掌桥专利:专业的专利平台
掌桥专利
首页

超级电容器组件

文献发布时间:2023-06-19 18:32:25


超级电容器组件

优先权声明

本申请要求于2020年6月2日提交的、申请号为63/033,400、名称为“超级电容器组件”的美国临时专利申请的优先权的权益,该申请通过引用结合在本文中。

背景技术

电能存储单元广泛地用于向电子设备、机电设备、电化学设备和其它实用设备提供电力。例如,双层超级电容器可以使用一对包含浸透有液体电解质的碳颗粒(例如活性炭)的可极化电极。由于颗粒的有效表面积和电极之间的小的间隔,因此可以实现大电容值。可以将单独的双层电容器组合在一起,以形成具有提高的输出电压或增加的能量容量的模块。

发明内容

本公开的一个方面针对一种超级电容器。超级电容器组件包括多个超级电容器。超级电容器组件还包括第一母线排和第二母线排。第二母线排与第一母线排间隔开。超级电容器组件包括耦合在第一母线排和第二母线排之间的放电电阻器。超级电容器组件还包括第一多个开关器件和第二多个开关器件。第一多个开关器件中的每个开关器件耦合在第一母线排和多个超级电容器中的对应的超级电容器之间,以经由第一母线排将该对应的超级电容器选择性地耦合到放电电阻器。第二多个开关器件中的每个开关器件耦合在第二母线排和对应的超级电容器之间,以经由第二母线排将该对应的超级电容器选择性地耦合到放电电阻器。

本公开的另一方面针对一种对一个或多个超级电容器放电的方法。该方法包括:控制第一开关器件的运行,以经由第一母线排将一个或多个超级电容器耦合到放电电阻器。该方法还包括:控制第二开关器件的运行,以经由与第一母线排间隔开的第二母线排将一个或多个超级电容器耦合到放电电阻器。该方法甚至还包括:当一个或多个超级电容器经由第一母线排和第二母线排耦合到放电电阻器时,向放电电阻器提供来自一个或多个超级电容器的电流。

在下面更详细地阐述了本公开的其它特征和方面。

附图说明

针对本领域的普通技术人员,在说明书的余下部分中参考附图更具体地阐述了本公开的完整且可实现的公开内容(包括其最佳模式),在附图中:

图1描绘了根据本公开示例性实施例的超级电容器组件;

图2描绘了根据本公开示例性实施例的耦合到超级电容器组件中的放电电阻器的单个超级电容器;以及

图3描绘了根据本公开示例性实施例的耦合到超级电容器组件中的放电电阻器的多个超级电容器;

图4描绘了根据本公开示例性实施例的用于平衡超级电容器组件中的一个或多个超级电容器的示例性方法的流程图;以及

图5描绘了根据本公开示例性实施例的超级电容器组件中的多个部件的空间布置;

在本说明书和附图中重复使用的参考标记旨在表示本公开中的相同或类似的特征或元件。

具体实施方式

本领域的普通技术人员应当理解的是,本讨论仅是对示例性实施例的描述,并不旨在限制本公开的更广泛的方面,这些更广泛的方面体现在示例性构造中。

本公开的各示例性方面针对一种超级电容器组件。超级电容器组件可以包括多个超级电容器。超级电容器组件还可以包括第一母线排和第二母线排。第二母线排可以与第一母线排间隔开。更具体地,第二母线排可以与第一母线排间隔开,以使得多个超级电容器位于第一母线排和第二母线排之间。超级电容器组件可以包括耦合在第一母线排和第二母线排之间的放电电阻器。例如,在一些实施方式中,放电电阻器可以经由一个或多个导体(例如,导线)耦合到第一母线排和第二母线排。

超级电容器组件可以包括第一多个开关器件和第二多个开关器件。第一多个开关器件中的每个开关器件可以耦合在第一母线排和多个超级电容器中的对应的超级电容器之间,以将该对应的超级电容器选择性地耦合到放电电阻器。此外,第二多个开关器件中的每个开关器件可以耦合在第二母线排和多个超级电容器中的对应的超级电容器之间,以将该对应的超级电容器选择性地耦合到放电电阻器。当多个超级电容器中的一个或多个超级电容器耦合到第一母线排和第二母线排时,该一个或多个超级电容器可以耦合到放电电阻器。以这种方式,当一个或多个超级电容器经由第一多个开关器件中的开关器件和第二多个开关器件中的开关器件分别耦合到第一母线排和第二母线排时,该一个或多个超级电容器可以向放电电阻器提供放电电流。

第一多个开关器件和第二多个开关器件中的开关器件的共同总数可以大于超级电容器的总数。此外,第一多个开关器件中的开关器件的总数可以与第二多个开关器件中的开关器件的总数相同。在一些实施方式中,第一多个开关器件中的每个开关器件和第二多个开关器件中的每个开关器件可以包括场效应晶体管或其它适用的开关器件(例如,半导体开关器件)。然而,应当理解的是,可以使用任何合适类型的开关器件将超级电容器选择性地耦合到第一母线排和第二母线排。

根据本公开的超级电容器组件提供了许多技术效果和优势。例如,第一多个开关器件和第二多个开关器件可以允许一个或多个超级电容器耦合到共用的放电电阻器。以这种方式,超级电容器组件中的多于一个的超级电容器可以一次被平衡,和/或一次选择性地放电,而无需多个放电电阻器。此外,由于可以使用共用的放电电阻器平衡多个超级电容器中的多于一个的超级电容器和/或使多个超级电容器中的多于一个的超级电容器放电,因此,可以减少与超级电容器组件相关联的布线。

现在参考附图,图1至图3描绘了根据本公开示例性实施例的超级电容器组件100。如图所示,超级电容器组件100可以包括多个超级电容器110。此外,超级电容器组件100可以包括第一母线排120和第二母线排130。第二母线排130可以与第一母线排120间隔开。更具体地,第二母线排130可以与第一母线排120间隔开,以使得多个超级电容器110位于第一母线排120和第二母线排130之间。超级电容器组件100还可以包括耦合在第一母线排120和第二母线排130之间的放电电阻器140。例如,在一些实施方式中,放电电阻器140可以经由一个或多个导体142(例如,导线)耦合到第一母线排120和第二母线排130。

超级电容器组件100可以包括第一多个150开关器件152和第二多个160开关器件162。第一多个150开关器件152中的每个开关器件可以耦合在第一母线排120和多个超级电容器112中的对应的超级电容器之间,以经由第一母线排120将对应的超级电容器选择性地耦合到放电电阻器140。此外,第二多个160开关器件162中的每个开关器件可以耦合在第二母线排130和多个超级电容器112中的对应的超级电容器之间,以经由第二母线排130将对应的超级电容器选择性地耦合到放电电阻器140。当多个超级电容器112中的一个或多个超级电容器经由第一多个150开关器件152中的开关器件152和第二多个160开关器件162中的开关器件162耦合到放电电阻器140时,该一个或多个超级电容器可以向放电电阻器140提供放电电流。

如图所示,第一多个150开关器件152和第二多个160开关器件162中的开关器件152和162的共同总数可以大于超级电容器112的总数。例如,在图1中可以看到,超级电容器组件100中的开关器件152和162的共同总数是六个,而超级电容器112的总数是五个。此外,第一多个150开关器件152中的开关器件152的总数可以与第二多个160开关器件162中的开关器件162的总数相同。在一些实施方式中,第一多个150开关器件152和第二多个160开关器件162中的每个开关器件可以包括场效应晶体管。然而,应当理解的是,开关器件152和162可以包括被配置为分别经由第一母线排120和第二母线排130将多个超级电容器112中的一个或多个超级电容器选择性地耦合到放电电阻器140的任何合适类型的开关器件。

如图所示,第一多个150开关器件152和第二多个160开关器件162可以被配置处于第一状态或第一配置(图1)以及第二状态或第二配置(图2和图3),第二配置与第一配置不同。当第一多个150开关器件152处于第一配置时,多个超级电容器112与第一母线排120断开。同样地,当第二多个160开关器件162处于第一配置时,多个超级电容器112与第二母线排130断开。以这种方式,当第一多个150开关器件152和第二多个160开关器件162两者均处于第一配置时,多个超级电容器112可以与放电电阻器140断开。

相反地,当第一多个150开关器件152中的开关器件152处于第二配置(图2和图3)且第二多个160开关器件162中的开关器件162处于第二配置时,多个超级电容器112中的一个或多个超级电容器可以耦合到放电电阻器140。更具体地,当第一多个150开关器件152中的开关器件152和第二多个160开关器件162中的开关器件162两者均处于第二配置(图2和图3)时,该一个或多个超级电容器可以以串联配置耦合到放电电阻器140。以这种方式,可以经由放电电阻器140平衡该一个或多个超级电容器(例如,使该一个或多个超级电容器选择性地放电)。更具体地,该一个或多个超级电容器可以向放电电阻器140提供电流。

如图2和图3所示,任何合适数量的超级电容器可以经由第一多个150开关器件152和第二多个160开关器件162耦合到放电电阻器140。例如,如图2所示,第一多个150开关器件152和第二多个160开关器件162可以被控制,使得一次多个超级电容器112中的仅一个超级电容器耦合到放电电阻器140,如图2所示。或者,如图3所示,第一多个150开关器件152和第二多个160开关器件162可以被控制,使得多个超级电容器可以同时耦合到放电电阻器140。例如,在一些实施方式中,第一多个150开关器件152和第二多个160开关器件162可以被控制,使得多个超级电容器112中的每个超级电容器可以同时耦合到放电电阻器140。在这类实施方式中,可以同时平衡多个超级电容器112中的每个超级电容器(例如,使多个超级电容器112中的每个超级电容器同时放电),而不需要用于多个超级电容器112中的每个超级电容器的单独的放电电阻器。

图4描绘了根据本公开示例性实施例的方法300的流程图。该方法300可以例如使用图中描绘的超级电容器组件得以实现。出于说明和讨论的目的,图4描绘了以特定顺序执行的步骤。使用本文提供的公开内容的本领域普通技术人员将理解的是,本文所描述的任何方法的各个步骤可以在不偏离本公开的范围的情况下,以各种方式被省略、被重新排列、被同时执行、被扩展、被修改和/或被改编。

在(302)中,方法300可以包括控制第一开关器件的运行,以经由第一母线排将一个或多个超级电容器耦合到放电电阻器。例如,控制第一开关器件的运行可以包括:提供与经由第一母线排将超级电容器耦合到放电电阻器相关联的一个或多个控制信号。

在(304)中,方法300可以包括:控制第二开关器件的运行,以经由与第一母线排间隔开的第二母线排将一个或多个超级电容器耦合到放电电阻器。例如,控制第二开关器件的运行可以包括:提供与经由第二母线排将超级电容器耦合到放电电阻器相关联的一个或多个控制信号。在一些实施方式中,经由第二母线排耦合到放电电阻器的超级电容器可以与在(302)中经由第一母线排耦合到放电电阻器的超级电容器相同。在替代实施方式中,经由第二母线排耦合到放电电阻器的超级电容器可以与经由第一母线排耦合到放电电阻器的超级电容器不同。在这类实施方式中,两个不同的超级电容器(例如,第一超级电容器、第二超级电容器)可以以串联方式彼此耦合。以这种方式,该两个超级电容器均可以耦合到放电电阻器。

在(306)中,方法300可以包括:当一个或多个超级电容器经由第一母线排和第二母线排耦合到放电电阻器时,向放电电阻器提供来自该一个或多个超级电容器的电流。在一些实施方式中,多个超级电容器可以以串联配置彼此耦合。在这样的实施方式中,一次可以有多个超级电容器耦合到放电电阻器。以这种方式,经由第一母线排和第二母线排耦合到放电电阻器的每个超级电容器可以向放电电阻器提供电流。这样,可以一次平衡多个超级电容器(例如,使多个超级电容器放电),而不需要用于每个超级电容器的单独的放电电阻器。

现在参考图5,根据本公开示例性实施例提供了超级电容器组件400中的多个部件的空间布置。如图所示,超级电容器组件400可以包括以上参考图1讨论的多个超级电容器110。另外,超级电容器组件400可以包括第一母线排120和第二母线排130。如图所示,第二母线排130可以沿着超级电容器组件400的轴向方向A与第一母线排120间隔开。更具体地,第二母线排130可以沿着轴向方向A与第一母线排120间隔开,以使得多个超级电容器110沿着轴向方向A位于第一母线排120和第二母线排130之间。在一些实施方式中,多个超级电容器100可以沿着超级电容器组件400的径向方向R彼此间隔开。

超级电容器组件400可以包括以上参考图1讨论的放电电阻器140。如图所示,放电电阻器140可以耦合在第一母线排120和第二母线排130之间。以这种方式,放电电阻器140能够像多个超级电容器110一样沿着轴向方向A位于第一母线排120和第二母线排130之间。

超级电容器组件400可以包括以上参考图1至图3讨论的第一多个150开关器件152和第二多个160开关器件162。如图所示,第一多个150的每个开关器件152可以耦合在第一母线排120和多个超级电容器110中的对应的超级电容器之间。以这种方式,第一多个150的每个开关器件152可以沿轴向方向A位于第一母线排120和多个超级电容器110之间。此外,第二多个160的每个开关器件162可以耦合在第二母线排130和多个超级电容器110中的对应的超级电容器之间。以这种方式,第二多个160的每个开关器件162可以沿着轴向方向A位于第二母线排130和多个超级电容器110之间。

根据本公开的各示例性方面,通常可以在模块中采用多种不同的单独的超级电容器中的任何超级电容器。然而,在一些实施例中,超级电容器包含电极组件,以及包含在外壳内并且可选地气密密封在该外壳内的电解质。电极组件可以,例如,包含第一电极和第二电极,该第一电极包含与第一集电器电耦合的第一碳质涂层(例如,活性炭颗粒),该第二电极包含与第二集电器电耦合的第二碳质涂层(例如,活性炭颗粒)。应当理解的是,如果需要,也可以采用附加的集电器,特别是如果超级电容器包括多个能量存储单元时。集电器可以由相同或不同的材料形成。无论如何,每个集电器通常由包括导电金属的衬底形成,导电金属诸如铝、不锈钢、镍、银、钯等以及它们的合金。铝和铝合金特别适用于本公开。衬底可以是箔、片、板、网等形式。衬底也可以具有相对小的厚度,该厚度例如为大约200微米或更小;在一些实施例中,该厚度为大约1微米至大约100微米,在一些实施例中,该厚度为大约5微米至大约80微米;并且在一些实施例中,该厚度为大约10微米至大约50微米。尽管不是必需的,但可以可选地使衬底的表面粗糙化,诸如通过冲刷、蚀刻、喷砂等使衬底的表面粗糙化。

在一些实施例中,第一集电器和第二集电器中的至少一者,优选地两者,也可以包含从衬底向外突出的多个纤维状晶须。并不旨在受到理论的限制,据信这些晶须可以有效地增加集电器的表面积,并且还可以改善集电器到对应的电极的粘附。这可以允许在第一电极和/或第二电极中使用相对低含量的粘合剂,其可以改善电荷转移并且降低界面电阻,并且因此产生非常低的ESR值。晶须通常由包含碳和/或碳与导电金属的反应产物的材料形成。在一实施例中,例如,该材料可以包含导电金属的碳化物,诸如碳化铝(Al

在衬底上形成这种晶须的方式可以根据需要而变化。在一个实施例中,例如,衬底的导电金属与烃类化合物反应。这种烃类化合物的示例可以包括例如,诸如甲烷、乙烷、丙烷、正丁烷、异丁烷、戊烷等链烷烃类化合物,诸如乙烯、丙烯、丁烯、丁二烯等烯烃类化合物,诸如乙炔等炔烃类化合物,以及任何前述烃类化合物的衍生物或组合物。通常期望烃类化合物在反应期间处于气态形式。因此,可能期望采用诸如甲烷、乙烷和丙烷等加热时处于气态形式的烃类化合物。尽管不是必需的,但是基于100重量份的衬底,通常使用在大约0.1重量份至大约50重量份的范围内的烃类化合物,并且在一些实施例中,使用在大约0.5重量份至大约30重量份的范围内的烃类化合物。为了引发烃和导电金属的反应,通常在温度为大约300℃的或更高的气氛中加热衬底;在一些实施例中,在温度为大约400℃或更高的气氛中加热衬底;并且在一些实施例中,在温度为大约500℃至大约650℃的气氛中加热衬底。加热时间取决于所选择的确切温度,但通常在大约1小时至大约100小时的范围内。该气氛通常包含相对少量的氧,以最小化电介质膜在衬底的表面上的形成。例如,该气氛的氧含量可以是大约1%体积或更少。

第一碳质涂层和第二碳质涂层也分别电耦合到第一集电器和第二集电器。尽管它们可以由相同或不同类型的材料形成,并且可以包含一个或多个层,但是每个碳质涂层通常包含至少一个包括活化颗粒的层。在某些实施例中,例如,活性炭层可以直接位于集电器上方,并且可以可选地是碳质涂层的唯一层。适合的活性炭颗粒的示例可以包括例如椰壳基活性炭、石油焦基活性炭、沥青基活性炭、聚偏二氯乙烯基活性炭、酚醛树脂基活性炭、聚丙烯腈基活性炭和来自诸如煤、木炭或其它天然有机源等天然源的活性炭。

在某些实施例中,可能希望选择性地控制活性炭颗粒的某些方面,例如它们的粒度分布、表面积和孔径分布,以帮助改善某些类型的电解质在经历一个或多个充电-放电循环之后的离子迁移率。例如,至少50%体积的颗粒(D50尺寸)可以具有位于大约0.01微米至大约30微米的范围内的尺寸;在一些实施例中,至少50%体积的颗粒(D50尺寸)可以具有位于大约0.1微米至大约20微米的范围内的尺寸;并且在一些实施例中,至少50%体积的颗粒(D50尺寸)可以具有位于大约0.5微米至大约10微米的范围内的尺寸。至少90%体积的颗粒(D90尺寸)同理可以具有位于大约2微米至大约40微米的范围内的尺寸;在一些实施例中,至少90%体积的颗粒(D90尺寸)可以具有位于大约5微米至大约30微米的范围内的尺寸;并且在一些实施例中,至少90%体积的颗粒(D90尺寸)可以具有位于大约6微米至大约15微米的范围内的尺寸。BET比表面积的范围也可以为大约900m

活性炭颗粒除了具有某种尺寸和表面积之外,还可以包含具有某种尺寸分布的孔隙。例如,尺寸小于大约2纳米的孔隙(即,“微孔”)的量可以提供孔隙总体积的大约50%体积或更少的体积;在一些实施例中,尺寸小于大约2纳米的孔隙(即,“微孔”)的量可以提供孔隙总体积的大约30%体积或更少的体积;并且在一些实施例中,尺寸小于大约2纳米的孔隙(即,“微孔”)的量可以提供孔隙总体积的0.1%体积至15%体积。尺寸在大约2纳米至大约50纳米之间的孔隙(即“中孔”)的量同理可以为大约20%体积至大约80%体积;在一些实施例中,尺寸在大约2纳米至大约50纳米之间的孔隙(即“中孔”)的量为大约25%体积至大约75%体积;并且在一些实施例中,尺寸在大约2纳米至大约50纳米之间的孔隙(即“中孔”)的量为大约35%体积至大约65%体积。最后,尺寸大于大约50纳米的孔隙(即“大孔”)的量可以为大约1%体积至大约50%体积;在一些实施例中,尺寸大于大约50纳米的孔隙(即“大孔”)的量可以为大约5%体积至大约40%体积;并且在一些实施例中,尺寸大于大约50纳米的孔隙(即“大孔”)的量可以为大约10%体积至大约35%体积。炭颗粒的孔隙总体积可以在大约0.2cm

如果需要,对于在第一碳质涂层和/或第二碳质涂层中的每100份碳,粘合剂可以以大约60份或更少的量存在;在一些实施例中,粘合剂可以以40份或更少的量存在;并且在一些实施例中,粘合剂可以以大约1份至大约25份的量存在。粘合剂可以例如,占碳质涂层总重量的约15%重量或更少;在一些实施例中,粘合剂占碳质涂层总重量的大约10%重量或更少;并且在一些实施例中,粘合剂占碳质涂层总重量的大约0.5%重量至大约5%重量。多种适用的粘合剂中的任何粘合剂可以用于电极中。例如,在某些实施例中,可以采用水不溶性有机粘合剂,例如苯乙烯-丁二烯共聚物、聚醋酸乙烯酯均聚物、醋酸乙烯酯乙烯共聚物、醋酸乙烯酯丙烯酸共聚物、乙烯-氯乙烯共聚物、乙烯-氯乙烯-醋酸乙烯酯三元共聚物、丙烯酸聚氯乙烯聚合物、丙烯酸聚合物、腈聚合物、诸如聚四氟乙烯或聚偏二氟乙烯等含氟聚合物、聚烯烃等,以及它们的混合物。也可以采用诸如多糖及其衍生物等水溶性有机粘合剂。在一个特定实施例中,该多糖可以是非离子纤维素醚,例如烷基纤维素醚(例如甲基纤维素和乙基纤维素),羟烷基纤维素醚(例如,羟乙基纤维素、羟丙基纤维素、羟丙基羟丁基纤维素、羟乙基羟丙基纤维素、羟乙基羟丁基纤维素、羟乙基羟丙基羟丁基纤维素等),烷基羟烷基纤维素醚(例如甲基羟乙基纤维素、甲基羟丙基纤维素、乙基羟乙基纤维素、乙基羟丙基纤维素、甲基乙基羟乙基纤维素和甲基乙基羟丙基纤维素),羧烷基纤维素醚(例如羧甲基纤维素)等等,以及诸如羧甲基纤维素钠等前述任何非离子纤维素醚的质子化盐。

在第一碳质涂层和/或第二碳质涂层的活性炭层内、和/或在第一碳质涂层和/或第二碳质涂层的其它层内也可以采用其它材料。例如,在某些实施例中,可以采用导电助剂以进一步增加电导率。示例性的导电助剂可以包括例如,炭黑、石墨(天然的或人造的)、石墨、碳纳米管、纳米线或纳米管、金属纤维、石墨烯等,以及它们的混合物。炭黑是特别适用的。当采用导电助剂时,对于碳质涂层中的每100份活性炭颗粒,导电助剂通常占大约60份或更少;在一些实施例中,导电助剂占40份或更少;并且在一些实施例中,导电助剂占大约1份至大约25份。导电助剂可以例如占碳质涂层总重量的大约15%重量或更少;在一些实施例中,导电助剂可以占碳质涂层总重量的大约10%重量或更少;并且在一些实施例中,导电助剂可以占碳质涂层总重量的大约0.5%重量至大约5%重量。相应地,活性炭颗粒通常占碳质涂层的85%重量或更多;在一些实施例中,活性炭颗粒占碳质涂层的大约90%重量或更多;并且在一些实施例中,活性炭颗粒占碳质涂层的大约95%重量至大约99.5%重量。

将碳质涂层施加到集电器的特定方式可以变化,例如印刷(例如,轮转凹版印刷)、喷涂、槽模涂覆、滴涂、浸涂等。无论施加该碳质涂层的方式如何,通常使所获得的电极干燥以从涂层中除去水分,例如,在大约100℃或更高的温度下从涂层中除去水分;在一些实施例中,在大约200℃或更高的温度下从涂层中除去水分;并且在一些实施例中,在大约300℃至大约500℃的温度下从涂层中除去水分。也可以压缩(例如砑光(calender))电极以优化超级电容器的体积效率。在任意可选的压缩之后,每个碳质涂层的厚度通常可以基于所期望的超级电容器的电性能和工作范围而变化。然而,通常,涂层的厚度为大约20微米至大约200微米,30微米至大约150微米,并且在一些实施例中,涂层的厚度为大约40微米至大约100微米。涂层可以存在于集电器的一侧或两侧。无论如何,整个电极(包括集电器和可选的压缩之后的一个或多个碳质涂层)的厚度通常在大约20微米至大约350微米的范围内;在一些实施例中,整个电极(包括集电器和可选的压缩之后的一个或多个碳质涂层)的厚度在大约30微米至大约300微米的范围内;并且在一些实施例中,整个电极(包括集电器和可选的压缩之后的一个或多个碳质涂层)的厚度在大约50微米至大约250微米的范围内。

电极组件通常还包含位于第一电极和第二电极之间的隔板。如果需要,在电极组件中也可以采用其它隔板。例如,一个或多个隔板可以位于第一电极上方、位于第二电极上方或位于第一电极和第二电极两者上方。隔板能够使一个电极与另一个电极电绝缘,以有助于防止电短路,但仍然允许离子在两个电极之间传输。在某些实施例中,例如,可以采用包括纤维素纤维材料(例如,无尘纸网、湿法纸网等)、非织造纤维材料(例如,聚烯烃非织造网)、织造织物、膜(例如,聚烯烃膜)等的隔板。纤维素纤维材料特别适用于超级电容器,例如包含天然纤维、合成纤维等的那些纤维素纤维材料。用于隔板的适用的纤维素纤维的具体示例可以包括例如阔叶木浆纤维、针叶木浆纤维、人造丝纤维、再生纤维素纤维等。无论采用何种特定材料,隔板通常具有大约5微米至大约150微米的厚度;在一些实施例中,隔板具有大约10微米至大约100微米的厚度;并且在一些实施例中,隔板具有大约20微米至大约80微米的厚度。

将电极组件中的部件组合在一起的方式可以变化。例如,电极和隔板最初可以以折叠、卷绕、堆叠或以其它方式接触在一起,从而形成电极组件。在一特定实施例中,电极、隔板和可选的电解质可以卷绕成具有“果冻卷”构造的电极组件。

为了形成超级电容器,在电极和隔板组合在一起以形成电极组件之前、期间和/或之后,将电解质放置成与第一电极和第二电极离子接触。通常,电解质本质上是非水性的,因此,电解质含有至少一种非水性溶剂。为了帮助扩展超级电容器的工作温度范围,通常期望非水溶剂具有相对高的沸腾温度,例如该沸腾温度为大约150℃或更高;在一些实施例中,该沸腾温度为大约200℃或更高;并且在一些实施例中,该沸腾温度为大约220℃至约300℃。例如,特别适用的高沸点溶剂可以包括,诸如碳酸乙烯酯、碳酸丙烯酯、碳酸丁烯酯、碳酸亚乙烯酯等的环状碳酸酯溶剂。当然,其它非水性溶剂也可以被单独采用,或者与环状碳酸酯溶剂组合而被采用。这类溶剂的示例可以包括,例如,开链碳酸酯(例如,碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯等)、脂肪族单羧酸酯(例如,乙酸甲酯、丙酸甲酯等)、内酯溶剂(例如,丁内酯戊内酯等)、腈类(例如,乙腈、戊二腈、己二腈、甲氧基乙腈、3-甲氧基丙腈等)、酰胺(例如,N,N-二甲基甲酰胺、N,N-二乙基乙酰胺、N-甲基吡咯烷酮)、烷烃(例如,硝基甲烷、硝基乙烷等)、含硫化合物(例如,环丁砜、二甲基亚砜等)等等。

电解质也可以包含至少一种溶解在非水性溶剂中的离子液体。尽管离子液体的浓度可以变化,但是通常期望离子液体以相对高的浓度存在。例如,对于每升电解质,离子液体可以以大约0.8摩尔(M)或更多的量存在;在一些实施例中,离子液体以大约1.0M或更多的量存在;在一些实施例中,离子液体以大约1.2M或更多的量存在;并且在一些实施例中,离子液体以大约1.3M至约1.8M的量存在。

离子液体通常是具有相对低的熔融温度的盐,该熔融温度诸如大约400℃或更低等;在一些实施例中,该熔融温度为大约350℃或更低;在一些实施例中,该熔融温度为大约1℃至大约100℃;并且在一些实施例中,该熔融温度为大约5℃至大约50℃。该盐包含阳离子物种(cationic species)和抗衡离子。阳离子物种包含具有至少一个杂原子(例如氮或磷)以作为“阳离子中心”的化合物。例如,这类杂原子化合物的示例包括,未取代或取代的有机季铵化合物,例如,铵(例如,三甲基铵、四乙基铵等)、吡啶鎓、哒嗪鎓、嘧啶鎓(pyramidinium)、吡嗪鎓、咪唑鎓、吡唑鎓、恶唑鎓、三唑鎓、噻唑鎓、喹啉鎓、哌啶鎓、吡咯烷鎓、季铵螺环化合物(在该季铵螺环化合物中两个或更多个环通过螺原子(例如,碳、杂原子等)连接在一起)、季铵稠合环结构(例如,喹啉鎓、异喹啉鎓等)等等。例如,在一个特定实施例中,阳离子物种可以是N-螺双环化合物,例如,具有循环环的对称或非对称的N-螺双环化合物。这种化合物的一个示例具有以下结构:

其中,m和n独立地为3至7之间的数,并且在一些实施例中,m和n独立地为4至5之间的数(例如,吡咯烷鎓或哌啶鎓)。

同样地,阳离子物种的合适抗衡离子可以包括卤素(例如氯离子、溴离子、碘离子等);硫酸根或磺酸根(例如,甲基硫酸根、乙基硫酸根、丁基硫酸根、己基硫酸根、辛基硫酸根、硫酸氢根、甲烷磺酸根、十二烷基苯磺酸根、十二烷基硫酸根、三氟甲烷磺酸根、十七氟辛烷磺酸根、十二烷基乙氧基硫酸钠等);磺基琥珀酸根;酰胺(例如,二氰胺);酰亚胺(例如,双(五氟乙基磺酰基)酰亚胺、双(三氟甲基磺酰基)酰亚胺、双(三氟甲基)酰亚胺等);硼酸根(例如四氟硼酸根、四氰基硼酸根、双[草酸]硼酸根、双[水杨酸]硼酸根等);磷酸根或次膦酸根(例如,六氟磷酸根、二乙基磷酸根、双(五氟乙基)次膦酸根、三(五氟乙基)-三氟磷酸根、三(九氟丁基)三氟磷酸根等);锑酸根(例如,六氟锑酸根);铝酸根(例如,四氯铝酸根);脂肪酸羧酸根(例如,油酸根、异硬脂酸根、十五氟辛酸根等);氰酸根;醋酸根;诸如此类,以及任何前述物质的组合。

适用的离子液体的几个示例可以包括例如螺环-(1,1')-联吡咯烷四氟硼酸鎓、三乙基甲基铵四氟硼酸铵(triethylmethyl ammonium tetrafluoroborate)、四乙基四氟硼酸铵、螺环-(1,1')-联吡咯烷鎓、甲基三乙基碘化铵、四乙基碘化铵、三乙基甲基铵四氟硼酸铵(methyltriethylammonium tetrafluoroborate)、四丁基四氟硼酸铵、四乙基六氟磷酸铵等。

如上所述,超级电容器还包含外壳,电极组件和电解质容纳在该外壳内并可选地气密密封在该外壳内。外壳的性质可以根据需要而改变。例如,在一个实施例中,外壳可以包含金属容器(“罐”),例如由钽、铌、铝、镍、铪、钛、铜、银、钢(例如,不锈钢)、它们的合金、它们的复合物(例如,涂覆有导电氧化物的金属)等等形成的那些金属容器。铝特别适用于本公开。金属容器可以具有多种不同形状中的任何一种形状,例如圆柱形、D形等。圆柱形的容器是特别适用的。

例如,在另一实施例中,外壳可以是包围超级电容器中的部件的柔性封装的形式。该封装通常包括在两个端部之间延伸并且具有边缘的衬底,其中,端部、以及两个侧面的重叠部分固定地且密封地彼此邻接(例如,通过热焊接)。以这种方式,电解质可以容纳在该封装内。衬底的厚度通常在大约20微米至大约1000微米的范围内;在一些实施例中,衬底的厚度在大约50微米至大约800微米的范围内;并且在一些实施例中,衬底的厚度在大约100微米至大约600微米的范围内。

衬底可以包含任何数量的实现所期望的阻隔性能水平所需的层,例如,衬底包含1层或更多层;在一些实施例中,衬底包含2层或更多层;并且在一些实施例中,衬底包含2层至4层。通常,衬底包含阻挡层,该阻挡层可以包括诸如铝、镍、钽、钛、不锈钢等金属。电解质通常不能渗透这种阻挡层,从而可以抑制电解质的泄漏,并且水和其它污染物通常也不能渗透这种阻挡层。如果需要,衬底也可以包含用作该封装的保护层的外层。以这种方式,阻挡层位于外层和电极组件之间。外层可以例如由聚合物膜形成,例如由聚烯烃(例如,乙烯共聚物、丙烯共聚物、丙烯均聚物等)、聚酯等形成的那些聚合物膜。特别适用的聚酯膜可以包括例如,聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯等。

如果需要,该衬底还可以包含位于电极组件和阻挡层之间的内层。在某些实施例中,内层可以包含可热封的聚合物。适用的可热密封聚合物可以包括例如氯乙烯聚合物、氯胺乙烯聚合物、离聚物等,以及它们的组合。离聚物是特别适用的。例如,在一个实施例中,离聚物可以是包含α-烯烃和(甲基)丙烯酸重复单元的共聚物。具体的α-烯烃可以包括乙烯、丙烯、1-丁烯;3-甲基-1-丁烯;3,3-二甲基-1-丁烯;1-戊烯;具有一个或多个甲基、乙基或丙基取代基的1-戊烯;具有一个或多个甲基、乙基或丙基取代基的1-己烯;具有一个或多个甲基、乙基或丙基取代基的1-庚烯;具有一个或多个甲基、乙基或丙基取代基的1-辛烯;具有一个或多个甲基、乙基或丙基取代基的1-壬烯;乙基、甲基或二甲基取代的1-癸烯;1-十二烯;和苯乙烯。乙烯是特别适用的。如上所述,共聚物还可以是(甲基)丙烯酸重复单元。如本文所使用的,术语“(甲基)丙烯酸类”包括丙烯酸类和甲基丙烯酸类的单体,以及它们的盐或酯,例如,丙烯酸酯和甲基丙烯酸酯的单体。这种(甲基)丙烯酸类单体的示例可以包括丙烯酸甲酯、丙烯酸乙酯、丙烯酸正丙酯、丙烯酸异丙酯、丙烯酸正丁酯、丙烯酸仲丁酯、丙烯酸异丁酯、丙烯酸叔丁酯、丙烯酸正戊酯、丙烯酸异戊酯、丙烯酸异冰片酯、丙烯酸正己酯、丙烯酸2-乙基丁酯、丙烯酸2-乙基己酯、丙烯酸正辛酯、丙烯酸正癸酯、丙烯酸甲基环己酯、丙烯酸环戊酯、丙烯酸环己酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸2-羟乙酯、甲基丙烯酸正丙酯、甲基丙烯酸正丁酯、甲基丙烯酸异丙酯、甲基丙烯酸异丁酯、甲基丙烯酸正戊酯、甲基丙烯酸正己酯、甲基丙烯酸戊酯、甲基丙烯酸仲丁酯、甲基丙烯酸叔丁酯、甲基丙烯酸2-乙基丁酯、甲基丙烯酸甲基环己酯、甲基丙烯酸肉桂酯、甲基丙烯酸巴豆酯、甲基丙烯酸环己酯、甲基丙烯酸环戊酯、甲基丙烯酸2-乙氧基乙酯、甲基丙烯酸异冰片酯等,以及它们的组合。通常,α-烯烃/(甲基)丙烯酸共聚物至少部分地被金属离子中和以形成离聚物。适用的金属离子可以包括例如碱金属(例如锂、钠、钾等)、碱土金属(例如钙、镁等)、过渡金属(例如锰、锌等)等,以及它们的组合。可以由诸如金属甲酸盐、乙酸盐、硝酸盐、碳酸盐、碳酸氢盐、氧化物、氢氧化物、醇盐等离子化合物提供金属离子。

在模块内,超级电容器连接的方式可以变化。例如,超级电容器可以使用附接到或连接到超级电容器的各个端子的互连件来连接。互连件可以由诸如导电金属等导电材料制成。在一实施例中,互连件可以是相对平坦的,或者可以是具有增加的表面积的互连件。关于后者,互连件可以具有突出部/突起部,或者也可由线材、编织物、线圈等形成。在这点上,互连件的具体尺寸和配置不必受限。无论互连件的形式如何,可以采用诸如铜、锡、镍、铝等以及合金和/或涂覆的金属等多种不同的导电材料中的任意导电材料。如果需要,可以可选地使用护套材料使导电材料绝缘。

根据所期望的特定特性,超级电容器可以串联或并联地电连接在一起。例如,在一个特定实施例中,超级电容器可以串联地电连接,使得一个超级电容器的某个极性(例如,正极)的端子连接到另一个超级电容器的相反极性(例如,负极)的端子。例如,正极端子可以从第一超级电容器的顶部延伸出,负极端子可以从第二超级电容器的底部延伸出。

超级电容器和包含它们的模块可以被采用以存储大量的电荷。因此,本公开的模块和超级电容器可以被用于多种应用中。例如,它们可以用于多种能源应用,该多种能源应用包括但不限于风力涡轮机、太阳能电池板和燃料电池。此外,它们还可以用于多种运输应用,该多种运输应用包括但不限于车辆(例如,电池推进的电动车辆、包括公共汽车的混合电动车辆、发动机起动、能量和制动回收系统等)、火车和有轨电车(例如,磁悬浮火车、轨道切换、起动器系统等)以及航空航天(例如,用于门的致动器、疏散滑梯等)。它们还具有多种工业应用,该多种工业应用包括自动化(例如,机器人等)、车辆(例如,叉车、起重机、电动推车等)。它们还在消费类电子产品(例如,便携式媒体播放器、手持式设备、全球定位系统(GPS)、数码相机等)、计算机(例如,膝上型计算机、个人数字助理(PDAs)等)和通信系统中具有多种应用。这些模块和超级电容器还可以具有多种军事应用(例如,坦克和潜艇的电机启动、相控阵雷达天线、激光电源、无线电通信、航空电子显示和仪表、GPS制导等)和多种医疗应用(例如,除颤器等)。

在不脱离本发明的精神和范围的情况下,本领域的普通技术人员可以实践本发明的这些和其它修改和变型。另外,应当理解的是,各种实施例的各方面可以整体或部分地互换。此外,本领域的普通技术人员将理解的是,前述描述仅是示例性的,并不旨在对在所附权利要求中进一步描述的本发明进行限制。

相关技术
  • 用于超级电容器的电极组件
  • 电容器组件及制造该电容器组件的方法
  • 超级电容器组件、超级电容器及其制备方法
  • 一种超级电容器外壳、超级电容器及超级电容器模组
技术分类

06120115607579