掌桥专利:专业的专利平台
掌桥专利
首页

一种声学发射源定位方法及系统

文献发布时间:2023-06-19 11:08:20


一种声学发射源定位方法及系统

技术领域

本发明涉及声学定位技术领域,尤其涉及一种声学发射源定位方法及系统。

背景技术

结构完整性直接关系到整个设备或建筑的可靠性和安全性,在结构损伤演变的过程中常伴随着声发射的物理过程,及时捕捉到声发射现象,通过分析声发射信号的规律和特征可以准确实现结构体的损伤识别与定位。因此,实现对工程结构健康实时监测和分析,特别是针对不同场景中依据声学分析来快速且精准定位损伤位置显得尤为重要。在工程结构中,通过对物体结构产生的声发射现象分析从而达到结构健康监测目的的方式,广泛应用于机械、土木、航空、航天、电力、资源运输等行业。

传统的基于声学现象采集和分析的损伤定位方法有激励接收衰减法、信号单差值分析法、仿真模型分析法等。这些方法可以实现对结构体损伤及其他声发射源位置大致范围的确定,但是这些方法大多对工程结构体损伤及其他声学发射源的定位精度较差。

发明内容

有鉴于此,有必要提供一种声学发射源定位方法及系统,用以解决现有技术中对声学发射源的定位精度较差的问题。

本发明提供了一种声学发射源定位方法,包括以下步骤:

在待测结构体不同位置上设置若干声学信号接收点,获取声学信号在两两不同声学信号接收点之间的时差值及在不同声学信号接收点对应的首波幅度,将所述时差值及首波幅度作为数据集;

根据所述数据集和声学发射源位置坐标对所述残差神经网络进行训练,获取所述时差值、首波幅度与声学发射源位置坐标的对应关系;

重新获取声学信号在两两不同声学信号接收点之间时差值及在不同声学信号接收点对应的首波幅度,根据所述对应关系,获取声学发射源坐标。

进一步地,获取声学信号在两两不同声学信号接收点之间的时差值,具体包括:

通过所述若干声学信号接收点分别接收声学发射源发射的信号,在所述若干声学信号接收点处分别获取对应的信号起始点,根据所述信号起始点,获取声学信号在两两不同声学信号接收点之间的时差值。

进一步地,在所述若干声学信号接收点处分别获取对应的信号起始点,具体包括:

对所述接收的声学发射源发射的信号转换为电信号,并进行带通滤波及采集,获取声学发射源发射的信号对应的电信号,获取所述电信号在一段时间内的瞬时相位,以瞬时相位为-π时的信号点作为信号起始点。

进一步地,获取声学信号在不同声学信号接收点对应的首波幅度,具体包括:在所述电信号中获取第一个超过设定幅度阈值的点和在此之后第一个低于设定幅度阈值的点,对两个点之间的信号进行峰值比较,以最大值为首波幅度,以此获取声学信号在不同声学信号接收点对应的首波幅度。

进一步地,获取声学信号在不同声学信号接收点对应的首波幅度,具体包括:以所述信号起始点为监测信号的起点,当信号的瞬时相位变为零时,则以其对应的幅度,作为首波幅度,以此获取声学信号在不同声学信号接收点对应的首波幅度。

进一步地,获取声学信号在不同声学信号接收点对应的首波幅度,具体包括:

在所述电信号中获取第一个超过设定幅度阈值的点和在此之后第一个低于设定幅度阈值的点,对两个点之间的信号进行峰值比较,以最大值为首波幅度,以此获取声学信号在不同声学信号接收点对应的第一首波幅度

进一步地,根据

进一步地,所述声学发射源定位方法还包括,若

进一步地,根据所述数据集和声学发射源位置坐标对所述残差神经网络进行训练,具体包括:将所述数据集和声学发射源位置坐标分别作为残差神经网络的输入量和标签量,对所述残差神经网络进行训练。

本发明还提供了一种声学发射源定位系统,包括信号数据集获取模块、关系获取模块及声学发射源坐标获取模块;

所述信号数据集获取模块,用于在待测结构体不同位置上设置若干声学信号接收点,获取声学信号在两两不同声学信号接收点之间的时差值及在不同声学信号接收点对应的首波幅度,将所述时差值及首波幅度作为数据集;

所述关系获取模块,用于根据所述数据集和声学发射源位置坐标对所述残差神经网络进行训练,获取所述时差值、首波幅度与声学发射源位置坐标的对应关系;

所述声学发射源坐标获取模块,用于重新获取声学信号在两两不同声学信号接收点之间时差值及在不同声学信号接收点对应的首波幅度,根据所述对应关系,获取声学发射源坐标

与现有技术相比,本发明的有益效果包括:通过在待测结构体不同位置上设置若干声学信号接收点,获取声学信号在两两不同声学信号接收点之间的时差值及在不同声学信号接收点对应的首波幅度,将所述时差值及首波幅度作为数据集;根据所述数据集和声学发射源位置坐标对所述残差神经网络进行训练,获取所述时差值、首波幅度与声学发射源位置坐标的对应关系;重新获取声学信号在两两不同声学信号接收点之间时差值及在不同声学信号接收点对应的首波幅度,根据所述对应关系,获取声学发射源坐标,提高了对声学发射源的定位精度。

附图说明

图1为本发明提供的声学发射源定位方法的流程示意图;

图2为本发明提供的峰值确定示意图;

图3为本发明提供的残差神经网络训练流程图;

图4为本发明提供的基于钢板材料的声学激励定位实验示意图;

图5为本发明提供的不同材料对应的实验输出误差示意图;

图6为本发明提供的声学发射源定位系统的结构示意图。

具体实施方式

下面结合附图来具体描述本发明的优选实施例,其中,附图构成本申请一部分,并与本发明的实施例一起用于阐释本发明的原理,并非用于限定本发明的范围。

实施例1

本发明实施例提供了一种声学发射源定位方法,其流程示意图,如图1所示,所述方法包括以下步骤:

S1、在待测结构体不同位置上设置若干声学信号接收点,获取声学信号在两两不同声学信号接收点之间的时差值及在不同声学信号接收点对应的首波幅度,将所述时差值及首波幅度作为数据集;

S2、根据所述数据集和声学发射源位置坐标对所述残差神经网络进行训练,获取所述时差值、首波幅度与声学发射源位置坐标的对应关系;

S3、重新获取声学信号在两两不同声学信号接收点之间时差值及在不同声学信号接收点对应的首波幅度,根据所述对应关系,获取声学发射源坐标。

一个具体实施例中,将若干个(优选为4个)具有应力波接受和电信号转换能力的传感器(即为声学信号接收点)放置于钢制结构待测范围边缘不同位置并固定,通过激励装置冲击钢制结构,模拟监测过程中结构体随时可能发生的结构损伤或变化过程伴随产生的应力波,将传感器转换的电信号通过带通滤波电路,得到初步处理后的电信号;通过模数转换模块实时采集初步处理后电信号,激励装置逐次放置于不同位点冲击,并记录放置坐标C

优选的,获取声学信号在两两不同声学信号接收点之间的时差值,具体包括:

通过所述若干声学信号接收点分别接收声学发射源发射的信号,在所述若干声学信号接收点处分别获取对应的信号起始点,根据所述信号起始点,获取声学信号在两两不同声学信号接收点之间的时差值。

优选的,在所述若干声学信号接收点处分别获取对应的信号起始点,具体包括:

对所述接收的声学发射源发射的信号转换为电信号,并进行带通滤波及采集,获取声学发射源发射的信号对应的电信号,获取所述电信号在一段时间内的瞬时相位,以瞬时相位为-π时的信号点作为信号起始点。

具体实施时,以4路传感器传输出的电信号作为数据集D

优选的,获取声学信号在不同声学信号接收点对应的首波幅度,具体包括:在所述电信号中获取第一个超过设定幅度阈值的点和在此之后第一个低于设定幅度阈值的点,对两个点之间的信号进行峰值比较,以最大值为首波幅度,以此获取声学信号在不同声学信号接收点对应的首波幅度。

一个具体实施例中,以一路信号为例,通过设置设定阈值(用于区别微小噪声信号),找到第一个超过该设定阈值的点和第一个低于该值的点,将两个点中间的数据进行峰值比较,最大值即位首波幅度

优选的,获取声学信号在不同声学信号接收点对应的首波幅度,具体包括:以所述信号起始点为监测信号的起点,当信号的瞬时相位变为零时,则以其对应的幅度,作为首波幅度,以此获取声学信号在不同声学信号接收点对应的首波幅度。

一个具体实施例中,通过瞬时相位确定首波对前方第一个相角为-π的点,以得到信号起始点,从信号起始点向后监测瞬时相位变化,当瞬时相位变化到零时,提取对应信号点的幅度为首波幅度

优选的,获取声学信号在不同声学信号接收点对应的首波幅度,具体包括:

在所述电信号中获取第一个超过设定幅度阈值的点和在此之后第一个低于设定幅度阈值的点,对两个点之间的信号进行峰值比较,以最大值为首波幅度,以此获取声学信号在不同声学信号接收点对应的第一首波幅度

一个具体实施例中,通过以上两种不同的方法求得一路信号第一首波幅度

优选的,根据

一个具体实施例中,对于首波幅度在小范围内变化较小的问题,利用传感器之间到时差作为另一个判断依据(以一路信号做解释),由于声学发射源到不同传感器直接距离不相同,在传播速度一定的条件下,计算出两两不同到时差值得到Q

优选的,所述声学发射源定位方法还包括,若

优选的,根据所述数据集和声学发射源位置坐标对所述残差神经网络进行训练,具体包括:将所述数据集和声学发射源位置坐标分别作为残差神经网络的输入量和标签量,对所述残差神经网络进行训练。

一个具体实施例中,将所述时差值及首波幅度作为数据集,将所述数据集和声学发射源位置坐标分别作为残差神经网络的输入量和标签量,通过残差神经网络的标签量分析输入量,训练得到输入量与输出量之间的拟合公式F

需要说明的是,可以更换不同材料的待测结构体,再通过采集和处理各待测结构体的声波信号,最后利用训练完成的残差神经网络(关系公式)得到声发射源映射坐标。

另一个具体实施例中,为了验证本发明实施例对结构体声发射现象监测和声源定位对的可靠性与准确性,设计了基于钢板材料的声学激励(发射源)定位实验,其示意图,如图4所示;待测钢板的尺寸为600mm*600mm*5mm,利用可控的震动激励装置模拟监测过程中,结构体随时可能发生的冲击损伤或结构损伤变化时产生的应力波,通过分别放置于结构待测范围边缘不同位置的4个传感器实时获取信号。将待测钢板划分坐标并对坐标点依次唯一编号(0-625),通过分析接收传感器获取不同激励位置的响应信号,并对响应信号采用本发明实施例的所述声学发射源定位方法,实现激励信号位置的准确定位。

不同材料对应的实验输出误差示意图,如图5所示,从图5中可以看出,更换相同尺寸不同材料后重复利用本发明实施例的所述声学发射源定位方法,所述声学发射源定位方法的结果和实验结果具有较好的一致性,结果表明利用神经网络对幅度和走时进行联合反演可以实现对声发射现象定位。要指出的是,通过更换不同材料的结构体,同时更换激励位置,进行多次实验,采用本发明实施例的所述声学发射源定位方法,可以得到不同材料下的首波到时和激励位置的映射模型,进而实现该材料结构的冲击损伤定位。

实施例2

本发明还提供了一种声学发射源定位系统,其结构示意图,如图6所示,所述系统包括信号数据集获取模块1、关系获取模块2及声学发射源坐标获取模块3;

所述信号数据集获取模块1,用于在待测结构体不同位置上设置若干声学信号接收点,获取声学信号在两两不同声学信号接收点之间的时差值及在不同声学信号接收点对应的首波幅度,将所述时差值及首波幅度作为数据集;

所述关系获取模块2,用于根据所述数据集和声学发射源位置坐标对所述残差神经网络进行训练,获取所述时差值、首波幅度与声学发射源位置坐标的对应关系;

所述声学发射源坐标获取模块3,用于重新获取声学信号在两两不同声学信号接收点之间时差值及在不同声学信号接收点对应的首波幅度,根据所述对应关系,获取声学发射源坐标。

本发明公开了一种声学发射源定位方法及系统,通过在待测结构体不同位置上设置若干声学信号接收点,获取声学信号在两两不同声学信号接收点之间的时差值及在不同声学信号接收点对应的首波幅度,将所述时差值及首波幅度作为数据集;根据所述数据集和声学发射源位置坐标对所述残差神经网络进行训练,获取所述时差值、首波幅度与声学发射源位置坐标的对应关系;重新获取声学信号在两两不同声学信号接收点之间时差值及在不同声学信号接收点对应的首波幅度,根据所述对应关系,获取声学发射源坐标,提高了对声学发射源的定位精度。

本发明技术方案通过神经网络对首波幅度差和到时差进行联合反演定位,只需要在待监测结构体中安装一套具有应力波接收和电信号转换能力的传感器作为应力波接收装置,将采集信号通过预处理算法得到精确的首波到时差,通过瞬时相位法分析法和阈值法得到更精确首波幅值差,同时利用神经网络训练得到首波幅值差和首波到时差与声发射位置的映射模型,可用于实现结构的损伤精准定位;相比已有的定位技术,该方法优点在于减少了监测对结构本身的影响和降低了声发射监测的成本,更为重要的是,通过神经网络将到时值映射于对应位置信息,大大减少了环境噪声对定位准确性的影响,在提高定位准确率的同时也大大提高了定位装置对监测场景的适应性,可以适用于不同材料的工程结构,为工程结构监测和干预,提供了可靠的解决思路。

以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

相关技术
  • 一种声学发射源定位方法及系统
  • 一种双编码板结合的放射源定位系统及定位方法
技术分类

06120112812636