包括:在确定的单位时间内检测的气流温差的最大值与最小值的差值小于等于第一设定值时,将确定的单位时间内的气流温差的平均值确定为判断衣物进入稳定烘干状态的第一标定温度,且将确定的第一标定温度与第二设定值的差值确定为判断衣物进入稳定烘干状态末期的第二标定温度,标定温度包括第一标定温度和第二标定温度。

在一个具体实施例中,该第一设定值设定为1℃,将气流温差的最大值与最小值的差值标记为n(计算公式为:n=ΔTmax-Δtmin),当n≤1℃时,将确定的单位时间内的气流温差的平均值确定为第一标定温度,第一标定温度标记为T,作为判断衣物进入稳定烘干状态的判定温度。在确定为第一标定温度后,将确定的第一标定温度与第二设定值的差值确定为第二标定温度,其中,第二设定值标记为N,第二设定值根据滚筒负载重量而发生变化,滚筒负载重量越大,第二设定值越小,反之,滚筒负载重量越小,第二设定值越大,第二设定值的范围在5℃-10℃,第二标定温度表示为(T-N)℃,在任一单位时间内检测的气流温差小于等于第二标定温度时,即ΔT≤(T-N)℃时,确定衣物进入稳定烘干状态末期。

在确定第一标定温度后,确定衣物进入稳定烘干状态,且在任一单位时间内检测的气流温差小于等于第二标定温度时,确定衣物处于稳定烘干状态末期。前述提到,气流温差标记为ΔT,当任一单位时间内检测的气流温差ΔT≤(T-N)℃时,判定衣物处于稳定烘干状态末期。

控制装置根据衣物的烘干状态,确定对衣物进行除皱的开始节点包括:在衣物处于稳定烘干状态末期,控制装置控制蒸汽发生装置对衣物进行除皱,具体为通过控制蒸汽发生装置释放蒸汽对衣物进行除皱,避免衣物在稳定烘干状态末期由于长时间烘干而出现褶皱。蒸汽发生装置向滚筒内释放蒸汽,蒸汽会沾湿衣物,以此通过蒸汽对衣物进行除皱。

在具体设置蒸汽发生装置时,蒸汽发生装置设置在滚筒底部并通过蒸汽通道与滚筒连接。通过蒸汽发生装置产生蒸汽对衣物进行除皱时,温度检测装置检测蒸汽发生装置内的水温;在蒸汽发生装置的水温达到设定值时,控制装置控制蒸汽发生装置按照第一设定时间开启蒸汽发生装置,按照第二设定时间关闭蒸汽发生装置。举例来说,检测蒸汽发生装置内的水温达到T3℃时,T3℃为可产生蒸汽的温度,则控制装置控制蒸汽发生装置以隔A秒开启、隔B 秒关闭的加热时序进行控制,A秒为第一设定时间,B秒为第二设定时间。

在一个具体的实施方案中,控制装置控制蒸汽发生装置向滚筒内释放蒸汽时,还控制烘干风机及驱动滚筒内筒的电机降低转速,适当降低烘干风机的风速以及滚筒的内筒的转速,能够使蒸汽与衣物接触更加充分,使衣物受热更加均匀。

在具体设置烘干系统时,烘干系统包括烘干风机、热源以及冷源。其中,烘干风机将滚筒内的空气自出风口抽出且经冷源冷却并经热源加热后自进风口送回至滚筒内,以形成烘干通道。进一步的,烘干系统为热泵烘干系统或电加热烘干系统。烘干系统为热泵烘干系统时,冷源为蒸发器,热源为冷凝器;烘干系统为电加热烘干系统时,冷源为冷凝水管,热源为电加热器。下面以烘干系统采用热泵烘干系统为例进行举例说明。

烘干系统采用热泵烘干系统时,烘干风机的蜗壳进风口通过柔性连接件与滚筒的出风口连通,出风口具体设置在滚筒的后端,烘干风机的蜗壳出风口与蒸发器的蒸发壳程进口连通,蒸发器的蒸发壳程出口与冷凝器的冷凝壳程进口连通,冷凝器的冷凝壳程出口通过进风道与滚筒进风口连通,进风口具体设置在滚筒的前端。

在该举例说明中,在烘干风机作用下,烘干通道的气流依次流经蒸发器与冷凝器的壳程:当气流流经蒸发器的壳程时,压缩机的冷媒介质流经蒸发器的管程,此时冷媒介质会吸收带走气流的热量,从而使气流中的水汽冷凝变成冷凝水遗留在蒸发器的壳程;气流在烘干风机的作用下继续流入冷凝器的壳程,与此同时,压缩机的冷媒介质流经冷凝器的管程,此时冷媒介质会释放热量加热干燥气流;气流被加热干燥后回流至滚筒,使滚筒内空间慢慢变热,从而使遗留在衣物上的水蒸发成水汽,水汽随气流被烘干风机吸走后进行新一轮的循环,以此完成除湿干燥衣物的目的。而遗留在蒸发器壳程的冷凝水则通过冷凝水管连接到洗干一体机的排水管道排出。

通过上述描述不难发现,本申请提供的洗干一体机在衣物烘干末期阶段能向滚筒内释放蒸汽,并使蒸汽均匀穿透衣物,避免衣物表面过干,达到烘干除皱的效果。

实施例9-4

本实施例提供一种带热泵烘干功能的洗衣机,其特征在于,所述洗衣机包括外筒和可转动的设置在所述外筒中的内筒,所述外筒的底部设有加热装置;

所述洗衣机包括控制系统和热泵系统,

所述洗衣机包括低温预热程序,

所述低温预热程序包括控制加热装置启动的第一控制策略、控制脱水转速的第二控制策略和控制热泵系统启动时机的第三运行策略;所述控制系统接收到洗烘指令后控制所述洗衣机依次执行洗涤阶段和漂洗阶段;所述洗衣机运行到漂洗阶段的最后一次漂洗过程时,判断漂洗水温是否达到启动低温预热程序的设定条件。

所述洗衣机还包括温度检测装置,所述温度检测装置用于检测所述外筒底部的水温。

所述低温预热程序包括控制加热装置启动的第一控制策略、控制脱水转速的第二控制策略和控制热泵系统启动时机的第三运行策略;所述控制方法包括:

当接收到洗烘指令后,控制洗衣机依次运行洗涤阶段和漂洗阶段;

在洗衣机运行到漂洗阶段的最后一次漂洗过程时,判断漂洗水温是否达到启动低温预热程序的设定条件;

当达到启动低温预热程序的设定条件时,控制洗衣机执行第一控制策略、第二控制策略和第三控制策略的中的至少一种。

所述第一控制策略包括:控制所述加热装置启动将漂洗水加热到设定水温范围。

所述控制所述加热装置启动将漂洗水加热到设定水温范围,包括

根据初始漂洗水温T1和目标水温T2计算预计加热时长th;

比较预计加热时长th与最后一次漂洗过程的设定漂洗时长tp的大小,根据比较结果来确定加热装置的启动时机。

所述根据初始漂洗水温T1和目标水温T2计算预计加热时长th;比较预计加热时长th 与最后一次漂洗过程的设定漂洗时长tp的大小,根据比较结果来确定加热装置的启动时机,包括

获取漂洗水量W,以及加热装置的加热功率Q,根据以下公式计算预计加热时长th:th= (T2-T1)×c×W×ρ/Q,其中c为水的比热容,ρ为水密度;

比较预计加热时长th与最后一次漂洗过程的设定漂洗时长tp的大小,当tp>th时,在最后一次漂洗过程运行至th-tp时间后,控制加热装置启动加热;当tp≤th时,在最后一次漂洗过程中同步启动加热。

所述第二控制策略包括:洗衣机进入脱水阶段后,控制内筒由静止增速至稳定脱水的最终转速,所述稳定脱水的最终转速为程序允许的最高脱水转速。

所第三控制策略包括:洗衣机进入脱水阶段的降速过程后,控制热泵模系统提前运行。

当达到启动低温预热程序的设定条件时,控制洗衣机依次执行第一控制策略、第二控制策略和第三控制策略。

所述在所述洗衣机运行到漂洗阶段的最后一次漂洗过程时,判断漂洗水温是否达到启动低温预热程序的设定条件,包括

当所述洗衣机运行至漂洗阶段的最后一次漂洗过程时,控制洗衣机进水至设定漂洗水位;

获取初始漂洗水温T1,判断初始漂洗水温T1是否低于设定水温,若低于设定水温,判断达到启动低温预热程序的设定条件。

本实施例为在实施一和实施例二的洗衣机的基础上提出了一种洗衣机的控制方法,本实施例的洗衣机包括低温预热程序,低温预热程序包括控制加热装置启动的第一控制策略、控制脱水转速的第二控制策略和控制热泵系统启动时机的第三运行策略;如图9-4-1所示的控制流程图,控制方法包括步骤S1~S4,其中:

S1,当接收到洗烘指令后,控制洗衣机依次运行洗涤阶段和漂洗阶段;

S2,在洗衣机运行到漂洗阶段的最后一次漂洗过程时,判断漂洗水温是否达到启动低温预热程序的设定条件;

本实施例中,当洗衣机运行值最后一次漂洗阶段,即当漂洗阶段时包括一次漂洗,则在这一次漂洗时判断漂洗水温是否达到启动低温预热程序的设定条件;当漂洗阶段包括多次漂洗,则在最后一次漂洗时判断漂洗水温是否达到启动低温预热程序的设定条件。在一个具体实施方式中,漂洗水位是否达到启动低温预热程序的设定条件的判断包括:当所述洗衣机运行至漂洗阶段的最后一次漂洗过程时,控制洗衣机进水至设定漂洗水位;获取初始漂洗水温 T1,判断初始漂洗水温T1是否低于设定水温,若低于设定水温,判断达到启动低温预热程序的设定条件。

S3,当达到启动低温预热程序的设定条件时,控制洗衣机执行第一控制策略、第二控制策略和第三控制策略的中的至少一种。

本实施例中,当漂洗水温达到启动低温预热程序的设定条件,说明洗衣机当前环境为低温环境,当漂洗水温未达到启动低温预热程序的设定条件说明洗衣机当前环境为非低温环境。在一个具体实施方式中启动低温预热程序的设定条件为漂洗初始水温低于设定水温时即判断达到启动低温预热程序的设定条件。例如,当漂洗水温大于等于15℃时,此时判断为非低温环境,按照正常的流程运行;当漂洗水温<15℃时,此时判断为低温环境,启动低温预热程序。本实施例的低温预热程序中包括三种运行策略,这三种运行策略相互独立,既可以单独执行,也可以相互叠加,可以根据不同的需求执行其中的一种或两种,在衣物急需要烘干的情况下,可以执行以上的全部控制。

进一步可选地,如图9-4-2所示的控制流程图,第一控制策略包括P1,其中:

P1,控制所述加热装置启动将漂洗水加热到设定水温范围,设定水温范围可选的为30℃~50℃。

本实施例中,在最后一次的漂洗阶段,利用漂洗水进行加热对筒内环境进行预热,通过额外加热的方式缩短热泵系统升温时间,提高烘干效率。

进一步可选地,P1包括P1~P2:

P1,根据初始漂洗水温T1和目标水温T2计算预计加热时长th;

P2,比较预计加热时长th与最后一次漂洗过程的设定漂洗时长tp的大小,根据比较结果来确定加热装置的启动时机。

本实施例中,通过提前计算漂洗水温加热到目标水温的时长,从而实现在最后一次漂洗结束时刚好达到目标水温,一方面减少加热装置的加热时间,另一方面能进一步保证在运行烘干程序前的洗衣机内部温度处于较高的温度范围。计算加热时长的一种可选的实施方式为:获取漂洗水量W,以及加热装置的加热功率Q,根据以下公式计算预计加热时长th:th=(T2-T1) ×c×W×ρ/Q,其中c为水的比热容,ρ为水密度。当tp>th时,在最后一次漂洗过程运行至th-tp时间后,控制加热装置启动加热;当tp≤th时,在最后一次漂洗过程中同步启动加热。

本实施例中当漂洗水温达到启动低温预热程序的设定条件时,说明漂洗水温较低,从而反映出洗衣机的内部环境温度较低。通过启动加热装置对漂洗水进行加热,漂洗水加热产生的热量使洗衣机内部环境温度升高,同时也使衣物表面温度升高,从而提高后续进行热泵烘干的效率。在对漂洗水加热的过程中按照正常程序进行衣物漂洗,即控制内筒以一定转速进行正反交替运转。当达到结束漂洗阶段的设定条件时,如达到漂洗时间,结束漂洗阶段,将漂洗水排尽。在执行完漂洗阶段后,将漂洗水排尽后,洗衣机按照正常程序依次进行脱水,脱水完成后进入烘干程序。由于在执行最后一次漂洗时通过对漂洗水加热使洗衣机内部温度提升,衣物表面温度上升,漂洗水排空后,由于洗衣机内相对封闭,热量不易散失,及时经过较短时间的脱水后仍然能使洗衣机内部环境维持在一个较高的温度范围,从而大大提高了在后续烘干程序中的热泵烘干效率。

进一步可选地,如图9-4-2所示的控制流程图,为了保证加热水温在设定的水温范围内,控制加热装置启动,控制洗衣机运行漂洗阶段的最后一次漂洗过程;

实时获取漂洗水温,当漂洗水温达到目标水温时,控制加热装置停止启动,当漂洗水温低于目标水温时,控制加热装置启动加热。

进一步可选地,如图9-4-2所示的控制流程图,所述第二控制策略包括P2,其中:

P2,洗衣机进入脱水阶段后,控制内筒由静止增速至稳定脱水的最终转速,所述稳定脱水的最终转速为程序允许的最高脱水转速。

本实施例中,通过控制稳定脱水转速为程序运行的最高脱水转速,有效降低衣物湿度,减少烘干时间,提高烘干效率。

进一步可选地,如图9-4-2所示的控制流程图,所第三控制策略包括P3,其中:

P3,洗衣机进入脱水阶段的降速过程后,控制热泵模系统提前运行。

本实施例中,通过提前启动人系统的方式缩短衣物洗涤烘干总用时,该方式在脱水降速阶段利用降速阶段的时间提前开启压缩机进行热泵系统升温。

进一步可选地,在衣物急需要烘干的情况下,当达到启动低温预热程序的设定条件时,控制洗衣机依次执行第一控制策略、第二控制策略和第三控制策略。

实施例9-5

本实施例提供一种带热泵烘干功能的洗衣机,所述洗衣机包括外筒和可转动的设置在所述外筒中的内筒,所述外筒的底部设有加热装置;

所述洗衣机还包括烘干系统和控制系统,所述烘干系统包括烘干风机、压缩机、蒸发器和冷凝器,所述洗衣机执行烘干程序时,所述控制系统控制获取环境温度,当环境温度低于第一设定温度时,所述控制系统控制洗衣机进入预热阶段;在所述预热阶段中,所述控制系统控制外筒的水位处于加热水位,控制加热装置启动加热;所述控制系统还通过获取外筒水温和蒸发器进风口温度,当外筒水温和蒸发器进风口温度达到启动热泵系统的设定条件时,所述控制系统控制热泵系统启动;当达到结束预热阶段的设定条件时,所述控制系统控制加热装置停止加热,控制洗衣机进入烘干阶段。

所述洗衣机还包括进水阀,所述烘干系统包括冷凝水通道,所述冷凝水通道的一端与所述进水阀连通,另一端沿所述外筒的筒壁延伸至与所述外筒的底部连通;

在预热阶段中,当所述外筒的水位低于安全水位时,所述控制系统还控制进水阀进水,所述进水阀流出的水由所述冷凝水通道进入所述外筒的底部,当所述外筒的水位达到加热水位后所述控制系统控制所述进水阀停止进水。

所述洗衣机包括烘干程序,所述烘干程序包括预热阶段和烘干阶段;所述控制方法包括:

洗衣机在执行烘干程序时,获取环境温度;

当环境温度低于第一设定温度时,控制洗衣机进入预热阶段;

在所述预热阶段中,控制外筒的水位处于加热水位,控制加热装置启动加热;

获取外筒水温和蒸发器进风口温度,当外筒水温和蒸发器进风口温度分别达到启动热泵系统的设定条件时,控制热泵系统启动;

当达到结束预热阶段的设定条件时,控制加热装置停止加热,控制洗衣机进入烘干阶段。

所述获取外筒水温和蒸发器进风口温度,当外筒水温和蒸发器进风口温度分别达到启动热泵系统的设定条件时,控制热泵系统启动,包括

分别获取外筒水温和蒸发器进风口温度;

当外筒水温达到第二设定温度时,控制风机启动;

当蒸发器进风口温度达到第三设定温度时,控制压缩机启动。

所述达到结束预热阶段的设定条件,包括

获取蒸发器进风口温度,当蒸发器进风口温度升至第四设定温度时达到结束预热阶段的设定条件。

所述控制外筒的水位处于加热水位,包括

洗衣机完成洗涤后控制外筒排水至加热水位后停止排水;

或者,洗衣机进入烘干程序后控制进水阀进水至加热水位后停止进水。

所述洗衣机进入烘干程序后控制进水阀进水至加热水位后停止进水,包括

控制进水阀以设定的进水时序进水,当进水至加热水位后停止进水。

控制进水阀以设定的进水时序进水过程中还控制内筒以第一转速转动。

所述控制方法还包括

在预热阶段,还控制内筒以第二转速在一定的转停比下正反交替转动,第一转速>第二转速。

所述控制方法还包括:预热阶段过程中,还通过控制加热装置的启动加热与停止加热来维持水温在设定的温度范围内。

所述控制方法还包括:

在预热阶段,还监测外筒底部的水位是否低于安全水位,若低于安全水位,控制加热装置停止加热;所述安全水位<加热水位≤最高水位;

判断是否达到预热阶段的结束条件,若达到预热阶段的结束条件,结束预热阶段;若未达到预热阶段的结束条件,控制进水阀补水至加热水位后,控制加热装置再次启动加热。

本实施例在实施例一和实施例二的洗衣机的基础上提出了一种烘干控制方法,本实施例的洗衣机包括烘干程序,所述烘干程序包括预热阶段和烘干阶段;如图9-5-1所示的控制流程图,本实施例的烘干控制方法包括步骤S1~S5,其中:

S1,洗衣机在执行烘干程序时,获取环境温度;

本实施例的洗衣机在接收到洗烘指令时,当完成漂洗程序或脱水程序后进入烘干程序。进入烘程序的时机是根据洗涤物材质来决定的,针对不宜甩干的衣物材质,如羊毛、真丝,在漂洗程序结束后直接进入烘干程序,其他材质的衣物则是脱水程序结束后再进入烘程序。若洗衣机仅接收到烘干指令时,则直接运行烘干程序。在执行烘干程序的初始阶段,热泵模块不启动,获取环境温度,根据环境温度的大小来确定是否符合低温环境,若符合低温环境则进入预热阶段。本实施例对环境温度的获取没有限制,在一些实施方式中可以通过单独的环境温度传感器对环境温度进行实时检测,在其他实施方式中也可以是通过洗衣机本身带有的温度传感器进行环境温度判断。

S2,当环境温度低于第一设定温度时,控制洗衣机进入预热阶段;

本实施例中,当环境温度低于第一设定温度时,判断洗衣机当前环境属于低于环境,若直接启动热泵系统进行烘干会导致烘干效率低,因此需要先经过一个预热阶段来提高洗衣机环境温度后再启动热泵系统,第一设定温度可选的为0℃~10℃,优选的为5℃。当环境温度高于低于设定温度,说明洗衣机环境温度不属于低温环境,此时进行热泵烘干的效率高,因此可直接启动热泵系统。

S3,在预热阶段中,控制外筒的水位处于加热水位,控制加热装置启动加热;

本实施例通过在外筒底部设置电加热装置,再向外筒内注入少量的水,注入的外筒中水的水位需达到加热水位,加热水位满足高于安全水位并低于最高水位,通过控制加热装置启动来将水加热,并利用水加热后产生的热量提高洗衣机内部环境温度。

S4,获取外筒水温和蒸发器进风口温度,当外筒水温和蒸发器进风口温度分别达到启动热泵系统的设定条件时,控制热泵系统启动;

本实施例中,当外筒内水温较低时无法产生蒸汽对筒内环境进行加热,筒内环境温度无法得到提升,在水温不够的情况下启动热泵系统会导致烘干效率低下。同时,蒸发器作为冷源,在热泵系统启动升温过程中,蒸发器铜管温度会先下降至比周围环境温度低,环境温度较低情况下启动压缩机进行升温时,容易造成蒸发器温度过低形成结霜现象,严重影响换热效果。因此运行热泵系统升温前,需要对蒸发器温度进行检测,当蒸发器温度足够高且在烘干系统启动后不易结霜后才能启动热泵系统。因此,需要在外筒水温和蒸发器温度均满足各自的设定条件后才能启动热泵系统。

S5,当达到结束预热阶段的设定条件时,控制加热装置停止加热,控制洗衣机进入烘干阶段。

本实施例中,当达到结束预热阶段的设定条件时说明洗衣机内部环境温度已经可以实现高效热泵烘干,此时可以结束预热阶段,进入烘干阶段阶段,在烘干阶段中采用热泵烘干方式进行衣物烘干。

进一步可选地,步骤S4中包括S41~S43,其中:

S41,分别获取外筒水温和蒸发器进风口温度;

S42,当外筒水温达到第二设定温度时,控制风机启动;

S43,当蒸发器进风口温度达到第三设定温度时,控制压缩机启动。

本实施例中,当水温达到第二设定温度时,判断此时已产生蒸汽对筒内环境进行加热,此时启动风机,形成循环空气,使筒内环境受热均匀,第二设定温度是筒底水加热能产生水蒸气的温度,第二设定温度不低于80℃;第三设定温度是防止热泵系统运行时蒸发器温度过低结霜的温度限值,第三设定温度不低于20~30℃。

进一步可选地,步骤S3中包括以下两种方案:

方案一:洗衣机完成洗涤后控制外筒排水至加热水位后停止排水。

本实施例中,当洗衣机接收到洗烘指令后,先对衣物进行洗涤,依次执行洗涤阶段、漂洗阶段,或者依次执行洗涤阶段、漂洗阶段和脱水阶段。若衣物洗涤的最后阶段如漂洗阶段或脱水阶段,漂洗排水或脱水排水时不将外筒内的水排空,而是将水排至加热水位,当检测达到进入预热阶段的设定条件后直接启动加热装置进行加热即可,无需再注水。若检测洗衣机内部环境温度较高,无需执行预热阶段,再将外筒内的水排空即可。

方案二:洗衣机进入烘干程序后控制进水阀进水至加热水位后停止进水。

本实施例中,在衣物进入烘干阶段后,在检测洗衣机内部环境温度较低需要执行预热阶段时,再控制洗衣机进水至加热水位。一种可实施的方式为由进水阀流出的水由内筒进入外筒;另一种可实施的方式为进水阀与冷凝水管路连通,冷凝水管路与外桶底部连通,进水阀流出的水由冷凝水管路进入外筒底部,当进水达到加热水位后停止进水即可,这样可避免水从内筒进入外筒而进一步打湿衣物,增大衣物含水率使烘干时间延长。

具体的方案为:控制进水阀以设定的进水时序进水,当进水至加热水位后停止进水。

本实施例中以设定的进水时序进水的原因是,进水阀开启时间太长容易产生较大的水流,经过冷凝水通道进入外筒空间时,冲击外筒壁面从而溅入内筒内部。因此,需要以间歇开关的方式进水,开启和停止的时间关系通过进水阀的流量q1与冷凝水通道进入外筒空间的最大水流量q2的关系决定,需控制q1×A≤q2×B,其中A为开启进水阀的时间,B为关闭进水阀的时间,以免进水过快淹没冷凝水通道,甚至蔓延至其他地方。

进一步可选地,控制进水阀以设定的进水时序进水过程中还控制内筒以第一转速转动。

本实施例中进水时内筒以第一转速转动,可减少进水时溅入内筒的概率,但转速太高产生离心力较大,容易使衣物产生褶皱,因此限定第一转速的范围为60RPM~120RPM,优选90RPM。

进一步可选地,预热阶段过程中,还通过控制加热装置的启动加热与停止加热来维持水温在设定的温度范围内,包括步骤P1~P2,其中:

P1,持续获取外筒底部的水温;

P2,当外筒底部的水温达到第一设定水温时,控制加热装置以设定的加热时序加热,所述设定的加热时序包括:在水温上升至第二设定水温时停止加热,在水温下降至第三设定水温时恢复加热;所述第一设定水温≤第三设定水温<第二设定水温。

本实施例中,当水温T≥第一设定水温时,控制加热装置以第三设定水温时开启、第二设定水温时关闭的时序控制水加热器开启关闭,加热装置开启将筒底水加热至第二设定水温时时,停止加热,当水温下降至第三设定水温时恢复加热,这样能使水温维持在适合的范围内,在降低能耗的同时保证持续产生蒸汽。

进一步可选地,本实施例中的控制方法还包括,在预热阶段,还控制内筒以第二转速在一定的转停比下正反交替转动,第一转速≥第二转速。

本实施例中在预热阶段控制内桶以较低转速正反交替转动可使内筒中的衣物均匀预热,其中在进水时内筒以较大的第一转速转动防止水溅入内筒中,在对水加热时内筒以较小的转速转动以使热气更好进入衣物内部使衣物表面的温度升高。

进一步可选地,本实施例中的控制方法还包括,在预热阶段,还监测外筒底部的水位是否低于安全水位L,若低于安全水位L,控制加热装置停止加热;

判断是否达到预热阶段的结束条件,若达到预热阶段的结束条件,结束预热阶段;若未达到预热阶段的结束条件,控制进水阀补水至加热水位R后,控制加热装置再次启动加热,从而保证加热装置始终处于安全水位范围内,防止加热装置干烧,其中安全水位L<加热水位R≤最高水位H;

进一步可选地,如图9-5-2所示的控制流程图,步骤S5中,判断达到结束预热阶段的设定条件包括两种方式来进行判断。

方式一:包括步骤S51,其中

S51,通过获取蒸发器进风口温度,当蒸发器进风口温度升至第四设定温度时判断达到结束预热阶段的设定条件。这里的第四设定温度是热泵系统能够正常工作的温度,达到该温度时,判断压缩机升温阶段结束,热泵系统进入正式烘干阶段,第四设定温度不低于30℃。

方式二,包括步骤S51~S52,其中:

S51’,获取外筒进风口温度和出风口温度;

S52’,当进风口温度达到第二设定温度时,计算进风口温度和出风口温度的温差ΔT;当ΔT≤设定温差时,控制加热装置停止加热,控制外筒排水至空筒水位,结束预热阶段。

本实施例中,当外筒进风温度达到第二设定温度时,说明加热装置加热水产生的热量较大,在预加热阶段出气,进出风温差较大,随着预加热的进行,进出风温差变小,当外筒进出风温差小于或等于设定温差时,说明进出风温度接近,内筒中的衣物被均匀加热,洗衣机内部环境达到可进行高效热泵烘干的温度条件,此时结束预加热阶段即可,具体为,控制加热装置停止加热,控制外筒排水值空调水位。

本实施例中,当结束预热阶段后,控制洗衣机进入正式烘干阶段,当达到判干条件时结束烘干阶段,进入降温阶段,当到达结束降温阶段的设定条件时,结束降温阶段,整个烘干程序结束。

实施例10

本实施例提供一种热泵烘干设备,包括热泵模块,所述热泵模块包括两器盒,所述两器盒内设有蒸发器和冷凝器,所述蒸发器和所述冷凝器间隙设置;所述两器盒靠近所述蒸发器侧形成两器盒进风口,所述壳体靠近所述冷凝器侧形成两器盒出风口;设有所述两器盒进风口的所述壳体侧壁上还开设有透气孔,所述两器盒上还设有开合机构,所述开合机构用于开闭所述透气孔;

所述热泵烘干设备还包括控制系统,在衣物烘干过程中所述控制系统根据所述蒸发器的温度来控制所述开合机构增大或减小所述透气孔的开度。

所述开合机构包括挡板、传动齿轮和驱动电机,所述挡板的侧边上形成有齿条,所述传动齿轮位于所述驱动电机的输出轴上;所述驱动电机设置在所述挡板设有齿条的一侧,所述传动齿轮与所述齿条啮合;

所述透气孔的周侧形成有挡板固定框架,所述挡板插设在所述挡板固定架上,并可沿所述挡板固定框架上下移动来调整所述透气孔的开度;

在衣物烘干过程中,所述控制系统根据所述蒸发器的温度来控制所述驱动电机正转或反转,所述驱动电机正转或反转带动所述挡板上下移动。

所述两器盒包括

两器盒体,具有容纳所述冷凝器和所述蒸发器的容纳空间,所述两器盒体上方设有开口,所述两器盒体靠近所述蒸发器的一侧开设所述两器盒进风口,所述两器盒体靠近所述冷凝器的一侧开设所述两器盒出风口,所述两器盒体在所述两器盒进风口和所述两器盒出风口之间形成两器盒风道,外筒排出的湿热风由所述两器盒进风口进入所述两器盒风道内经所述蒸发器进行冷凝干燥;经所述蒸发器冷凝干燥的干冷风经所述冷凝器加热后由所述两器盒出风口排入所述外筒内;

两器盒盖,与所述两器盒体的开口盖合在一起,所述两器盒盖设有喷淋装置,所述喷淋装置的喷淋口位于所述两器盒盖下表面并朝向所述两器盒出风口一侧设置。

所述外筒上方设有与其内部相通的第一风道和第二风道,所述两器盒设置在所述外筒上方,所述第一风道通过所述两器盒进风口与所述两器盒风道相通,所述第二风道通过所述两器盒出风口与所述两器盒风道连通,所述第一风道或所述第二风道内设有烘干风机组件。

所述控制方法包括:衣物烘干过程中,获取蒸发器的温度,根据蒸发器的温度大小来调节所述透气孔的开度。

所述获取蒸发器的温度,根据蒸发器的温度大小来控制所述透气孔的开度,包括:

当未达到烘干判干条件时,获取蒸发器温度T;

比较蒸发器温度T与第一设定温度T1的大小,当T>T1时,控制开合机构将透气孔由关闭状态打开至预设开度;

再次获取蒸发器温度T,根据蒸发器温度T调整透气孔的开度。

所述再次获取蒸发器温度T,根据蒸发器温度T调整透气孔的开度,包括:

将蒸发器温度T分别与第二设定温度T2和第三设定温度T3分别进行比较;

当T≤T2时,控制所述开合机构减小透气孔的开度;

当T>T3时,控制所述开合机构增大透气孔的开度;

当T2<T<T3时,保持当前透气孔的开度;其中T2<T1<T3。

当完成透气孔开度调节后,经过设定时间再次获取蒸发器温度T,并根据蒸发器温度T 再次调整透气孔的开度。

在启动烘干前,还获取环境温度和/或环境湿度,所述控制方法还包括:根据获取的环境温度和/或环境湿度来确定第一设定温度T1的大小。

所述根据获取的环境温度和/或环境湿度来确定第一设定温度T1的大小,包括:

根据环境温度和/或环境湿度与第一设定温度T1的预设对应关系,确定当前环境温度和 /或环境湿度在所述预设对应关系中所位于的温度范围和/或湿度范围;

根据所述温度范围和/或湿度范围所对应的第一设定温度T1,确定为当前环境温湿度所对应的第一设定温度T1。

本实施例还提出了实施例一的热泵烘干设备的控制方法,控制方法包括步骤S1,其中:

S1,衣物烘干过程中,获取蒸发器的温度,根据蒸发器的温度大小来调节所述透气孔的开度。

本实施例通过检测蒸发器温度来调整透气孔的开度,当蒸发器温度较高时,将透气孔开度增大,引入更多的外界空气和蒸发器前的空气进行交换,降低蒸发器温度,当蒸发器温度较低时,将透气孔开度减小,将引入的外界空气减少,增大蒸发器温度。

进一步可选地,如图10所示的控制流程图,步骤S1包括S11~S13,其中:

S11,当未达到烘干判干条件时,获取蒸发器温度T;

S12,比较蒸发器温度T与第一设定温度T1的大小,当T>T1时,控制开合机构将透气孔由关闭状态打开至预设开度;

S13,再次获取蒸发器温度T,根据蒸发器温度T调整透气孔的开度。

本实施例中,刚开始烘干时,蒸发器温度较低,透气孔处于关闭状态,随着烘干过程的进行,蒸发器温度升高,当达到第一设定温度时,说明蒸发器温度较高,需要增大透气孔的开度,为了便于后续透气孔的开度条件,在首次调节透气开度时将透气孔打开至预设开度,如将透气孔打开至50%开度处。在透气孔打开至预设开度后再根据蒸发器温度的变化情况来调整透气孔的开度。

进一步可选地,如图10所示的控制流程图,步骤S13包括S131~S132,其中:

S131,将蒸发器温度T分别与第二设定温度T2和第三设定温度T3分别进行比较;

S132,当T≤T2时,控制所述开合机构减小透气孔的开度;当T>T3时,控制所述开合机构增大透气孔的开度;当T2<T<T3时,保持当前透气孔的开度;其中T2<T1<T3。

本实施例中,当透气孔开度打开至预设开度后,当蒸发器温度下降至第一设定温度时,说明此时透气孔开度较大,需要减小透气孔开度。当蒸发器温度上升至第二设定温度时,说明此时透气孔开度依然较小,不足以使蒸发器降温,需要进一步增大透气孔开度。通过对蒸发器温度的监控来调节透气孔的开度从而使蒸发器的温度维持在设定的温度范围内,提升压缩机效率,节约能效,缩短烘干时间。

进一步可选地,如图10所示的控制流程图,步骤S1还包括步骤S13,其中:

S13,当完成透气孔开度调节后,经过设定时间再次获取蒸发器温度T,并根据蒸发器温度T再次调整透气孔的开度。

本实施例中,由于完成透气孔开度调节的初始阶段,蒸发器温度还不稳定,此时检测的蒸发器温度并不能真正反应透气孔开度调节后对蒸发器温度的影响。因此需要经过设定时间使蒸发器温度取余稳定后再获取蒸发器温度。设定时间可选的为5s。

进一步可选地,步骤S1之前还包括步骤S0,其中:

S0,在启动烘干前,还获取环境温度和/或环境湿度,所述控制方法还包括:根据获取的环境温度和/或环境湿度来确定第一设定温度T1的大小。

本实施例中,考虑到不同的环境温度和/或环境湿度会影响首次进行透气孔开度条件的第一设定温度条件,因此在启动烘之前先获取环境温度和/或环境湿度来确定第一设定温度。在一些具体的实施方式中,通过环境温度和环境湿度之一来确定第一设定温度,或者通过环境温度和环境湿度同时来确定第一设定温度。

进一步可选地,步骤S0包括步骤S01~S02,其中,

S01,根据环境温度和/或环境湿度与第一设定温度T1的预设对应关系,确定当前环境温度和/或环境湿度在所述预设对应关系中所位于的温度范围和/或湿度范围;

S02,根据所述温度范围和/或湿度范围所对应的第一设定温度T1,确定为当前环境温湿度所对应的第一设定温度T1。

本实施例中包括以下三种方案:

第一种方案,系统中设有环境温度和第一设定温度的预设对应关系,当确定当前环境温度后,通过查表的方式在预设对应关系中确定当前环境温度所处的温度范围,然后根据确定的温度范围找到对应的第一设定温度,该第一设定温度即为当前环境温度对应的第一设定温度。

第二种方案,系统中设有环境湿度和第一设定温度的预设对应关系,当确定当前环境湿度后,通过查表的方式在预设对应关系中确定当前环境湿度所处的湿度范围,然后根据确定的湿度范围找到对应的第一设定温度,该第一设定温度即为当前环境湿度对应的第一设定温度。

第三种方案,系统中设有环境湿度、环境湿度与第一设定温度的预设对应关系,当确定当前环境湿度和环境湿度后,通过查表的方式在预设对应关系中确定当前环境湿度所处的湿度范围,以及当前环境温度所处的温度范围,然后在预设对应关系中找到同时对应于该温度范围和该湿度范围的第一设定温度,该第一设定温度即为当前环境湿度和当前环境湿度所对应的第一设定温度。

以上具体地示出和描述了本公开的示例性实施例。应可理解的是,本公开不限于这里描述的详细结构、设置方式或实现方法;相反,本公开意图涵盖包含在所附权利要求的精神和范围内的各种修改和等效设置。

技术分类

06120116336764