掌桥专利:专业的专利平台
掌桥专利
首页

集中式网络配置实体及包括该实体的时间敏感网络控制系统

文献发布时间:2023-06-19 16:08:01



根据35U.S.C.119(a),本专利申请要求于2019年10月15日在韩国知识产权局提交的韩国专利申请第10-2019-0127845号的优先权,其公开内容通过引用整体并入本文。本专利申请要求在其他国家提交的其它申请的优先权,这些公开内容也通过引用整体并入本文。

技术领域

本申请实施例涉及时间敏感网络控制系统和控制时间敏感网络控制系统中的数据流量的中央网络配置器。

背景技术

超低等待时间基础设施技术(Ultra-low latency infrastructure technology)是一种用于实时时间敏感通信和工业过程控制测量信息交换的技术,其超出了为了交换多媒体信息而创建的而对互联网和通用通信网络的限制,并且有助于增加带宽。

由于对需要超低等待时间技术以支持工业融合服务和5G服务存在共识,因此无线/有线基础设施中超低等待时间网络技术的重要性正在增长。

特别地,在超低等待时间网络技术中,在处理对时间延迟非常敏感的数据的时间敏感网络中,从数据的生成到接收数据的接收实体接收到该数据的时刻的延迟是极其受限的。因此,为了满足所需的延迟,在网络配置、数据传输路径、数据转发和排队技术以及流资源分配和管理技术中需要优化。

然而,在常规的网络系统中没有公开如下的控制技术:该控制技术在对时间不敏感的时间不敏感数据和时间敏感数据共存的环境中,允许时间敏感数据在所需延迟内到达接收实体。换言之,常规网络系统在如下的环境中控制数据流量的情况下不能满足所需延迟:在该环境中,仅配置时间敏感数据或者混合了时间敏感数据和时间不敏感数据。

发明内容

【技术问题】

本申请实施例可以提供如下的数据流量控制技术:该数据流量控制技术即使在混合了时间敏感数据和时间不敏感数据的网络系统中也能够满足所需延迟。

本申请实施例还提供能够最小化用于数据流量控制的计算时间的技术。

【技术方案】

在一方面,本申请实施例可以提供一种中央网络配置器,其控制时间敏感网络的数据流量调度,所述中央网络配置器包括:接收器,用于从中央用户配置器接收关于多个流量流的流信息,所述多个流量流传输对子网络中的时间延迟敏感的第一数据以及对所述时间延迟不敏感的第二数据;资源分配器,用于使用所述流信息来分配被包括在所述子网络中的每个交换实体的输出端口时间资源,所述每个交换实体传送所述第一数据和所述第二数据;门控制列表生成器,用于基于所述流信息和所述输出端口时间资源来生成交换门控制列表信息和发送实体门控制列表信息中的至少一个,其中,所述交换门控制列表信息用于控制所述交换实体的操作,并且所述发送实体门控制列表信息用于控制发送所述多个流量流的多个发送实体的数据传输门;以及发送器,用于将所述交换门控制列表信息发送到所述交换机,并且将所述发送实体门控制列表信息发送到所述中央用户配置器。

在另一方面,本申请实施例可以提供一种时间敏感网络控制系统,包括:多个发送实体,生成和发送对时间延迟敏感的第一数据和对所述时间延迟不敏感的第二数据;多个接收实体,接收所述第一数据和所述第二数据;一个或多个子网络中的多个交换实体,用于将所述第一数据和所述第二数据传送到所述接收实体;中央用户配置器,从所述发送实体和所述接收实体接收关于多个流量流的流信息,将所述流信息传送给中央网络配置器,并且将发送实体门控制列表信息传送给所述发送实体;以及中央网络配置器,基于所述流信息来分配每个子网络中的交换实体的输出端口时间资源,并且生成交换门控制列表信息和发送实体门控制列表信息中的至少一个,其中,所述交换门控制列表信息用于控制所述交换实体的操作,并且所述发送实体门控制列表信息用于控制发送所述多个流量流的所述发送实体的数据传输门。

【有利效果】

根据本申请实施例,即使在混合了时间敏感数据和时间不敏感数据的网络系统中,也可以提供能够满足所需延迟的数据流量控制技术。

根据本申请实施例,可以最小化用于数据流量控制的计算时间。

附图说明

图1是概念性地示出了根据一个实施例的时间敏感网络控制系统的整体结构的视图。

图2是示出了根据一个实施例的包括两个或更多个子网络的时间敏感网络的视图;

图3是概念性地示出了根据一个实施例的数据传送流的视图,在该数据传送流中,子网络中的流量流通过多个交换机传输;

图4是示出了根据一个实施例的发送实体和交换实体的门控制操作的视图;

图5是示出了根据一个实施例的中央网络配置器的配置的视图;

图6是示出了根据一个实施例的时分调度单元格式的配置的视图;

图7是示出了根据一个实施例的将流量流的数据分配到时间分配间隔中的时隙的操作的视图;

图8是示出了根据一个实施例的超周期中的发送实体的门状态的示例的视图;

图9是示出了根据一个实施例的在超周期中的交换实体的输出端口门状态的示例的视图;

图10是示出了根据一个实施例的超周期中与接收实体相关联的交换实体的门状态的示例的视图;

图11是示出了根据一个实施例的被配置为单个子网络的时间敏感网络的示例的视图;

图12是示出了根据一个实施例的发送实体门控制列表信息的示例的视图;

图13是示出了根据一个实施例的交换门控制列表信息的示例的视图;

图14是示出了根据一个实施例的包括多个子网络的时间敏感网络的示例的视图;并且

图15是示出了根据一个实施例的交换实体4中的交换门控制列表信息的示例的视图。

具体实施方式

在下文中,将参照附图来详细描述本公开的实施例。在整个说明书和全部附图中,相同或基本相同的附图标记用于指代相同或基本相同的元素。已知技术或功能的细节当被认为会使本发明的主题不清楚时可能被跳过。当在本说明书中使用时,术语“包括”或“具有”指定了所表述的特征、区域、整数、步骤、操作、元素和/或组件,但不排除一个或多个其他特征、区域、整数、步骤、操作、元素、组件和/或它们的组的存在或附加。就本文的使用而言,单数形式的冠词旨在也包括复数形式,除非上下文另有明确指示。

诸如“第一”、“第二”、“A”、“B”、“(a)”和“(b)”这样的表示可以用于描述本发明的组件。提供这些符号仅仅是为了将一个组件与另一个组件区分开来,组件的本质不受这些符号的顺序或次序的限制。

在描述组件之间的位置关系时,当两个或更多个组件被描述为“连接”、“耦合”或“链接”时,该两个或更多个组件可以是直接地“连接”、“耦合”或“链接””,或者其间可以有另一个组件。此处,该另一个组件可以包括在彼此“连接”、“耦合”或“链接”的两个或更多个组件中的一个或多个中。

关于组件、操作方法或制造方法,当A被称为“之后”、“在......之后”、“下一个”和“之前”时,除非提及术语“立即”或“直接”,否则A和B可能彼此不连续。

当一个组件被指定一个值或其相应的信息(例如,级别)时,该值或相应的信息可以被解释为包括可能由于各种因素(例如,工艺因素、内部或外部影响或噪音)而出现的公差。

在本公开中,描述是在如下的假设下进行的:时间敏感网络控制系统按时间划分(time division)来划分和分派数据传输。这是为了方便起见,而即使在使用多个划分带宽的情况下,也可以在每个带宽中应用根据本申请实施例的基于时分资源分配的数据流量控制操作。

此外,在本申请实施例中,系统中每个实体的名称是为了便于描述而任意选择的,该名称并不限于此,并且用于数据、格式、区间、信息的术语不限于如下所述的这些术语。

本申请实施例涉及在如下的网络中满足时间敏感数据所需延迟的数据流量控制技术:在该网络中混合了时间敏感数据和时间不敏感数据,并且对两者进行处理。

常规的数据流量控制技术主要使用可满足性模理论(satisfiability modulotheories,SMT)求解器。然而,基于SMT求解器的流量控制技术在TSN网络中的实际使用受到呈指数增长的计算时间或数据流量控制命令超过最大命令长度的限制。

为解决这些问题,本公开与常规的流量控制算法相比,减少了高达80%的计算时间。此外,本公开采用了一种新的带宽分配系统方案来消除计算负载,这与常规的基于SMT的方法、基于ILP的方法和基于启发式的方法不同。相应地,本公开可以充分满足在时间敏感数据和时间不敏感数据共存的情况下的时间敏感数据的延迟要求。

图1是概念性地示出了根据一个实施例的时间敏感网络控制系统的整体配置图。

参考图1,时间敏感网络控制系统可以包括:多个发送实体101和102(这些发送实体生成并发送对时间延迟敏感的第一数据和对时间延迟不敏感的第二数据);多个接收实体107和108(这些接收实体接收第一数据和第二数据);多个交换实体104、105和106(用于将第一数据和第二数据传送到接收实体);中央用户配置器103(该中央用户配置器103从发送实体和接收实体接收流信息,传送流信息到中央网络配置器,并将发送实体门控制列表信息传送到发送实体);以及中央网络配置器100(该中央网络配置器100基于流信息分派交换实体的输出端口时间资源,并且生成用于控制交换实体的操作的交换门控制列表信息、以及用于控制多个发送实体的数据传输门的发送实体门控制列表信息)。

在本公开的描述中,为了方便描述,发送对时间延迟敏感的数据的发送实体101可以被指定为时间敏感网络(Time-Sensitive Network,TSN)讲话者(talker),而发送对时间延迟不敏感的数据的发送实体102可以被指定为非TSN讲话者。类似地,接收对时间延迟敏感的数据的接收实体107可以被指定为TSN收听者(listener),而传输对时间延迟不敏感数据的发送实体108可以被指定为非TSN收听者。

此处,多个发送实体101和102可以分别发送对时间延迟敏感的第一数据和对时间延迟不敏感的第二数据。或者,在多个发送实体101和102中,发送对时间延迟敏感的第一数据的发送实体101和发送对时间延迟不敏感的第二数据的发送实体102可以在物理上相互分离。类似地,多个接收实体107和108可以分别接收对时间延迟敏感的第一数据和对时间延迟不敏感的第二数据。或者,在多个接收实体107和接收实体108中,接收对时间延迟敏感的第一数据的接收实体107和接收对时间延迟不敏感的第二数据的接收实体108可以在物理上相互分离。

可以通过组成网络的一个或多个交换实体104、105和106,来将第一数据和第二数据从发送实体101和102传送到接收实体107和108。交换实体104、105和106可以被配置为包括用于传送数据的队列,并且可以包括用于在交换实体104、105和106之间传送数据的输出端口。

中央用户配置器(CUC)103可以从发送实体101和接收实体107接收关于流量流的流信息,并且将用于控制每个实体的门的发送实体门控制列表信息发送到发送实体101和接收实体107。

中央网络配置器(CNC)100可以执行控制时间敏感网络控制系统的数据流量流的功能。例如,中央网络配置器100可以产生信息,用于控制发送实体101和102的操作以及对(由多个发送实体101和102发送的)第一数据和第二数据进行数据流量处理的门,从而满足第一数据的所需延迟。在下文中,将参照附图来详细描述中央网络配置器100的具体操作。

同时,时间敏感网络可以被配置为包括一个或多个子网络的集合。例如,当将数据从发送实体101和102传送到接收实体107和108时,可以经由一个或多个子网络(这些子网络包括两个或更多个交换实体)来传送。在本公开的描述中,以下项被指定为流量流:从每个子网络角度来看所传送的数据流量;或者传送数据流量的发送实体;或者先前的子网络的交换实体。

流量流可以被理解为从发送实体101和102到接收实体107和108的单个流。相应地,在时间敏感网络中,可能存在多个流量流以及生成多个流量流的多个发送实体。在以下情况的第一子网络中,流量流可以指发送实体:在该第一子网络中,发送实体101和102立即接收数据并将数据传送到下一个子网络。

因此,下面描述的流量流可以被理解为:表示由单个子网络组成的时间敏感网络中的发送实体。

描述了在时间敏感网络控制系统中控制数据流量的操作。

首先,中央用户配置器103从发送实体101和接收实体107接收关于流量流的流信息。例如,流信息可以包括:关于多个流量流的数量的信息、关于每一流量流的第一数据的最大允许延迟信息、以及关于第一数据的数据帧长度信息。中央用户配置器103将收集到的流信息传送到中央网络配置器100。

中央网络配置器100使用接收到的流信息来分派被包括在特定子网络中的交换实体104、105和106的输出端口时间资源。进一步地,中央网络配置器100生成以下项中的至少一个:交换门控制列表信息(用于控制交换实体104、105和106的操作);以及发送实体门控制列表信息(用于控制多个发送实体101的数据传输门)。下面详细描述由中央网络配置器100分派时间资源和生成门控制列表信息的具体算法。

中央网络配置器100将生成的发送实体门控制列表信息发送到中央用户配置器103。中央用户配置器103将发送实体门控制列表信息发送到发送实体101和接收实体107中的至少一个。中央网络配置器100将生成的交换门控制列表信息传送给交换实体104、105和106中的每一个。

发送实体101根据接收到的发送实体门控制列表信息的门操作信息,来控制用于发送第一数据和/或第二数据的队列门操作。类似地,交换实体104、105和106基于接收到的交换门控制列表信息来控制交换实体的输出端口的门操作,并且传送第一数据和第二数据。

这样,中央网络配置器100使用流信息来生成用于控制组成网络的每个配置器的门操作的门控制列表信息,并控制系统的总体数据流量。特别地,中央网络配置器100可以通过控制每个配置器的门操作来对时间敏感网络的数据流进行优化,使得数据在时间敏感数据的所需延迟之内到达接收实体。

图2示出了根据一个实施例的包括两个或更多个子网络的时间敏感网络的视图。

如图2所示,时间敏感网络可以包括多个终端站。每个终端站可以是发送实体或接收实体。或者,每个终端站可以取决于数据发送/接收而是发送实体或接收实体。

时间敏感网络可以包括多个交换实体SW。每个交换实体可以与发送实体和/或接收实体连接。

每个发送实体可以将第一数据或第二数据发送到接收实体。可以通过多种路径来传送第一数据和第二数据,并且在本公开中,对发送第一数据和第二数据的路径不作限定。例如,可以基于众所周知的流预留协议来确定第一数据和第二数据的传输路径。另外,可以配置各种用于确定数据传输路径的协议,本公开不做限定。

如图2所示,一些发送实体可以将第一数据或第二数据发送到接收实体。例如,发送实体ES

同时,时间敏感网络可以被划分为多个子网络。例如,子网络可以被划分成一系列无分支交换机。如图2所示,根据每个交换机是否有分支,时间敏感网络可以被分为七个子网络。在这种情况下,从ES

从ES

因此,根据本公开的中央网络配置器需要在满足针对流量流的最大允许延迟的范围内来控制子网络中的交换实体针对每个数据的操作。

图3是概念性地示出了根据一个实施例的数据传送流的视图,在该数据传送流中,子网络中的流量流通过多个交换机传输。

参考图3,在子网络中配置K个交换实体的情况下,有N个流量流TSN_f

然而,时间敏感网络中的第一数据是延迟敏感数据,并且应该在被发送实体发送之后在最大允许延迟之内被接收实体接收。对于从发送实体到接收实体的每一流量流的最大允许延迟,子网络的数量和交换实体的总数可能会根据流量流被传送通过的路径而变化。因此,可以将每个子网络中的每一流量流的最大允许延迟之和设置为等于或小于由发送实体向接收实体传送的流量流的最大允许延迟。因此,每个子网络应该在被分配给相应子网络的最大允许延迟内传送数据。为此,每个子网络中的交换实体中的数据传输、发送实体中的数据传输时间、以及时间资源分配非常关键。

例如,子网络中的特定交换实体将通过多个流量流分别接收到的第一数据和第二数据发送到另一个交换实体。在这种情况下,通过每个交换实体的输出端口将第一数据和第二数据传送到下一个交换实体的输入端口。因此,需要在交换实体的输出端口中动态配置用于数据发送和门控制操作的格式,并控制第一数据在所需延迟内被处理。

进一步地,如果确定了针对每一个流量流的在每个子网络中的每个交换实体操作和用于数据传送的格式,则生成和发送每个流量流的多个发送实体考虑到交换实体的门操作还可以动态控制第一数据的和/或第二数据的发送时间。通过这样做,在第一数据和第二数据共存的系统中,提供了满足第一数据的所需延迟的流量控制技术。

图4是示出了根据一个实施例的发送实体和交换实体的门控制操作的视图。

参考图4,发送实体或子网络中与发送实体直接相连以接收流量流的交换实体可以将数据划分为第一数据(对时间敏感的流量)和第二数据(对时间不敏感的流量),并选择用于每个数据传输的队列。然而,这是示例性的,并且图4同样适用于被包括在每个子网络中的门。在这种情况下,通过变为流量流,这可以同样被应用到发送实体。

首先,对发送实体进行假设和描述。当发送实体被配置为具有八个队列时,需要用于控制每个队列的数据传输的门操作。例如,在从0到5的六个队列中,可以对时间不敏感流量进行分类和存储并依次发送,在两个队列6和队列7中,可以对时间敏感流量进行分类和存储并依次发送。

如上所述,发送实体根据由中央网络配置器生成的门控制列表信息来控制每个队列的门打开/关闭,从而将数据发送到交换实体。此时,中央网络配置器可以根据以下项来动态配置门控制列表信息:交换实体的门控制列表信息、时分调度单元格式的配置、以及流信息。

类似地,当交换实体配置有八个队列时,需要门操作来控制每个队列的数据发送。例如,在从0到5的六个队列中,可以对时间不敏感流量进行分类和存储并依顺序地发送,并且,在两个队列(队列6和队列7)中,对时间敏感流量进行分类和存储并依顺序地发送。此时,交换实体的输出端口可以根据门控制、通过时分操作将每个数据发送到另一个交换实体。

可以这样控制发送实体和交换实体的门操作,以控制第一数据和第二数据的发送。特别地,即使在第一数据的传输和第二数据的传输共存的情况下,第一数据也应该在最大允许延迟内被发送到接收实体。为了满足这样的要求,中央网络配置器可以使用关于每个发送实体和接收实体的流量流的流信息来确定发送实体的门打开/关闭的时机和持续时间,并确定时分调度单元格式。

此外,在交换实体的情况下,中央网络配置器可以为流量流确定每个交换实体的门打开/关闭的时机和持续时间,并确定时分调度单元格式。

下面参照附图详细描述中央网络配置器生成用于控制第一数据和第二数据的流量的门控制列表信息的具体操作。

图5是示出了根据一个实施例的中央网络配置器的配置的视图。

参照图5,控制时间敏感网络的数据流量调度的中央网络配置器100可以包括接收器400,该接收器400从中央用户配置器接收关于每个子网络中的多个流量流的流信息,这些多个流量流传输对时间延迟敏感的第一数据和对时间延迟不敏感的第二数据。

例如,流信息可以包括:关于多个流量流的数量的信息、关于每一流量流的第一数据的最大允许延迟的信息、以及关于第一数据的数据帧长度信息。例如,关于每一流量流的第一数据的最大允许延迟信息可以是用于由中央网络配置器100进行门控制的子网络中相应流量流的最大允许延迟信息。或者,最大允许延迟信息可以是关于从发送实体到接收实体的整个路径的最大允许延迟信息。因此,中央网络配置器100识别时间敏感网络(相应的子网络)中的传输第一数据的流量流的数量、关于每一流量流的第一数据的最大允许延迟信息、以及每个流量流中所传输的数据的数据帧长度。因此,中央网络配置器100可以控制数据流量,以使得每个流量流在相应子网络被分配的最大允许延迟内被传送。

必要时,中央网络配置器100还可以考虑子网络中的所配置的交换机数量的信息。可以预先将关于子网络中所配置的交换机数量的信息与每个子网络的索引信息进行匹配,并存储在中央网络配置器100中。

同时,中央网络配置器100可以包括资源分配器410,资源分配器410使用流信息来分配传送第一数据和第二数据的相应子网络中的每个交换实体的输出端口时间资源。

例如,资源分配器410可以确定用于交换实体将第一数据和第二数据传送到另一个交换实体的时分调度单元格式。换言之,资源分配器410可以以特定的时分调度单元格式配置从交换实体的输出端口发送的数据。时分调度单元可以指交换实体的输出端口调度的最小单元。

作为示例,时分调度单元格式可以包括:敏感数据传输部分(用于发送第一数据)、第一非敏感数据传输部分(用于发送第二数据)、第二非敏感数据传输部分和保护段部分。例如,保护段部分可以在发送时间敏感数据和时间不敏感数据时起到防止时间不敏感数据干扰时间敏感数据的发送的作用。

图6是示出了根据一个实施例的时分调度单元格式的配置的视图。

参照图6,可以在传输周期中重复时分调度单元格式。时分调度单元格式可以包括:非敏感数据传输部分(用于传输第二数据)、敏感数据传输部分(用于传输第一数据)、以及保护段部分。在这里,非敏感数据传输部分可以分为两个。换言之,一个时分调度单元格式可以包括第一非敏感数据传输部分、保护段部分、敏感数据传输部分以及第二非敏感数据传输部分。此外,敏感数据传输部分可以包括N个时隙。

返回来参照图5,资源分配器410使用流信息来设定时分调度单元格式的长度和时分调度单元格式的每个部分的长度。这样,资源分配器410控制第一数据在允许延迟内被处理。

作为示例,时分调度单元格式的长度被设定为不大于被包括在流信息中的关于每一流量流的第一数据的最大允许延迟信息的最小值。如上所述,最大允许延迟信息可以指相应的子网络中针对第一数据的最大允许延迟。换言之,流信息包括每个流量流的关于第一数据的最大允许延迟信息。如果相应子网络中有N个流量流,则有N条最大允许延迟信息。资源分配器410将时分调度单元格式的长度配置为等于或小于具有N条最大允许延迟信息中的最小值的最大允许延迟信息。换言之,如下面的等式1所示,时分调度单元格式TDI的长度不能超过关于相应子网络中的所有流量流的最大允许延迟信息的最小值。

[等式1]

因此,可以满足所有实时服务的延迟要求。

同时,资源分配器410可以确定被包括在时分调度单元格式中的上述各个部分的长度。

作为一个示例,第一非敏感数据传输部分和保护段部分之和可以被设定为等于从发送实体生成第一数据到第一数据到达子网络中被控制的交换机的输出端口的队列处的物理层延迟值。换言之,给定相应数据通过另一个子网络被传送的情况下,则可以确定物理层延迟值。

例如,

[等式2]

在此处,

因此,

[等式3]

换言之,它是与组成前一个子网络的交换机实体的数量相关联地确定的。

因此,当组成交换实体k的时分调度单元格式的第一非敏感数据传输部分的长度为

[等式4]

同时,保护段部分的长度可以被设定为将被包括在流信息中的第一数据的数据帧长度除以网络链路速度所获得的值。

作为一个示例,当组成交换实体k的时分调度单元格式的保护段的长度为GBI

[等式5]

GBI

在此处,L

相应地,组成交换实体k的时分调度单元格式的第一非敏感数据传输部分的长度

[等式6]

如此,资源分配器410可以使用流信息来设定时分调度单元格式和每个部分的长度。

同时,敏感数据传输部分由多个时隙组成。资源分配器410应该确定针对每一发送实体的时隙数量和时间分配间隔。每个时隙的长度应该足够长以完成第一数据帧的传输。此外,在确定时隙长度时,还应考虑帧之间的间隔。

因此,时隙的长度可以被设定为通过将帧之间的间隔与被包括在流信息中的第一数据的数据帧长度之和除以网络链路速度信息所获得的值。

例如,时隙的长度可以如等式7来确定。

[等式7]

TS=(L

在这里,TS指时隙长度,L

同时,资源分配器410确定针对每个流量流的时间分配间隔。例如,资源分配器410应当适当地给每个流量流分配时隙,以避免每个流量流在交换实体中的非确定性队列。

为此,资源分配器410确定最小时间分配间隔。最小时间分配间隔被设定为等于被包括在流信息中的关于每一流量流的第一数据的最大允许延迟信息的最小值。换言之,每个时分调度单元格式间隔设定最小时间分配间隔。这是为了对甚至是对时间最敏感的数据进行处理,因为给所有的时分单元格式都分配了时隙。

资源分配器410可以参考最小时间分配间隔来设定剩余流量流的时间分配间隔。作为示例,资源分配器410可以使用作为已知算法的“窗口调度算法(windows schedulingalgorithm,WSA)”来针对每个流量流分配时隙。可以如下面的等式8来计算针对每个流量流的时间分配间隔的比率。

[等式8]

在此处,TSAI

进一步地,为了满足针对多个流量流中的每个流量流的最大允许延迟信息中的最大值的延迟要求,将最大时隙分配间隔设定为每一流量流时间分配间隔的最小公倍数。

同时,资源分配器410确定被包括在敏感数据传输部分中的时隙的数量。

例如,被包括在一个敏感数据传输部分中的时隙的数量被设定为等于或大于在一个时分调度单元格式中为N个流量流分配的时隙的平均数量的最小整数。

具体地,可以通过等式9来确定一个时分调度单元格式中为N个流量分配的时隙的平均数量。因为已经确定了为每个流量流设定的时间分配间隔,所以可以使用每个流量流的时间分配间隔和流量流的数量来确定时隙的平均数量。

[等式9]

在此处,ATSTCD

由于时隙的数量应该是整数,所以资源分配器410如等式10所示确定时隙的数量。

[等式10]

在此处,TSTCD

上面已经计算了时隙的数量和时隙的长度。相应地,可以通过将时隙的长度乘以时隙的数量来计算敏感数据传输部分的长度。进一步地,第二非敏感数据传输部分的长度被确定为:从时分调度单元格式的长度中减去第一非敏感数据传输部分的长度、保护段部分的长度和敏感数据传输部分的长度所获得的值。

如此,资源分配器410可以使用流信息来为每个流量流计算组成时分调度单元格式的各个部分的长度和时间分配间隔。

在如此确定的时分调度单元格式的各个部分中,第一数据和第二数据被包括在相应的部分中并且被发送。进一步地,根据设定的时间分配间隔,使用特定的时分调度单元格式中的特定时隙,从交换实体的输出端口发送每个发送实体的第一数据。

相应地,资源分配器410应当为每个流量流指定发送第一数据的时隙。

图7是示出了根据一个实施例的将流量流的数据分配到时间分配间隔中的时隙的操作的视图。

参照图7,交换实体输出端口可以在以由多个时分调度单元格式构成的最大时间分配间隔的周期内重复的情况下分配第一数据。例如,交换门控制列表信息和发送实体门控制列表信息以超周期(hyper period)重复,该超周期被设定为最大时隙分配间隔。

资源分配器410将特定流量流的第一数据分配给交换实体的输出端口。为此,资源分配器410可以通过开始时隙索引和开始时分调度单元格式索引来指定分配特定流量流的第一数据的时隙。

例如,作为最大时间分配间隔的超周期包括多个时分调度单元格式。因此,为了指示分配给特定发送实体的时隙,需要用于指示时分调度单元格式的索引。另外,时分调度单元格式的敏感数据传输部分包括多个时隙,因此需要指示时隙的索引。

具体地,资源分配器410为多个流量流中的每个流量流以关于多个流量流中的每个流量流的第一数据的最大允许延迟信息的升序确定开始时分调度单元格式索引和开始时隙索引。换言之,资源分配器410将多个流量流从最小的最大允许延迟信息值到最大的最大允许延迟信息值进行排序,并且首先分配具有最小的最大允许延迟信息的发送实体的第一数据的时隙。

例如,如果存在流量流1、流量流2和流量流3,并且发送实体按照最大允许延迟信息的升序排序,则可以按照流量流2、流量流1和流量流3的顺序对流量流进行排序。资源分配器410可以首先分配具有最小的最大允许延迟信息的流量流2传输的第一数据的时隙,并且然后按照流量流1和流量流3的顺序分配时隙。

例如,假定流量流2的第一数据被分配到开始时分调度单元格式索引0的开始时隙索引0。资源分配器410识别时分调度单元格式索引0是否有剩余时隙,以用于接下来分配流量流1的第一数据。如果时分调度单元格式索引0中没有剩余时隙,则资源分配器410将时分调度单元格式索引1的时隙索引0确定为流量流1的开始时分调度单元格式索引和开始时隙索引。

如果确定了开始数据分配时间,则根据针对每一流量流确定的时间分配间隔在超周期中重复执行时隙分配。也就是说,如果确定了每一流量流的开始时分调度单元格式索引和开始时隙索引,则资源分配器410通过应用每一流量流的时隙分配间隔来在超周期中分配时隙。

同时,因为已经针对交换实体的输出端口设定了开始数据分配时间的确定结果,所以应该考虑从相应流量流的发送实体到要调度的交换实体的物理层延迟值,以用于使发送实体满足相应交换实体的输出端口的开始数据分配时间。

例如,发送每一流量流的每个发送实体的第一数据传输时间被确定为先前时间,该先前时间通过以下操作来获得:将从发送实体产生第一数据到到达相应子网络中所调度的交换机的输出端口的队列处的物理层延迟值应用到被确定为开始时分调度单元格式索引和开始时隙索引的时间。

如上所述,资源分配器410在设定的时分调度单元格式的每个部分中分配每一流量流的第一数据传输时间。

中央网络配置器100可以包括门控制列表生成器420,门控制列表生成器420基于流信息和输出端口时间资源来生成的交换门控制列表信息和发送实体门控制列表信息中的至少一个,其中,交换门控制列表信息用于控制交换实体的操作,并且发送实体门控制列表信息用于控制多个发送实体的数据传输门。

例如,门控制列表生成器420使用例如由资源分配器410确定的关于每个流量流的时隙分配信息和根据时隙分配的关于每个流量流的第一数据传输时间信息,来确定交换实体和每个发送实体的打开/关闭操作。

同时,门控制列表生成器420将交换门控制列表信息和发送实体门控制列表信息的长度设置为等于最大时间分配间隔。换言之,针对在整个最大时间分配间隔(其为超周期)内用于发送第一数据和第二数据的每个队列的门操作被生成作为门控制列表信息。

中央网络配置器100可以包括发送器430,发送器430将交换门控制列表信息发送到交换机并且将发送实体门控制列表信息发送到中央用户配置器。中央用户配置器将发送实体门控制列表信息发送给发送实体,以便发送实体使用该信息控制门操作。

同时,可以按每一子网执行上述操作。换言之,为了控制交换实体针对特定流量流的操作,可以针对传送相应流量流的每一子网络执行上述操作。此外,可以通过上述操作针对子网络中每一交换实体来生成交换门控制列表信息。

图8是示出了根据一个实施例的超周期中的发送实体的门状态的示例的视图。

参考图8,特定流量流的发送实体根据接收到的关于发送实体的门控制列表信息来控制传输第二数据的队列0-5和传输第一数据的队列6-7的门开/关操作。在保护段部分,所有队列的门都关闭,而队列0-5和队列6-7的两个门中只有一个设置为打开。每个门操作设置为操作i,并按时间顺序包含在发送实体门控制列表信息中。

具体地,发送实体的门操作是在考虑到物理层延迟的情况下确定的,如图8所示,并且考虑到保护频带部分,发送实体的门操作被分配为使得第一数据和第二数据不相互重叠。还设定了传输时间,该传输时间反映了根据时间分配间隔的用于传输第一数据的门打开周期,并反映了交换实体的时隙分配的数量。相应地,如果发送实体根据发送实体门控制列表信息按顺序地执行门打开/关闭操作,并保持用于第一数据传输的门打开持续时间,则第一数据被分配到交换实体的时分调度单元格式中设定的针对相应发送实体的时隙,并在所需延迟内传送到接收实体。

换言之,中央网络配置器100可以收集网络中所有流量流的流信息,确定交换实体的时分调度单元格式和时隙分配,并相应地控制发送每个流量流的发送实体的门操作,以使得所有流量流的第一数据可以在所需延迟内传送到接收实体。

图9是示出了根据一个实施例的在超周期中的交换实体的输出端口门状态的示例的视图。

参考图9,第一数据和第二数据可以通过中央网络配置器100设定的时分调度单元格式和时隙分配从子网络中的特定交换实体输出端口发送。针对该发送的门操作通过交换门控制列表信息被按顺序地在整个超周期中设定。

换言之,交换实体的门打开/关闭操作是按照表1的交换门控制列表根据图9所示的时间执行的。

[表1]

图10是示出了根据一个实施例的超周期中与接收实体相关联的交换实体的门状态的示例的视图。

参照图10,与接收实体连接的子网络的交换实体还可以根据门控制列表信息来控制用于第一数据和第二数据的传输的门操作。在这种情况下,与接收实体连接的子网络的交换实体的门控制列表信息的每个门打开时间周期的长度等于发送实体的每个门打开时间周期的长度。这就是为什么特定发送实体发送的第一数据的帧长度与接收到的第一数据的帧长度相等的原因。

然而,连接到接收实体的子网络的交换机实体的操作时间是被确定的,其中第一数据与被包括在一个或多个子网络中的交换机和发送实体的门操作相结合。

下面描述当应用本申请实施例时获得的实验结果。

表2显示了时间敏感网络中的网络参数的示例。应用相同的网络参数来比较常规的流量控制系统和应用了本公开的流量控制系统。

[表2]

图11是示出了根据一个实施例的被配置为单个子网络的时间敏感网络的示例的视图。

参考图11,时间敏感网络由包括两个交换实体的单个子网络构成。每个交换实体都连接到一个发送实体或一个接收实体以形成链路。交换实体1与9个发送实体相连,其中1个是发送时间不敏感数据的实体,其他8个是发送时间敏感数据的实体。交换机实体2与9个接收实体相连,其中1个是接收时间不敏感数据的实体,并且其他8个是接收时间敏感数据的实体。每个流量流都是从ES

如果将流量流的各最大允许所需延迟分别设置为100us、100us、200us、200us、400us、400us、800us和800us,并且将时间敏感数据的帧长设置为1,530字节,则如表3所示针对每一数据流获得用于通过上述操作生成门控制列表信息的参数。

[表3]

这里,TSAI是时隙分配间隔,并且STDIN是起始时分调度单元索引。SSN表示起始时隙索引。

当应用根据本公开的方法时,时分调度单元格式的长度被确定为100us,并且保护段部分的长度被确定为12.24us。进一步地,第一非敏感数据传输部分的长度设置为8.5us,并且时隙长度设置为12.336us。最小时隙分配间隔设置为100us,并且最大时隙分配间隔,即800us,设置为超周期。此外,包括在一个敏感数据传输部分中的时隙的数量被确定为四个。相应地,敏感数据传输部分的长度设置为49.344us,并且第二非敏感数据传输部分的长度设置为29.916us。

此外,可以如上表3所示计算起始时分调度单元索引和起始时隙索引。因此,从发送实体的第一数据发送时间如上表3所示进行计算,相应的第一门打开时间也同样确定。

确定发送实体门控制列表的长度等于最大时隙分配间隔,即800us。

图12是示出了根据一个实施例的发送实体门控制列表信息的示例的视图。图13是示出了根据一个实施例的交换门控制列表信息的示例的视图。

参照图12,可以如图12所示生成关于已经应用了上述示例的发送实体1的门控制列表信息。发送实体1根据图12的门操作执行门打开/关闭操作,并且,每个操作的启动周期保持设定的时间。

类似地,关于交换实体的交换门控制列表信息被如图13所示的进行计算

图14是示出了根据一个实施例的包括多个子网络的时间敏感网络的示例的视图。

参考图14,时间敏感网络可以包括27个终端站和9个交换实体。假设在时间敏感网络中,配置了34个时间敏感流量流(TC)和两个时间不敏感流量流(NTC),如表4所示。

[表4]

网络参数与表2中所示的相同。在图14的时间敏感网络中,七个子网络被如图2所示地进行配置。

如果应用本公开的上述操作,则如图15所示地产生来自开关实体4的输出端口的门控制列表信息。

通过上述操作,中央网络配置器可以通过有效控制发送实体和交换实体的的门操作来控制整个网络的流量,以允许时间敏感数据在最大允许延迟内到达接收实体。

可以通过各种方式来实现上面描述的本申请实施例。例如,可以通过各种方式来(例如,硬件、固件、软件或其组合)实现本申请实施例。

当以硬件实现时,可以通过以下项来实现根据本申请实施例的方法:例如,一个或多个专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、处理器、控制器、微控制器或微处理器。

当以固件或硬件实现时,可以以执行上述功能或操作的设备、过程或功能的形式来实现根据本申请实施例的方法。软件代码可以被存储在存储器单元中并由处理器驱动。存储器单元可以被放置在处理器内部或外部,以通过各种已知方式与处理器交换数据。

以上描述的上述术语(例如,“系统”、“处理器”、“控制器”、“组件”、“模块”、“接口”、“模型”、“实体”或“单元”)通常可以指:与计算机相关的实体硬件、硬件和软件的组合、软件或正在被执行的软件。例如,上述组件可以是但是不限于是由一个处理器、多个处理器、控制器、控制处理器、实体、执行线程、程序和/或计算机驱动的进程。例如,以下两者都可以是组件:由控制器或处理器执行的应用程序、以及控制器或处理器。一个或多个组件可以驻留在进程和/或执行线程内,并且这些组件可以被放置在一个设备(例如,系统、计算设备等)中、或分布在两个或多个设备中。

上述实施例仅仅是示例,并且本领域普通技术人员将理解,在不脱离本发明范围的情况下可以对其进行各种改变。因此,提供此处所阐述的实施例是为了说明的目的,而不是为了限制本发明的范围,并且应该理解,本发明的范围不受这些实施例的限制。本发明的范围应由所附权利要求书来解释,所有在其等同范围内的技术精神均应被理解为属于本发明的范围。

技术分类

06120114711703