掌桥专利:专业的专利平台
掌桥专利
首页

动力闭合构件致动系统

文献发布时间:2024-01-17 01:27:33


动力闭合构件致动系统

本申请是申请号为202080045276.5、申请日为2020年6月22日、名称为“动力闭合构件致动系统”的发明专利申请的分案申请。

相关申请的交叉引用

本PCT国际专利申请要求于2019年6月20日提交的美国临时申请第62/864,070号以及于2019年7月18日提交的美国临时申请第62/875,736号以及于2019年8月12日提交的美国临时申请第62/885,390号以及于2019年8月12日提交的美国临时申请第62/885,397号以及于2019年10月31日提交的美国临时申请第62/928,416号和于2019年9月11日提交的美国继续部分申请第16/567,156号的权益,所述美国继续部分申请第16/567,156号要求于2017年4月21日提交的美国实用新型申请第15/493,285号的权益,所述美国实用新型申请第15/493,285号要求于2016年4月25日提交的美国临时申请第62/327,317号和2017年2月17日提交的美国临时申请第62/460,152号的权益。上述申请的全部公开内容被视为本申请的公开内容的一部分,并在此通过引用并入。

技术领域

本公开内容总体上涉及用于机动车辆的闭合构件系统,并且更具体地涉及用于使闭合构件例如车门相对于车身在打开位置与关闭位置之间移动的动力闭合构件致动系统。

背景技术

该部分提供与本公开内容相关的背景信息,其不一定是现有技术。

机动车辆的闭合构件可以通过一个或更多个铰链安装至车身。例如,乘客门可以通过一个或更多个铰链定向并附接至车身,以绕大致垂直的枢转轴线摆动移动。在这种布置中,每个门铰链通常包括连接至乘客门的门铰链带、连接至车身的车身铰链带、以及布置成将门铰链带以可枢转的方式连接至车身铰链带并限定枢转轴线的枢转销。已认识到这种摆动乘客门(“摆动门”)具有以下问题:诸如例如,在车辆位于倾斜表面上并且由于门的不平衡重量而使摆动门打开得太远或者摆动关闭时。为了解决该问题,大多数乘客门具有某种类型的止动机构或检查机构,该止动机构或检查机构集成到门铰链中的用于通过将门确定地定位并保持处于除了完全打开位置以外的一个或更多个中间行程位置来抑制门的不受控的摆动移动的至少一个门铰链中。在一些高端车辆中,门铰链可以包括无限门检查机构,其允许门在任何期望的打开位置处被打开并保持检查。配备有具有无限门检查机构的门铰链的乘客门的一个优点在于:门可以被定位并保持处于避免与相邻车辆或结构接触的任何位置。

作为进一步的进步,已经开发出动力闭合构件致动系统。对于乘客门,与上述乘客门类似,动力闭合构件系统可以用于使乘客门围绕其枢转轴线在打开位置与关闭位置之间自动摆动,以在用户移动乘客门时辅助他或她、以及/或者使乘客门弹出或呈现给用户。典型地,动力闭合构件致动系统包括动力操作装置诸如例如电动马达和能够操作成用于将电动马达的旋转输出转换为可延伸构件的平移移动的旋转-线性转换装置。在许多装置中,电动马达和转换装置安装至乘客门,并且可延伸构件的远端固定地紧固至车身。Schuering等人的共同拥有的国际公开第WO2013/013313号中示出了用于乘客门的动力闭合构件致动系统的一个示例,该国际公开公开了旋转-线性转换装置的使用,该旋转-线性转换装置具有由电动马达旋转地驱动的外螺纹导螺杆和与该导螺杆啮合地接合的内螺纹驱动螺母,并且可延伸构件附接至内螺纹驱动螺母。因此,对导螺杆的旋转速度和旋转方向的控制导致对驱动螺母和可延伸构件的平移移动的速度和方向的控制,从而对乘客门在其打开位置与其关闭位置之间的摆动移动进行控制。

虽然这种动力闭合构件致动系统对于其预期目的符合要求地起作用,但一个公认的缺点涉及已知的动力闭合构件致动系统在宽范围的各种情况下的操作。例如,用户可能希望改变或定制动力闭合构件致动系统在不同情况下操作的方式。在动力闭合系统为门或其他闭合构件的移动提供帮助的情况下,用户还可能期望改变门或其他闭合构件移动的“感觉”。

此外,动力闭合构件致动系统的操作可能导致熟悉声音例如闭合构件关闭时的沉闷声的变化。用户可能对缺乏对用户的这种反馈的动力闭合构件致动系统的操作持怀疑态度。此外,动力闭合构件致动系统可能会因用户使用过大的速度或力砰击闭合构件而受到滥用。

由这种动力闭合构件致动系统移动的闭合构件通常还包括在闭合构件与车身之间(例如,围绕闭合构件的周边)的密封件,以帮助将车辆的内部与环境隔离。当闭合构件被操作时,密封件基于其弹性提供一些载荷,这些载荷会影响闭合构件的移动。例如,当关闭闭合构件时,动力闭合构件致动系统可能需要抵靠密封件工作;然而,密封载荷可以在闭合构件打开时帮助移动闭合构件。因此,摆动门移出主要位置和移出辅助位置(即,门打开)可能仅需要密封件的载荷即可移动。然而,随着密封件老化,所提供的载荷或弹性可能从新的或“绿色”密封件到车辆寿命结束波动,以及例如在不同的温度下波动。因此,密封载荷的可变性会不利地影响动力闭合构件致动系统的一致性能。

类似地,动力闭合构件致动系统中的其他部件的磨损和老化是可能的。例如,由于缺乏润滑(例如,铰链或动力操作装置齿轮系)而引起的摩擦增加或动力操作装置的电动马达的操作变化(例如,马达电刷磨损)也会不期望地影响动力闭合构件致动系统的性能。

尽管对动力闭合构件致动系统的设置可以由系统制造商预编程,但是在帮助用户在关闭位置与打开位置之间移动闭合构件和/或在关闭位置与打开位置之间自动移动闭合构件时,闭合构件被移动的速度在某些环境条件下以及对所有用户而言可能并不理想。更具体地,当外部温度是冷的和/或如果存在降水时,车辆的内部在闭合构件的移动期间暴露于这些自然环境。一种解决方案可以是普遍地增加施加至闭合构件的力和/或移动速度;然而,这样的调节可能不适合于所有环境条件以及/或者可能不是每个用户期望的。

鉴于上述情况,仍然需要开发替代动力闭合构件致动系统,所述动力闭合构件致动系统解决并克服与已知动力闭合构件致动系统相关联的限制和缺点并提供增加的便利性和增强的操作能力。

发明内容

本部分提供对本公开内容的总体概述,而不是对其全部范围或其全部特征、方面和目的的全面公开。

本公开内容的一方面是提供一种用于使车辆的闭合构件相对于车身在打开位置与关闭位置之间移动的动力闭合构件致动系统。动力闭合构件致动系统包括联接至闭合构件和车身的致动器,所述致动器被配置成使闭合构件相对于车身移动。动力闭合构件致动系统还包括用户移动传感器,所述用户移动传感器被配置成感测来自用户在闭合构件上的以移动闭合构件的运动输入。此外,动力闭合构件致动系统包括用户接口,所述用户接口被配置成检测用户接口输入以修改与闭合构件的移动相关联的至少一个存储的运动控制参数。另外,动力闭合构件致动系统包括与用户移动传感器、用户接口和致动器通信的控制器。控制器被配置成响应于检测到用户接口输入而修改至少一个存储的运动控制参数。控制器还被配置成检测运动输入,并且作为响应,使用至少一个存储的运动控制参数生成力命令。然后,控制器通过致动器接收力命令以改变作用在闭合构件上的致动器输出力以移动闭合构件来命令闭合构件的移动。

本公开内容的另一方面是提供一种用于基于用户偏好来控制车辆的动力闭合构件的移动的用户可修改系统。用户可修改系统包括用户接口,所述用户接口被配置成检测用户接口输入以修改与闭合构件的移动相关联的至少一个存储的运动控制参数。用户可修改系统还包括与用户接口通信的控制器。控制器被配置成在用户接口上呈现至少一个存储的运动控制参数。控制器还被配置成响应于检测到用户接口输入而修改至少一个存储的运动控制参数。此外,控制器被配置成使用至少一个存储的运动控制参数来生成运动命令和力命令之一以控制作用在闭合构件上的致动器输出力以移动闭合构件。

本公开内容的又一方面是提供一种基于用户偏好来控制闭合构件的移动的方法。该方法包括使用用户接口呈现与控制闭合构件的移动相关联的至少一个存储的运动控制参数的步骤。该方法继续以下步骤:响应于检测到使用用户接口的用户交互,修改至少一个存储的运动控制参数。该方法还包括以下步骤:使用至少一个存储的运动控制参数生成力命令和运动命令之一以控制致动器作用在闭合构件上以移动闭合构件。

本公开内容的又一方面是提供机动车辆的相对于车身可在打开位置与关闭位置之间移动的闭合构件。闭合构件包括联接至闭合构件和车身并且被配置成使闭合构件相对于车身移动的致动器。闭合构件还包括用户移动传感器,所述用户移动传感器被配置成感测来自用户在闭合构件上以移动闭合构件的运动输入。此外,闭合构件包括与用户移动传感器和致动器通信的控制器。控制器被配置成使用用户可修改的至少一个存储的运动控制参数来生成力命令。控制器还被配置成通过致动器接收力命令以改变作用在闭合构件上的致动器输出力以移动闭合构件来命令闭合构件的移动。

本公开内容的另一方面是提供一种用于动力闭合构件致动系统的电子控制系统,所述动力闭合构件致动系统用于使机动车辆的闭合构件相对于车身在打开位置与关闭位置之间移动。电子控制系统包括被配置成检测用户接口输入的用户接口。电子控制系统包括动力信号生成器,所述动力信号生成器被配置成生成脉冲宽度调制控制信号以致动动力闭合构件致动系统的致动器来移动闭合构件。此外,电子控制系统包括具有至少一个存储位置的存储器装置,所述存储器装置用于存储与控制闭合构件的移动相关联的至少一个存储的运动控制参数。电子控制系统还包括与用户接口、动力信号生成器和存储器装置通信的控制器。控制器被配置成接收用户接口输入以使用用户接口修改至少一个存储的运动控制参数。控制器还被配置成修改存储在存储器装置中的至少一个存储的运动控制参数。控制器另外被配置成使用至少一个存储的运动控制参数生成力命令和运动命令之一,以提供给动力信号生成器。

本公开内容的一方面是提供一种用于使车辆的闭合构件相对于车身在打开位置与关闭位置之间移动的动力闭合构件致动系统。动力闭合构件致动系统包括联接至闭合构件和车身的致动器,所述致动器被配置成使闭合构件相对于车身移动。该系统还包括用于确定闭合构件的位置和速度中的至少一个的闭合构件反馈传感器。该系统另外包括与闭合构件反馈传感器和致动器通信的控制器。控制器被配置成使用闭合构件反馈传感器来监测闭合构件的位置和速度中的至少一个。控制器还被配置成在闭合构件朝向打开位置和关闭位置之一移动时基于闭合构件的位置和速度中的至少一个来生成命令以减小闭合构件的速度。另外,控制器被配置成通过致动器接收命令以改变作用在闭合构件上的致动器输出力以移动闭合构件来控制闭合构件的移动。

根据一方面,控制器还被配置成:在减小闭合构件的速度以将马达返回到低于致动器的最大速度操作额定值之后,针对闭合构件的移动的一部分以恒定速度控制致动器对闭合构件的移动。

根据一方面,控制器还被配置成:在以恒定速度控制致动器对闭合构件的移动之后,针对闭合构件的移动的后续部分以减小的速度控制致动器对闭合构件的移动,以允许闭合构件以低于恒定速度的速度接近打开位置和关闭位置之一。

根据一方面,控制器还被配置成控制致动器以在接近期间降低闭合构件的速度但不超过闭合构件的最大预定减速速率。

根据一方面,闭合构件反馈传感器是加速度计。

根据一方面,加速度计定位在闭合构件上,与将闭合构件联接至车身的一对铰链相对。

根据一方面,加速度计被设置为闩锁的一部分。

本公开内容的另一方面是提供一种使用动力闭合构件致动系统基于闭合构件的位置和速度中的至少一个来控制车辆的闭合构件相对于车身在打开位置与关闭位置之间的移动的方法。该方法包括使用动力闭合构件致动系统的联接至闭合构件和车身的致动器使闭合构件相对于车身移动的步骤。该方法的下一步骤是使用动力闭合构件致动系统的闭合构件反馈传感器确定闭合构件的位置和速度中的至少一个。该方法通过使用动力闭合构件致动系统的联接至闭合构件反馈传感器和致动器的控制器来监测闭合构件的位置和速度中的至少一个而进行。该方法继续以下步骤:在闭合构件朝向打开位置和关闭位置之一移动时基于闭合构件的位置和速度中的至少一个使用控制器来生成命令以减小闭合构件的速度。该方法还包括以下步骤:通过致动器接收命令以改变作用在闭合构件上的致动器输出力以移动闭合构件来控制闭合构件的移动。

还公开了一种使用动力闭合构件致动系统基于闭合构件的位置和速度中的至少一个来控制车辆的闭合构件相对于车身在打开位置与关闭位置之间的移动的方法。该方法包括使用动力闭合构件致动系统的联接至闭合构件和车身的致动器使闭合构件相对于车身移动的步骤。接下来,使用动力闭合构件致动系统的联接至闭合构件反馈传感器和致动器的控制器来监测闭合构件的位置和速度中的至少一个。该方法通过确定闭合构件的速度是否大于预定最大速度阈值来进行,高于该预定最大速度阈值可能对致动器造成损坏。该方法还包括以下步骤:响应于确定闭合构件的速度大于预定最大速度阈值,控制致动器对闭合构件的移动以抵抗闭合构件朝向打开位置和关闭位置之一的移动。

根据一方面,该方法还包括不使用机械制动器或联接来抵抗门朝向打开位置和关闭位置之一的移动的步骤。

根据一方面,该方法还包括以下步骤:基于闭合构件的位置和速度控制致动器对闭合构件的移动但不超过致动器的操作额定值,超过致动器的操作额定值可能损坏致动器。

本公开内容的一方面是提供一种用于使车辆的闭合构件相对于车身在打开位置与关闭位置之间移动的动力闭合构件致动系统。该系统包括联接至闭合构件和车身的致动器,所述致动器被配置成使闭合构件相对于车身移动。该系统还包括被配置成感测车辆的至少一个环境条件的环境传感器。另外,该系统包括与环境传感器和致动器通信的控制器。控制器被配置成接收运动输入和自动模式启动输入之一,以便响应于接收到运动输入而在动力辅助模式下控制闭合构件的移动以及响应于接收到自动模式启动输入而在自动模式下控制闭合构件的移动。控制器还被配置成根据至少一个环境条件来生成自动模式下的运动命令和动力辅助模式下的力命令之一。控制器通过致动器接收运动命令和力命令之一以改变作用在闭合构件上的致动器输出力以移动闭合构件来命令闭合构件的移动。

本公开内容的另一方面是提供一种基于车辆的环境条件来控制闭合构件的移动的方法。该方法包括以下步骤:接收运动输入和自动模式启动输入之一,以便响应于接收到运动输入而在动力辅助模式下控制闭合构件的移动以及响应于接收到自动模式启动输入而在自动模式下控制闭合构件的移动。该方法继续使用环境传感器检测车辆的环境条件的步骤。该方法的下一步骤是根据环境条件生成自动模式下的运动命令和动力辅助模式下的力命令之一。该方法还包括以下步骤:通过致动器接收运动命令和力命令之一以改变作用在闭合构件上的致动器输出力以移动闭合构件来命令闭合构件的移动。

本公开内容的一方面是提供一种用于使车辆的闭合构件相对于车身在打开位置与关闭位置之间移动的动力闭合构件致动系统。该系统包括联接至闭合构件和车身的致动器,所述致动器被配置成使闭合构件相对于车身移动。该系统还包括至少一个闭合构件反馈传感器,所述至少一个闭合构件反馈传感器被配置成感测闭合构件的实际速度和闭合构件的实际位置中的至少一个。该系统包括与至少一个闭合构件反馈传感器和致动器通信的控制器。控制器被配置成接收运动输入和自动模式启动输入之一以控制闭合构件到打开位置的移动。控制器通过使用运动输入和自动模式启动输入之一命令致动器来控制闭合构件的移动。控制器使用至少一个闭合构件反馈传感器监测闭合构件的实际速度和实际位置中的至少一个,并计算闭合构件的预期位置与闭合构件的实际位置之间的位置差以及闭合构件的预期速度与闭合构件的实际速度之间的速度差中的至少一个。控制器调节对致动器的命令以补偿位置差和速度差中的至少一个,以将闭合构件移动到预期位置和预期速度中的至少一个。

本公开内容的另一方面是提供一种控制车辆的闭合构件的移动的方法。该方法包括以下步骤:接收运动输入和自动模式启动输入之一,以控制闭合构件到打开位置的移动。该方法继续以下步骤:通过使用运动输入和自动模式启动输入之一命令致动器来控制闭合构件的移动。该方法的下一步骤是使用至少一个闭合构件反馈传感器来监测闭合构件的实际速度和实际位置中的至少一个,所述至少一个闭合构件反馈传感器被配置成感测闭合构件的实际速度和实际位置中的至少一个。该方法进行以下步骤:计算闭合构件的预期位置与闭合构件的实际位置之间的位置差以及闭合构件的预期速度与闭合构件的实际速度之间的速度差中的至少一个。该方法还包括以下步骤:调节对致动器的命令以补偿位置差和速度差中的至少一个,以将闭合构件移动到预期位置和预期速度中的至少一个。

本公开内容的又一方面是提供一种用于使车辆的闭合构件相对于车身在打开位置与关闭位置之间移动的动力闭合构件致动系统。动力闭合构件致动系统包括闩锁机构,该闩锁机构包括具有棘轮闩锁部件和棘轮接合部件的棘轮、棘轮偏置构件、棘爪和棘爪偏置构件。棘轮可在与闭合构件释放位置相对应的碰销释放位置与两个不同的碰销捕获位置之间移动,在碰销释放位置处,棘轮定位成释放碰销,而在两个不同的碰销捕获位置处,棘轮定位成保持碰销。这两个不同的碰销捕获位置包括与辅助闭合构件位置相对应的辅助碰销捕获位置以及与主要闭合构件位置相对应的主要碰销捕获位置。棘轮偏置构件被配置成将棘轮朝向其碰销释放位置偏置。棘爪可在棘轮保持位置与棘轮释放位置之间移动,在棘轮保持位置处,棘爪接合棘轮闩锁部件并将棘轮保持在其主要碰销捕获位置,在棘轮释放位置处,棘爪与棘轮闩锁部件分离。当棘轮位于其碰销释放位置和辅助碰销捕获位置时,棘爪位于其棘轮释放位置。棘爪偏置构件被配置成将棘爪朝向其棘轮保持位置偏置,并且动力释放致动器能够操作成将棘爪从棘轮保持位置移动至棘轮释放位置。该系统包括设置在闭合构件与车身之间的门密封件。当闭合构件处于关闭位置时,门密封件处于压缩状态,以在闭合构件上施加密封力,从而将闭合构件朝向闭合构件释放位置移动。致动器联接至闭合构件和车身,所述致动器被配置成使闭合构件相对于车身移动。该系统还包括被配置成感测闭合构件的位置的至少一个闭合构件反馈传感器。另外,该系统包括与至少一个闭合构件反馈传感器、致动器和动力释放致动器通信的控制器。控制器被配置成接收命令来控制闭合构件到打开位置的移动。控制器还被配置成命令动力释放致动器将棘爪移动至棘轮释放位置。控制器使用至少一个闭合构件反馈传感器来监测闭合构件的位置并且计算施加在闭合构件上的密封力与标称密封力之间的密封载荷差。控制器使用密封载荷差生成命令,以控制从致动器作用在闭合构件上的致动器输出力以补充密封载荷力。另外,控制器通过使用命令来命令致动器改变作用在闭合构件上的致动器输出力并将闭合构件移动到闭合构件释放位置来控制闭合构件的移动,其中当闭合构件处于闭合构件释放位置时,棘轮已经移动到碰销释放位置。

本公开内容的一方面是提供一种用于移动车辆的闭合构件的动力闭合构件致动系统。该系统包括联接至闭合构件和车身并且被配置成使闭合构件相对于车身移动的致动器。控制器与致动器通信并且被配置成接收与动力辅助模式相关联的运动输入以及与自动模式相关联的自动模式启动输入之一。控制器将自动模式下基于多个自动闭合构件运动参数的运动命令和动力辅助模式下基于多个动力闭合构件运动参数的力命令之一发送到致动器,以改变作用在闭合构件上的致动器输出力以移动闭合构件。控制器还被配置成使用人工智能学习算法来监测和分析动力闭合构件致动系统的历史操作。然后,控制器相应地调节多个自动闭合构件运动参数和多个动力闭合构件运动参数。

本公开内容的另一方面是提供一种使用动力闭合构件致动系统来控制车辆的闭合构件的移动的方法。该方法包括接收与动力辅助模式相关联的运动输入以及与自动模式相关联的自动模式启动输入之一的步骤。该方法的下一步骤是将自动模式下基于多个自动闭合构件运动参数的运动命令和动力辅助模式下基于多个动力闭合构件运动参数的力命令之一发送到致动器,以改变作用在闭合构件上的致动器输出力以移动闭合构件。该方法通过使用人工智能学习算法监测和分析动力闭合构件致动系统的历史操作并相应地调节多个自动闭合构件运动参数和多个动力闭合构件运动参数而进行。

根据本公开内容的另一方面,提供了一种用于机动车辆的非接触障碍物检测系统,其包括:控制器;至少一个非接触障碍物传感器,其联接至控制器,用于检测机动车辆的闭合构件附近的障碍物;运动感测系统,其联接至控制器,用于检测闭合构件的运动;以及动力致动器,其联接至闭合构件和控制器,用于移动闭合构件,其中,控制器被配置成使用运动感测系统来检测闭合构件的移动,使用至少一个非接触障碍物传感器检测没有障碍物,以及响应于在检测到闭合构件的移动时没有检测到障碍物而使用动力致动器来改变闭合构件的移动。在相关方面,控制器还被配置成响应于在检测到闭合构件的移动时没有检测到障碍物而使用致动器和制动机构中的至少一个来停止闭合构件的移动。

根据本公开内容的另一方面,提供了一种操作用于机动车辆的非接触障碍物检测系统的方法,该方法包括以下步骤:确定闭合构件是否处于打开位置;使用至少一个非接触障碍物传感器确定是否没有检测到障碍物;确定闭合构件是否在移动;以及响应于闭合构件移动并且没有检测到障碍物而改变闭合构件的运动。在相关方面,响应于闭合构件移动并且没有检测到障碍物而改变闭合构件的运动的步骤进一步被限定为响应于闭合构件移动并且没有检测到障碍物而使用联接至闭合构件和控制器的用于移动闭合构件的动力致动器和制动机构中的至少一个来停止闭合构件的运动。

根据本公开内容的另一方面,提供了一种用于机动车辆的非接触障碍物检测系统,其包括:控制器;至少一个运动传感器,其联接至控制器,用于检测机动车辆的运动或倾斜的变化;以及动力致动器和制动机构中的至少一个,其联接至闭合构件和控制器,用于改变闭合构件的运动,使得控制器被配置成使用运动传感器来检测机动车辆的运动或取向的变化,以及响应于在检测到闭合构件的移动时检测到机动车辆的运动或取向的变化而使用至少一个动力致动器和制动机构来改变闭合构件的移动。在相关方面,控制器被配置成通过对闭合构件的移动施加阻力来改变闭合构件的移动。

适用的其他领域将根据本文中所提供的描述变得明显。该发明内容中的描述和具体示例旨在仅用于说明的目的,而不旨在限制本公开内容的范围。

附图说明

本文中描述的附图仅用于对选择的实施方式而非所有可能的实现方式进行说明的目的,并且不旨在限制本公开内容的范围。

图1是配备有根据本公开内容的方面的位于前乘客摆动门与车身之间的动力闭合构件致动系统的示例机动车辆的透视图;

图2是图1中所示的闭合构件的透视内侧视图,其中仅出于清楚的目的移除了相对于车身的一部分的各种部件,并且闭合构件配备有根据本公开内容的方面的动力闭合构件致动系统;

图3示出了根据本公开内容的方面的动力闭合构件致动系统的框图;

图4示出了根据本公开内容的方面的用于在自动模式下移动闭合构件的动力闭合构件致动系统的另一框图;

图5和图5A示出了根据本公开内容的方面的示出为车辆系统架构的部分的动力闭合构件致动系统;

图6示出了根据本公开内容的方面的用于在动力辅助模式下移动闭合构件的动力闭合构件致动系统的另一框图;

图7示出了根据本公开内容的方面的示出为车辆系统架构的部分的与在动力辅助模式下的操作相对应的动力闭合构件致动系统;

图8示出了根据本公开内容的方面的动力闭合构件致动系统的用户接口;

图9示出了根据本公开内容的方面的可由用户修改的多个用户运动控制参数和可由制造商修改的多个制造商运动控制参数;

图10示出了根据本公开内容的方面的用户接口包括设置在机动车辆中的可在自动模式下操作的控制台的触摸屏;

图11示出了根据本公开内容的方面的映射到动力闭合构件致动系统的存储器装置中的相应存储位置的与自动模式相关联的多个存储的运动控制参数;

图12示出了根据本公开内容的方面的在自动模式下的动力闭合构件致动系统的另外的框图;

图13示出了根据本公开内容的方面的在自动模式下与脉冲宽度调制占空比的变化相对应的占空比寄存器的示例变化;

图14示出了根据本公开内容的方面的存储在存储器装置中的存储的运动控制参数以及在自动模式下的运动轮廓的转换变化;

图15示出了根据本公开内容的方面的存储在存储器装置中的另外的存储的运动控制参数,包括门检查灵敏度和移动轮廓;

图16A和图16B示出了根据本公开内容的方面的针对多个闭合构件角度中的每一个对与闭合构件的速度相关的运动轮廓的调节;

图17示出了根据本公开内容的方面的用户接口包括设置在机动车辆中的可在动力辅助模式下操作的控制台的触摸屏;

图18示出了根据本公开内容的方面的映射到动力闭合构件致动系统的存储器装置中的相应存储位置的与动力辅助模式相关联的多个存储的运动控制参数;

图19示出了根据本公开内容的方面的处于动力辅助模式并且使用预补偿生成力命令的动力闭合构件致动系统的另外的框图;

图20示出了根据本公开内容的方面的处于动力辅助模式并且使用后补偿生成力命令的动力闭合构件致动系统的另外的框图;

图21示出了根据本公开内容的方面的利用边界条件针对多个闭合构件角度中的每一个对与闭合构件的力相关的力轮廓的调节;

图22至图27示出了根据本公开内容的方面的基于用户偏好来控制闭合构件的移动的方法的步骤;

图28A和图28B示出了根据本公开内容的方面的基于用户接口输入的示例轮廓修改;

图29示出了根据本公开内容的方面的闭合构件在多个预存储的校准限制之外的示例运动;

图30示出了根据本公开内容的方面的闭合构件在打开位置与关闭位置之间的移动范围;

图31和图32示出了根据本公开内容的方面的闭合构件在打开位置与关闭位置之间的移动范围,示出了由砰击事件引起的速度上的尖峰;

图33示出了根据本公开内容的方面的根据闭合构件在防砰击模式下的角度的闭合构件朝向打开位置移动的速度的变化;

图34示出了根据本公开内容的方面的根据闭合构件在防砰击模式下的角度的闭合构件朝向关闭位置移动的速度的变化;

图35示出了根据本公开内容的方面通过动态地更新用于重要切换点的比较限制而在动力闭合构件致动系统中实现的滞后;

图36A和图36B示出了根据本公开内容的方面的控制器在动力辅助模式和防砰击模式二者下的操作;

图37示出了根据本公开内容的方面的闭合构件的速度与控制器操作的模式之间的关系;

图37A示出了根据本公开内容的方面的在自动模式与动力辅助模式之间转换的说明性方法;

图38和图39示出了根据本公开内容的方面的使用动力闭合构件致动系统基于闭合构件的位置和速度中的至少一个来控制闭合构件的移动的方法的步骤。

图40示出了根据本公开内容的方面的针对多个闭合构件角度中的每一个对与闭合构件的运动相关的运动轮廓的调节;

图41示出了根据本公开内容的方面的利用边界条件针对多个闭合构件角度中的每一个对与闭合构件的力相关的力轮廓的调节;

图42示出了根据本公开内容的方面还提供了基于车辆10的至少一个环境条件来控制闭合构件的移动的方法的步骤;

图43是根据说明性实施方式的客户端-服务器网络图;

图44是根据本公开内容的方面的具有配备有闩锁组件的闭合构件的机动车辆的部分透视图;

图45是根据本公开内容的方面的闩锁组件的等距视图,总体上示出了闩锁机构、闩锁释放机构、动力释放致动器、闩锁系拉机构、动力系拉致动器和系拉分离机构的部件,其中闩锁组件在未闩锁模式下操作;

图46示出了根据本公开内容的方面的闭合构件的各种位置;

图47A至图47D示出了根据本公开内容的方面的闩锁组件的闩锁状态开关状态;

图48示出了根据本公开内容的方面的示例闭合构件运动轮廓,该示例闭合构件运动轮廓示出了闭合构件的速度如何能够受到老化密封载荷的影响;

图49和图50示出了根据本公开内容的方面还提供了控制车辆的闭合构件的移动的方法的步骤;

图51和图52示出了根据本公开内容的方面还提供了使用动力闭合构件致动系统来控制车辆的闭合构件的移动的方法的步骤;

图53是根据本发明的一些实施方式的用于使用神经网络执行学习算法和/或用于训练神经网络的系统的组件的框图;

图54示出了根据说明性实施方式的形成神经网络模型的一系列节点;

图55A和图55B示出了根据说明性实施方式的当在自动模式下操作时用于将门从完全闩锁位置移动的动力闭合构件致动系统的操作的方法;

图56A和图56B示出了根据说明性实施方式的用于将门从打开位置关闭的动力闭合构件致动系统的操作的方法;

图57示出了根据说明性实施方式的当控制器在动力辅助模式下操作时用于将门从停止的门位置移动的动力闭合构件致动系统的操作的方法;

图58示出了根据说明性实施方式的在门在自动模式下操作时用于在非计划停止期间控制门的移动的动力闭合构件致动系统的操作的方法;

图58A示出了根据说明性实施方式的速度与门角度的关系的门运动图表,其示出了在中断之前在自动模式操作期间的门运动、在自动模式操作中的中断之后在动力辅助操作期间的门运动、随后是具有不超过在中断之前的门运动的运动轮廓的自动模式操作的恢复;

图59示出了根据说明性实施方式的用于在自动模式下控制门从大于辅助位置的小角度位置的移动的动力闭合构件致动系统的操作的方法;

图60示出了根据说明性实施方式的当在自动模式或动力辅助模式下控制门时检查门的动力闭合构件致动系统的操作的方法;

图60A示出了根据说明性实施方式的根据门角度的门检查力轮廓;

图61示出了根据说明性实施方式的当风力作用在车辆的门上时动力闭合构件致动系统的操作的方法;

图61A和图61B是示出根据说明性实施方式的作为用户手动控制门的结果的感测电流变化的曲线图;

图62A示出了根据说明性实施方式的在检测闭合构件的移动时检测没有障碍物的动力闭合构件致动系统的操作的方法;

图62B和图62C示出了根据说明性实施方式的在使用非接触障碍物检测系统检测用户时检测闭合板的手动控制的动力闭合构件致动系统的操作的方法;

图63示出了根据说明性实施方式的在检测闭合构件的移动时检测车辆的移动的动力闭合构件致动系统的操作的方法;

图64示出了根据说明性实施方式的在检测闭合构件的移动时检测没有障碍物和车辆的移动的动力闭合构件致动系统的操作的方法;

图65示出了根据说明性实施方式的在门处于冻结状态时用于将门从关闭的门位置移动的动力闭合构件致动系统的操作的方法;

图66示出了根据说明性实施方式的在门处于机械阻挡状态时用于将门从关闭的门位置移动的动力闭合构件致动系统的操作的方法;

图67示出了根据说明性实施方式的由动力闭合构件致动系统的控制器执行的用于计算移动门的致动器力的方法;

图68示出了根据说明性实施方式的被配置成用于执行图67的方法的动力闭合构件致动系统的系统框图;

图69是根据说明性实施方式的由动力闭合构件致动系统的控制器执行的叠加算法;

图70是根据说明性实施方式的动力闭合构件致动系统的致动器的部分透视图,示出了与图69的叠加算法相对应的围绕门铰链轴线的扭矩;以及

图71是根据说明性实施方式的由动力闭合构件致动系统的控制器执行的叠加算法的框图,示出了包括辅助门系统的扭矩。

具体实施方式

在以下描述中,将阐述细节以提供对本公开内容的理解。在一些情况下,未详细描述或示出某些电路、结构和技术,以不使本公开内容模糊。

总之,现在将公开根据本公开内容的教导构造的动力闭合构件致动系统或用户可修改系统的至少一个示例实施方式。提供示例实施方式,使得本公开内容将是透彻的,并将向本领域技术人员充分传达范围。阐述了许多特定细节例如特定部件、装置和方法的示例,以提供对本公开内容的实施方式的透彻理解。对于本领域技术人员将明显的是,不需要采用特定细节,示例实施方式可以以许多不同的形式来实施并且都不应被解释为限制本公开内容的范围。在一些示例实施方式中,详细描述公知的过程、公知的装置结构和公知的技术。

首先参照图1,示例机动车辆10被示出为包括第一乘客门12,或也被称为示例性闭合构件12,第一乘客门12经由以虚线示出的上门铰链16和下门铰链18枢转地安装至车身14。根据本公开内容,动力闭合构件致动系统20集成到第一乘客门12与车身14之间的枢转连接件中。根据优选配置,动力闭合构件致动系统20通常包括动力操作致动器机构或致动器22和旋转驱动机构,动力操作致动器机构22固定在乘客门12的内腔内,旋转驱动机构由动力操作致动器机构22驱动并且驱动地联接至与下门铰链18相关联的铰链部件。旋转驱动机构的驱动旋转引起乘客门12相对于车身14的受控枢转移动。根据该优选配置,动力操作致动器机构22紧密接近地刚性地联接至上门铰链16的门安装铰链部件,而旋转驱动机构联接至下门铰链18的车辆安装铰链部件。然而,本领域技术人员将认识到,用于动力闭合构件致动系统20的替代封装配置可用于适应可用的封装空间。一个这样的替代封装配置可以包括将动力操作致动器机构安装至车身14并且将旋转驱动机构驱动地互连至与上门铰链16和下门铰链18中的一个相关联的门安装铰链部件。

上门铰链16和下门铰链18中的每一个包括通过铰链销或柱以可枢转的方式互连的门安装铰链部件和车身安装铰链部件。门安装铰链部件在下文中被称为门铰链带,而车身安装铰链部件在下文中被称为车身铰链带。尽管动力闭合构件致动系统20仅被示出为与前乘客门12相关联,但是本领域技术人员将认识到,动力闭合构件致动系统还可以与车辆10的任何其他闭合构件(例如,门或举升门)例如后乘客门17和后备箱盖19相关联。

动力闭合构件致动系统20总体上在图2中示出并且如提到的,动力闭合构件致动系统20能够操作成用于使车门12相对于车身14在打开位置与关闭位置之间以可控制的方式枢转。如图4和图5中所示,动力闭合构件致动系统20的下铰链18包括连接至车门12的门铰链带28和连接至车身14的车身铰链带30。下门铰链18的门铰链带28和车身铰链带30经由铰链销32沿着大体竖向对齐的枢转轴线A互连以建立门铰链带28与车身铰链带30之间的可枢转互连。然而,在不脱离本公开内容的范围的情况下,可以使用任何其他机构或装置来建立门铰链带28与车身铰链带30之间的可枢转互连。

如图2中最佳所示,动力闭合构件致动系统20包括动力操作致动器机构22,动力操作致动器机构22具有能够刚性地连接至车门12的马达和齿轮系组件34。马达和齿轮系组件34被配置成产生旋转力。在优选实施方式中,马达和齿轮系组件34包括操作性地联接至减速/增扭组件例如高齿轮比行星齿轮箱38的电动马达36。高齿轮比行星齿轮箱38可以包括多级,从而允许马达和齿轮系组件34通过电动马达36的极低转速产生具有高扭矩输出的旋转力。然而,在不脱离本公开内容的范围的情况下,可以使用马达和齿轮系组件34的任何其他布置来建立所需的旋转力。

马达和齿轮系组件34包括用于建立与车门12可连接关系的安装支架40。安装支架40被配置成可邻近与上门铰链16相关联的门安装门铰链带连接至车门12。还如图2中所示,马达组件34邻近车门12的上门铰链16的这种安装将动力闭合构件致动系统20的动力操作致动器机构22设置成紧密接近枢转轴线A。马达和齿轮系组件34邻近车门12的上门铰链16的安装使动力闭合构件致动系统20可能对车门12的质量惯性矩(即,枢转轴线A)的影响最小化,从而改善或便于车门12在其打开位置与关闭位置之间的移动。另外,还如图2中所示,马达和齿轮系组件34邻近车门12的上门铰链16的安装允许动力闭合构件致动系统20被封装在与车门12相关联的A柱玻璃行进通道前方,并且因此避免对车门12的玻璃窗功能的任何干扰。换言之,动力闭合构件致动系统20可以封装在车门12内的内部门腔39的未被使用的部分37中,并且因此减少或消除了对车门12内的现有硬件/机构的冲击。尽管动力闭合构件致动系统20被图示为安装成邻近车门12的上门铰链16,但是作为替选方案,在不脱离本公开内容的范围的情况下,动力闭合构件致动系统20也可以安装在车门12内的其他位置或甚至安装在车身14上。

动力闭合构件致动系统20还包括由动力操作致动器机构22旋转地驱动的旋转驱动机构。如图2中所示,旋转驱动机构包括驱动轴42,驱动轴42互连至马达和齿轮系组件34的齿轮箱38的输出构件,并且从邻近齿轮箱38设置的第一端部44延伸至第二端部46。马达和齿轮系组件34的旋转输出部件可以包括第一适配器47例如方形凹插座等,其用于驱动地将驱动轴42的第一端部44直接互连至齿轮箱38的旋转输出。另外,尽管未明确示出,但断开式离合器可以设置在齿轮箱38的旋转输出与驱动轴42的第一端部44之间。在一种配置中,离合器通常在没有动力的情况下被接合(即,断电接合),并且可以被选择性地通电(即,通电释放)以断开接合。换句话说,可选的离合器将在没有施加电力的情况下将驱动轴42驱动地联接至马达和齿轮系组件34,而离合器将需要施加电力以将驱动轴42从与齿轮箱38的驱动连接中断开联接。作为替选方案,离合器可以以通电接合和断电释放的布置进行配置。离合器可以使用任何合适类型的离合机构诸如例如一组制轮木(sprag)、滚珠、卷簧、摩擦板或任何其他合适的机构来接合和分离。离合器被设置成允许用户75手动地将门12相对于车身14在门12的打开位置与门12的关闭位置之间移动。这种断开式离合器例如可以位于电动马达36的输出与齿轮箱38的输入之间。该可选的离合器的位置可以尤其基于齿轮箱38是否包括“可反向驱动”的齿轮。在一个可能的配置中,动力操作致动器机构22不设置有离合器机构,并因此在马达与动力操作致动器机构22的输出之间提供了直接的永久联接(例如,联接至例如车身14)。在这种配置中,齿轮系组件34也许可以是可反向驱动的齿轮系。

驱动轴42的第二端部46联接至下门铰链18的车身铰链带30,以用于经由车身铰链带30将旋转力从马达和齿轮系组件34直接传递至门12。为了适应由于门12相对于车身14的摆动移动而产生的角运动,旋转驱动机构还包括设置在第一适配器47与驱动轴42的第一端部44之间的第一万向接头或U形接头45以及设置在第二适配器49与驱动轴42的第二端部46之间的第二万向接头或U形接头48。可替选地,可以使用等速接头代替U形接头45、48。第二适配器49也可以是被配置成刚性附接至下门铰链18的车身铰链带30的方形凹插座等。然而,在不脱离本公开内容的范围的情况下,可以使用建立驱动附接的其他方法。驱动轴42经由马达和齿轮系组件34的操作进行的旋转用于通过使车身铰链带30绕驱动轴42所附接的其枢转轴线并相对于门铰链带28旋转来致动下门铰链18。因此,动力闭合构件致动系统20能够通过直接将旋转力“直接”传递至下门铰链18的车身铰链带30来实现车门12在其打开位置与其关闭位置之间的移动。利用邻近于上门铰链16连接至车门12的马达和齿轮系组件34,驱动轴42的第二端部46附接至下门铰链18的车身铰链带30。基于门腔39内的可用空间,可以将马达和齿轮系组件34安装成邻近下门铰链18的门安装铰链部件,并将驱动轴42的第二端部46直接连接至上门铰链16的车辆安装铰链部件。在替选方案中,如果马达和齿轮系组件34连接至车身14,则驱动轴42的第二端部46将附接至门铰链带28。

图3示出了用于使车辆10的闭合构件(例如,车门12)相对于车身14在打开位置与关闭位置之间移动的动力门系统21的动力闭合构件致动系统20的框图。如以上所讨论的,动力闭合构件致动系统20包括联接至闭合构件(例如,车门12)和车身14的致动器22。致动器22被配置成使闭合构件12相对于车身14移动。动力闭合构件致动系统20还包括控制器50,控制器50联接至致动器22并与其他车辆系统(例如,车身控制模块52)通信并且还从车辆10(例如,从车辆电池53)接收车辆动力。

控制器50可在自动模式(响应于自动模式启动输入54)和动力辅助模式(响应于运动输入56)中的至少一种下操作。在自动模式下,控制器50命令闭合构件移动通过预定的运动轮廓(例如,打开闭合构件)。动力辅助模式与自动模式的不同之处在于:来自用户75的运动输入56可以是连续的以移动闭合构件,而不是用户75在自动模式下的单一输入。来自车辆系统的命令51可以例如包括控制器50打开闭合构件、关闭闭合构件或停止闭合构件的运动的指令。这样的控制输入例如输入54、56还可以包括其他类型的输入55例如来自车身控制模块的输入,所述车身控制模块可以接收基于例如从钥匙扣60或其他无线装置(例如蜂窝智能电话)或者从设置在车辆上的传感器组件例如雷达或光传感器组件接收的信号诸如无线信号的控制门打开的无线命令,所述传感器组件在用户75接近车辆时检测用户的接近例如用户75的手势或步态例如行走。例如,还示出了可能对动力闭合构件致动系统20的操作有影响的其他部件,例如车门12的门密封件57。此外,环境条件59(雨、冷、热等)可以由车辆10(例如,由车身控制模块52)和/或控制器50监测。控制器50还包括人工智能学习算法61(例如,形成图54所示的神经网络模型的一系列节点),这将在下面更详细地讨论。

现在参照图4,控制器50被配置成接收自动模式启动输入54并响应于接收到自动模式启动输入54而进入自动模式以输出运动命令62或接收输入运动命令62。自动模式启动输入54可以是闭合构件本身上的手动输入或至车辆的间接输入(例如,闭合构件上的闭合构件开关58、钥匙扣60上的开关等)。因此,例如,自动模式启动输入54可以例如是用户或操作者操作开关(例如,闭合构件开关58)、在车辆10附近做出手势或在车辆10附近拥有钥匙扣60的结果。还应当理解,可以设想其他自动模式启动输入54,例如但不限于由接近传感器检测到的用户75的接近。

此外,动力闭合构件致动系统20包括用于确定闭合构件的位置和速度以及姿态中的至少一个的至少一个闭合构件反馈传感器64。因此,至少一个闭合构件反馈传感器64检测通过对电动马达36的转数进行计数而来自致动器22的信号、可延伸构件(未示出)的绝对位置,或者检测来自可以向控制器50提供位置信息的门12(例如,作为示例,关于门检查的绝对位置传感器)的信号。与控制器50通信的反馈传感器64是用于例如通过检测闭合构件或与其联接的部件的速度和位置的变化来直接或间接检测门的运动的反馈系统或运动感测系统的一部分的说明。例如,运动感测系统可以是基于硬件的(例如霍尔传感器单元、相关的电路系统),其用于检测例如闭合构件上(例如铰链上)或致动器22上(例如马达轴上)的目标的移动,以及/或者运动感测系统也可以是例如由控制器50执行的基于软件的(例如使用用于执行脉动计数算法的代码和逻辑)。可以不受限制地采用其他类型的位置、速度、和/或取向检测器,例如加速度计和基于感应的传感器。

动力闭合构件致动系统20另外包括至少一个非接触障碍物检测传感器66,其可以形成耦接例如电耦接至控制器50的非接触障碍物检测系统的一部分。控制器50被配置成确定是否使用至少一个非接触障碍物检测传感器66(例如,使用非接触障碍物检测算法69)检测障碍物,并且例如可以响应于确定检测到障碍物而停止闭合构件的移动。非接触障碍物检测系统还可以被配置成计算从闭合构件到对象或障碍物、或到作为对象或障碍物的用户、到门12的距离。例如,非接触障碍物检测系统可以被配置成使用基于雷达的传感器66执行飞行时间计算以确定距离,或者例如基于使用基于雷达的传感器66和系统确定对象的反射率,与非人类对象相比,将对象表征为用户或人类。非接触障碍物检测系统还可以被配置成例如通过检测从障碍物传感器66发射的雷达的对象或障碍物或用户的反射波来确定何时检测到障碍物。非接触障碍物检测系统还可以被配置成例如通过未检测到从障碍物传感器66发射的雷达的对象或障碍物或用户的反射波来确定何时未检测到障碍物。至少一个非接触障碍物检测传感器66和系统的操作和示例在通过引用并入本文的美国专利申请第2018/0238099号中讨论。

在自动模式下,控制器50可以包括一个或更多个闭合构件运动轮廓68,当考虑到由至少一个非接触障碍物检测传感器66进行的障碍物检测而(例如,使用控制器50的运动命令生成器70)生成运动命令62时,控制器50利用所述一个或更多个闭合构件运动轮廓68。因此,在自动模式下,运动命令62具有指定的运动轮廓68(例如,加速曲线、速度曲线、减速曲线,并最终在打开位置停止),并且根据用户反馈(例如,自动模式启动输入54)不断优化。

在图5中,动力闭合构件致动系统20被示出为车辆系统架构72的与自动模式下的操作相对应的一部分。动力闭合构件致动系统20包括用户接口74、76,所述用户接口74、76被配置成检测经由接口77(例如,触摸屏)来自用户75的用户接口输入,以修改与闭合构件的移动相关联的至少一个存储的运动控制参数。因此,用户可修改系统或动力闭合构件致动系统20的控制器50被配置成在用户接口74、76上呈现至少一个存储的运动控制参数。

车身控制模块52经由车辆总线78(例如,本地互连网络或LIN总线)与控制器50通信。车身控制模块52还可以与钥匙扣60(例如,无线地)和闭合构件开关58通信,所述闭合构件开关58被配置成通过车身控制模块52输出闭合构件触发信号。可替选地,闭合构件开关58可以直接连接至控制器50,或者以其他方式与控制器50通信。车身控制模块52还可以与环境传感器(例如,温度传感器80)通信。控制器50还被配置成响应于检测到用户接口输入而修改至少一个存储的运动控制参数。与用户接口74、76相关联的屏幕通信接口控制单元82可以例如经由车辆总线78和与控制器50相关联的闭合通信接口控制单元84通信。换言之,闭合通信接口控制单元84联接至车辆总线78和控制器50,以便于控制器50与车辆总线78之间的通信。因此,用户接口输入可以从用户接口74、76传送至控制器50。

车辆倾斜传感器86(例如加速度计)也联接至控制器50,以用于检测车辆10的倾斜。车辆倾斜传感器86输出与车辆10的倾斜相对应的倾斜信号,并且控制器50还被配置成接收倾斜信号并相应地调节力命令88(图6)和运动命令62中的一个。尽管车辆倾斜传感器86可以与控制器50分离,但是应当理解,车辆倾斜传感器86也可以集成在控制器50中或另一控制模块例如但不限于车身控制模块52中。

控制器50还被配置成执行命令信号(例如,力命令88或运动命令62)的生成之前的初始边界条件检查和命令信号的生成期间的过程中边界检查中的至少一个。这种边界检查防止闭合构件的移动和致动器22的操作在多个预定操作限制或边界条件91之外,并将在下面更详细地讨论。

控制器50还可以联接至车辆闩锁83。另外,控制器50联接至具有至少一个存储位置的存储器装置92,所述存储器装置92用于存储与控制闭合构件(例如,门12)的移动相关联的至少一个存储的运动控制参数。存储器装置92还可以存储一个或更多个闭合构件运动轮廓68(例如,移动轮廓A 68a、移动轮廓B 68b、移动轮廓C 68c)和边界条件91(例如,多个预定操作限制,例如最小限制91a和最大限制91b)。存储器装置92还存储原始设备制造商(OEM)可修改的门运动参数89(例如,门检查轮廓和弹出轮廓)。

控制器50被配置成使用至少一个存储的运动控制参数生成运动命令62,以控制作用在闭合构件上以使闭合构件移动的致动器输出力。脉冲宽度调制单元101联接至控制器50并且被配置成接收脉冲宽度控制信号并输出与脉冲宽度控制信号相对应的致动器命令信号。

类似于图5,图5A示出了作为可在自动模式和动力辅助模式下操作的另一车辆系统架构72'的一部分的动力闭合构件致动系统20。车身控制模块52也可以与用于感测至少一个环境条件59的至少一个环境传感器80、81通信。具体地,至少一个环境传感器80、81可以是温度传感器80或雨传感器81中的至少一个。虽然温度传感器80和雨传感器81可以连接至车身控制模块52,但是它们可以替代地集成在车身控制模块52中以及/或者集成在另一单元例如但不限于控制器50中。此外,设想其他环境传感器80、81。

控制器也与包括系拉马达99(用于将闭合构件12系拉到关闭位置)的闩锁83联接。闩锁83还包括例如向控制器50提供关于闩锁83是处于闩锁主要位置还是闩锁辅助位置的反馈的多个主要和辅助棘轮位置传感器或开关85。

同样,车辆倾斜传感器86(例如加速度计或倾斜仪)也联接至控制器50,以用于检测车辆10的倾斜。车辆倾斜传感器86输出与车辆10的倾斜相对应的倾斜信号,并且控制器50还被配置成接收倾斜信号并相应地调节力命令88(图6)和运动命令62中的一个。因此,例如可以调节运动命令62,使得门12以与就像在水平地形上一样通过运动命令使门12被移动相比相同的速度和运动轮廓移动。因此,致动器22可以移动门12,使得当处于倾斜状态时的运动轮廓(例如,速度与门位置的关系)与就像车辆不处于倾斜状态一样的运动轮廓相同或跟踪该运动轮廓。换言之,当车辆10处于倾斜状态或不处于倾斜状态时,用户没有检测到速度与位置的关系在门运动外观上的视觉差异。或者例如可以相应地调节力命令88,使得施加与就像在水平地形上一样通过力命令使门被移动相比类似的由用户检测的阻力使门12移动。因此,致动器22可以移动门,使得当处于倾斜状态时用户移动门12所需的力与就像车辆不处于倾斜状态一样用户移动门所需的力相同。换言之,当车辆10处于倾斜状态或不处于倾斜状态时,用户感受到作用抵抗用户的输入力的门的相同反作用阻力。

脉冲宽度调制单元101也联接至控制器50,并且被配置成接收脉冲宽度控制信号并输出与脉冲宽度控制信号相对应的致动器命令信号。控制器50包括与存储器装置92通信的处理器或其他计算单元110。因此,控制器50联接至存储器装置92,所述存储器装置92用于存储用于自动模式的多个自动闭合构件运动参数68、93、94、95和用于动力辅助模式的多个动力闭合构件运动参数96、100、102,106,并且所述多个运动参数由控制器50用于控制闭合构件(例如,门12或17)的移动。具体地,多个自动闭合构件运动参数68、93、94、95包括闭合构件运动轮廓68(例如,多个闭合构件速度和加速度轮廓)、多个闭合构件停止位置93(例如,参见图46),闭合构件检查灵敏度94以及多个闭合构件检查轮廓95中的至少一个。多个动力闭合构件运动参数96、100、102、106包括多个固定的闭合构件模型参数96和力命令生成器算法100以及闭合构件模型102和多个闭合构件部件轮廓106中的至少一个。另外,存储器装置92存储日期和里程以及循环计数97。存储器装置92还可以存储用于防止闭合构件的移动和致动器22的操作在多个预定操作限制或边界条件之外的边界检查的边界条件(例如,多个预定操作限制)。

因此,控制器50被配置成接收与动力辅助模式相关联的运动输入56和与自动模式相关联的自动模式启动输入54中的一者。然后,控制器50被配置成向致动器22发送在自动模式下基于多个自动闭合构件运动参数68、93、94、95的运动命令62和在动力辅助模式下基于多个动力闭合构件运动参数96、100、102、106的力命令88中的一者,以改变作用在闭合构件12上的致动器输出力以移动闭合构件12。控制器50另外使用人工智能学习算法61监测和分析动力闭合构件致动系统20的历史操作,并相应地调节多个自动闭合构件运动参数68、93、94、95和多个动力闭合构件运动参数96、100、102、106。

如以上所讨论的,动力闭合构件致动系统20可以包括环境传感器80、81,所述环境传感器80、81与控制器50通信并被配置成感测车辆10的至少一个环境条件。因此,由控制器50使用人工智能学习算法61监测和分析的历史操作可以包括车辆10的至少一个环境条件。因此,控制器还被配置成基于车辆10的至少一个环境条件来调节多个自动闭合构件运动参数68、93、94、95和多个动力闭合构件运动参数96、100、102、106。

如图6中最佳示出的,控制器50还被配置成接收运动输入56并进入动力辅助模式以输出如通过人工智能学习算法61修改的力命令88(例如,根据力命令算法100、门模型102、边界条件91、多个闭合构件部件轮廓106使用控制器50的力命令生成器98,如以下更详细讨论的)。控制器50还被配置成生成力命令88,以控制作用在闭合构件上以使闭合构件移动的致动器输出力。因此,控制器50响应于接收到运动输入56而改变作用在闭合构件上的致动器输出力以移动闭合构件。在动力辅助模式下,力命令88具有指定的力轮廓(例如,其可以被修改以改变用户对闭合构件的体验,例如通过使其更轻或更重,或者基于环境条件的变化并通过人工智能学习算法61修改,例如通过增加或减少提供给用户75的力辅助)。例如,根据当前用户反馈不断地优化力命令88。用户移动传感器104联接至控制器50,并被配置成感测来自用户75在闭合构件上以使闭合构件移动的运动输入56。还将门运动反馈105从闭合构件(例如,门12)提供回到用户75。同样,动力闭合构件致动系统20还包括用于确定闭合构件的位置和速度中至少之一的至少一个闭合构件反馈传感器64。至少一个闭合构件反馈传感器64检测闭合构件的位置和/或速度,如以上针对自动模式所描述的,并且可以向控制器50提供关于用户75如何与闭合构件进行交互的相应位置/运动信息或信号。例如,至少一个闭合构件反馈传感器64确定用户75移动闭合构件(例如,门12)的速度。姿态或倾斜传感器86还可以确定闭合构件的角度或倾斜,并且动力闭合构件致动系统20可以补偿这样的角度以帮助用户75并且抵消角度变化引起的对闭合构件运动的任何影响(例如,例如关于重力如何可以基于闭合构件相对于地平面的角度而不同地影响闭合构件的变化)。

与图5所示的车辆系统架构类似,在图7中示出了与图6的动力闭合构件致动系统20在动力辅助模式下的操作相对应的车辆系统架构72"。同样,动力闭合构件致动系统20包括用户接口74、76,所述用户接口74、76被配置成检测用户接口输入以修改与闭合构件的移动相关联的至少一个存储的运动控制参数。用户可修改系统或动力闭合构件致动系统20的控制器50被配置成在用户接口74、76上呈现至少一个存储的运动控制参数(例如,显示的参数和功能111)。控制器50还被配置成响应于检测到用户接口输入而修改存储在存储器装置92中的至少一个存储的运动控制参数。因此,存储器装置92存储至少一个存储的运动控制参数和系统20用于辅助用户75移动闭合构件的其他闭合构件参数106——例如重量106a以及闭合构件的尺寸106b、闭合构件惯性106c、闭合构件摩擦106d、其他闭合构件属性106e、闭合构件的任何数学模型(例如,闭合构件模型102)、影响可能因例如磨损而随时间变化的闭合构件运动的物理部件108的任何模型(例如,门密封件模型108a、基于致动器时间/磨损/温度的模型108b)、以及门功能109(例如,防夹、门检查)。

因此,控制器50被配置成基于至少一个存储的运动控制参数和至少一个环境条件59生成力命令88,以控制作用在闭合构件上以使闭合构件移动的致动器输出力。同样,闭合通信接口控制单元84耦接至车辆总线78和控制器50,以便于控制器50与车辆总线78之间的通信。脉冲宽度调制单元101耦接至控制器50,并被配置成接收脉冲宽度控制信号并输出与脉冲宽度控制信号相对应的致动器命令信号。如图5中那样,闭合通信接口控制单元84耦接至车辆总线78和控制器50,以便于控制器50与车辆总线78之间的通信。

如图8中最佳示出的,动力闭合构件致动系统20的用户接口74、76可以包括被配置成与控制器50无线通信的移动装置74。作为移动装置的替选方案或者除了移动装置之外,用户接口74、76可以包括设置在车辆10中的控制台76。在任一情况下,用户接口74、76显示至少一个存储的运动控制参数并将用户接口输入传送至控制器50。控制器50包括与存储至少一个存储的运动控制参数的存储器装置92通信的处理器或其他计算单元110。

如图9中最佳示出的,动力闭合构件致动系统20的至少一个存储的运动控制参数可以例如由用户75使用用户接口74、76来修改。因此,至少一个存储的运动控制参数可以包括可由用户75使用用户接口74、76修改的多个用户运动控制参数。然而,在车辆10中利用动力闭合构件致动系统20的制造商107可能倾向于限制某些参数的修改以确保动力闭合构件致动系统20的期望操作。因此,至少一个存储的运动控制参数还可以包括可由制造商107修改的多个制造商运动控制参数(例如,使用OEM接口112修改并存储在如图5所示的存储器装置92中或如图7所示的其他地方)。这样的制造商运动控制参数89例如弹出轮廓(用于向用户75呈现闭合构件的运动轮廓)不可由用户75修改。例如,可以调节闩锁弹出以确保闩锁83将正确地转换到打开状态(例如,棘爪可能重新接合太慢,闩锁83的棘爪可能无法太快与闩锁83的棘轮分离)。

更详细地讨论自动模式,图10示出了用户接口74、76包括设置在车辆10中的控制台76的触摸屏113,其被配置成显示至少一个存储的运动控制参数并接收用户接口输入。如图所示和如先前所讨论的,屏幕通信接口控制单元82与闭合通信接口控制单元84通信。触摸屏控制器114耦接至触摸屏113和屏幕通信接口控制单元82,并被配置成使用屏幕通信接口控制单元82将用户接口输入传送至控制器50。图10还示出了可以由用户75针对自动模式调节或修改的至少一个存储的运动控制参数。至少一个存储的运动控制参数可以包括闭合构件打开和关闭速度、闭合构件打开停止位置和门检查灵敏度中的一者;然而,应当理解,附加或其他参数可以用于至少一个存储的运动控制参数。

图11示出了至少一个存储的运动控制参数包括与自动模式相关联的多个存储的运动控制参数,所述多个存储的运动控制参数可以被映射到存储器装置92中的相应存储位置。存储位置之一是用于在检测到的恶劣天气123期间的速度。用户接口74、76将显示存储在存储器装置92中的当前值、以及例如允许用户75基于系统校准限制来修改这些值的限制。因此,用户75不能超过在操作期间可能损坏闭合构件(例如,门12)的操作参数值。例如,用户75将不能设定使闭合构件砰击硬停止打开位置——这可能导致铰链损坏——的打开关闭速度。

现在参照图12,在接收到自动模式启动输入54之后,控制器50进入自动模式。如上面参照图5和图7所讨论的,脉冲宽度调制单元101耦接至控制器50,并被配置成接收脉冲宽度控制信号并输出与脉冲宽度控制信号相对应的致动器命令信号。H桥接件116耦接至脉冲宽度调制单元,并被配置成基于致动器命令信号向致动器22施加控制电压。动力信号生成器118耦接至控制器50(或者可以是控制器50本身的一部分),并且被配置成生成脉冲宽度调制控制信号,以致动动力闭合构件致动系统20的致动器22,以使闭合构件移动(例如,使用由自动模式启动输入54、门开关58或来自车辆10的命令55触发的控制器50的运动命令生成器70,并且接收来自致动器22的位置反馈64)。因此,控制器50被配置成接收用户接口输入以使用用户接口74、76修改至少一个存储的运动控制参数。控制器50还被配置成修改存储在存储器装置92中的至少一个存储的运动控制参数,并使用至少一个存储的运动控制参数生成力命令88和运动命令62之一,以提供给动力信号生成器118。此外,用户接口74、76、动力信号生成器118、存储器装置92和控制器50可以例如包括用于动力闭合构件致动系统20的电子控制系统。

同样,控制器50还被配置成在自动模式下从至少一个闭合构件反馈传感器64接收闭合构件的位置和速度中的至少一个。响应于接收到自动模式启动输入54,控制器50在自动模式下使用控制器50的运动命令计算器124基于闭合构件的位置和速度中的至少一个以及目标运动速度120和运动速度调节因子122的函数来计算运动命令62。在自动模式下,控制器50使用控制器50的脉冲宽度调制控制信号生成器118的占空比寄存器126和比较器128基于运动命令62生成脉冲宽度调制控制信号。控制器50还与被配置成输出闭合构件触发信号(例如,通过车身控制模块52)的闭合构件开关58通信。因此,自动模式启动输入54可以是来自闭合构件开关58的闭合构件触发信号。

图13示出了与脉冲宽度调制占空比从50%至55%的变化相对应的占空比寄存器的示例变化。这种变化可以通过控制器50的运动命令计算器对运动命令62的计算来提示。因此,如图所示,脉冲宽度调制控制信号的脉冲宽度调制占空比增加。

图14示出了存储在存储器装置92中的存储的运动控制参数。例如,针对多个闭合构件角度中的每一个,存储的运动控制参数中的每一个可以被转换成与闭合构件的速度相关的运动轮廓的变化。如图所示,通过将闭合构件的速度斜升至第一预定速度来到达弹出位置(例如,用于将闭合构件呈现给用户75)。接下来,闭合构件的速度然后斜升至第二预定速度Vswing,该速度在基于计划的停止位置计算的持续时间内保持恒定。闭合构件的速度从第二预定速度斜降,直到闭合构件到达计划的停止位置。如图所示,用户75可以调节这种第二预定或运动速度。

图15示出了存储在存储器装置92中的另外的存储的运动控制参数,包括门检查灵敏度和移动轮廓。可以通过用户可选择减速来调节移动或运动轮廓(例如,当闭合构件的速度从第二预定速度斜降,直到闭合构件到达计划的停止位置)。例如,用户75可以改变最大减速速率。例如,门检查灵敏度可以允许用户75对于打开方向和关闭方向二者改变闭合构件的速度(A、B、C、D)和闭合构件的角度或位置(ε、δ、γ、β、α、θ、α’、β’)。

图16A和图16B示出了针对多个闭合构件角度中的每一个对与闭合构件的速度相关的运动轮廓的调节。响应于用户75对存储的运动控制参数的改变或调节,如图所示速度和位置受到影响,所述存储的运动控制参数包括闭合构件打开停止位置(图16A)和被调节的第二预定速度Vswing(图16B)。

如以上所讨论的,控制器50被配置成接收运动输入56并且作为响应进入动力辅助模式。如上面的图10中那样,图17所示的用户接口74、76包括设置在车辆10中的控制台的触摸屏。除了显示用于自动模式的至少一个存储的运动控制参数之外,触摸屏还被配置成针对动力辅助模式显示至少一个存储的运动控制参数并且接收用户接口输入。例如,除了闭合构件检查轮廓和位置之外,闭合构件在用户75移动它(即,运动输入56)时的“感觉”可以通过用户接口74、76来调节。同样,屏幕通信接口控制单元82与闭合通信接口控制单元84通信。触摸屏控制器114耦接至触摸屏和屏幕通信接口控制单元82,并被配置成使用屏幕通信接口控制单元82将用户接口输入传送至控制器50。因此,至少一个存储的运动控制参数可以由用户75针对动力辅助模式进行调节或修改。图18示出了与动力辅助模式相关联的多个存储的运动控制参数可以被映射到存储器装置92中的相应存储位置。这样的存储位置可以例如包括门检查位置115、强门检查轮廓117a和软门检查轮廓117b。同样,用户接口74、76将显示存储在存储器装置92中的当前值、以及例如允许用户75基于系统校准限制来修改这些值的限制。因此,用户75不能超过可能在操作期间损坏闭合构件的操作参数值。例如,如果闭合构件处于极端坡度上,则用户75将无法超过给定速度移动闭合构件。

如图19中最佳示出的,控制器50还被配置成在动力辅助模式下从至少一个闭合构件反馈传感器64接收闭合构件的位置和速度中的至少一个。因此,控制器50被配置成在动力辅助模式下使用控制器50的闭合构件模型102和力命令生成器98的力命令计算器模块119中的力命令算法100基于运动输入56和闭合构件的位置和速度中的至少一个来确定力命令88。具体地,运动输入56可以触发力命令计算器模块119的力命令计算器输出。例如,力命令计算器输出可以等于函数(X(乘数)×门参数),例如1.1×门的重量。因此,控制器50被配置成在动力辅助模式下使用控制器50的脉冲宽度调制控制信号生成器118基于力命令88生成脉冲宽度调制控制信号,以改变作用在闭合构件上的致动器输出力以辅助闭合构件的移动。

更具体地,如图19所示,控制器50使用预补偿来计算力命令88,并且还被配置成响应于接收到运动输入56而在动力辅助模式下基于运动输入56以及力灵敏度因子130和闭合构件模型102的函数来计算力命令88。控制器50还被配置成在动力辅助模式下使用控制器50的脉冲宽度调制控制信号生成器118的占空比寄存器126和比较器128基于力命令88生成脉冲宽度调制控制信号。因此,例如,基于用户灵敏度的变化,系统20将力灵敏度因子应用于力命令计算,这将导致脉冲宽度调制控制信号生成器的占空比计算的输入值的变化。在这种情况下,对灵敏度的修改作为力命令计算(预处理)的一部分来完成。例如,闭合构件的重量增加乘数因子,并且力命令88将增加,以模拟较轻的物理闭合构件(例如,门12)以更大的力移动闭合构件。

如图20中最佳示出的,控制器50可以替选地使用后补偿来计算力命令88。对于后补偿,控制器50响应于接收到运动输入56而在动力辅助模式下根据从运动输入56和闭合构件模型102计算的初始力命令132以及力灵敏度因子130计算力命令88。控制器50还被配置成在动力辅助模式下使用控制器50的脉冲宽度调制控制信号生成器118的占空比寄存器126基于力命令88生成脉冲宽度调制控制信号。同样,力命令算法98和闭合构件模型102存储在耦接至控制器50的存储器装置92中。闭合构件模型102利用多个模型参数106,所述多个模型参数106包括闭合构件重量属性和闭合构件摩擦属性以及闭合构件惯性属性和闭合构件长度属性中的至少一个。因此,例如,基于用户灵敏度的变化,系统20将力灵敏度因子130应用于力命令计算132的结果,这将导致脉冲宽度调制控制信号生成器的占空比计算的输入值的变化。通过调节力命令88(后处理)来完成对灵敏度的修改。

图21示出了针对多个闭合构件角度中的每一个对与闭合构件经受的(例如,在闭合构件的把手处测量的)力相关的力轮廓的调节。如前所述,控制器50被配置成执行命令信号的生成之前的初始边界条件检查和命令信号的生成期间的过程中边界检查中的至少一个。如图所示,用于动力辅助模式的示例边界条件91(例如,多个预定操作限制)相对于由致动器22提供的预定辅助力Fswing示出,该预定辅助力Fswing贯穿闭合构件的运动范围直到停止位置。预定辅助力可以如图所示进行调节,但是这种调节由控制器50检查以确保它们不超过边界条件91。因此,控制器50在动力辅助模式下生成力命令88时,利用除闭合构件模型102、力灵敏度补偿因子130和力命令算法98之外的边界条件91。

如图22至图27中最佳示出的,还提供了基于用户偏好来控制闭合构件的移动的方法。首先参照图22,该方法包括开始用户偏好模式的步骤200以及从存储器装置92读取至少一个存储的运动控制参数的步骤201。该方法通过以下202来进行:使用用户接口74、76来呈现与控制闭合构件的移动相关联的至少一个存储的运动控制参数。该方法还包括步骤204:在用户接口74、76上接收与对至少一个存储的运动控制参数的修改相对应的用户接口输入。该方法继续步骤206:响应于检测到用户75使用用户接口74、76进行交互,修改至少一个存储的运动控制参数。该方法的下一步骤是208:将基于用户接口输入对至少一个存储的运动控制参数的修改写入到存储器装置92。然后,该方法包括开始门命令生成器功能的步骤209以及检测移动闭合构件的运动输入56并作为响应进入动力辅助模式的步骤210。该方法继续步骤212:在动力辅助模式下从存储器装置92读取已经修改的至少一个存储的运动控制参数。该方法还包括步骤214:使用至少一个存储的运动控制参数来生成力命令88和运动命令62之一(例如,在动力辅助模式下基于运动输入56和使用至少一个存储的运动控制参数来生成力命令88)以控制致动器22作用在闭合构件上以移动闭合构件。该方法还可以包括步骤216:在动力辅助模式下通过致动器22接收力命令88以改变作用在闭合构件上的致动器输出力以移动闭合构件来命令闭合构件的移动。

参照图23和图24,基于用户偏好控制闭合构件的移动的方法包括开始用户偏好模式的步骤200以及从存储器装置92读取至少一个存储的运动控制参数的步骤201。该方法继续步骤202:使用用户接口74、76呈现与控制闭合构件的移动相关联的至少一个存储的运动控制参数。接下来,218在用户接口74、76上显示基于多个预存储的校准限制的至少一个存储的运动控制参数的多个预定操作限制。该方法继续步骤204:在用户接口74、76上接收用户接口输入,所述用户接口输入与在多个预存储的校准限制(例如,边界条件91)内对至少一个存储的运动控制参数的修改相对应。该方法的下一步骤是208:将基于用户接口输入对至少一个存储的运动控制参数的修改写入到存储器装置92。然后,该方法包括:开始门致动模式的步骤220;以及检测移动闭合构件的运动输入56和自动模式启动输入54之一并且响应于检测到运动输入56而进入动力辅助模式以及响应于接收到自动模式启动输入54而进入自动模式的步骤221。该方法通过以下212来进行:从存储器装置92读取已经修改的至少一个存储的运动控制参数。

如以上所讨论的,控制器50被配置成执行命令信号的生成之前的初始边界条件检查和命令信号的生成期间的过程中边界检查中的至少一个。因此,该方法的下一步骤是222:执行初始边界检查。更具体地,如图25中最佳示出的,执行初始边界检查的步骤222可以包括确定电池电压是否在多个预存储的校准限制内的步骤224。接下来,226响应于电池电压不在多个预存储的校准限制内而记录电池电压错误。初始边界检查222可以继续步骤228:响应于电池电压在多个预存储的校准限制内,确定车辆10的姿态是否在多个预存储的校准限制内。初始边界检查222还可以包括步骤230:响应于车辆10的姿态不在多个预存储的校准限制内,记录车辆姿态错误。接下来,初始边界检查222包括以下232:响应于车辆10的姿态在多个预存储的校准限制内,确定环境温度是否在多个预存储的校准限制内。该方法继续步骤234:响应于环境温度不在多个预存储的校准限制内,记录环境温度错误。接下来,236响应于环境温度在多个预存储的校准限制内而确定障碍物检测是否在多个预存储的校准限制内以及237定义力命令88和运动命令62之一以移动闭合构件。初始边界检查222另外包括响应于障碍物检测不在多个预存储的校准限制内而记录障碍物检测错误的步骤238以及防止生成力命令88和运动命令62之一的步骤239。

如图26中最佳示出的,该方法还可以包括步骤240:基于电池电压以及针对预定电池电压(例如,正常电池电压,如数字240a所示)的默认力命令88和默认运动命令之一来调节力命令88和运动命令62之一。该方法还可以包括步骤242:基于车辆10的姿态以及针对车辆10的预定姿态(例如,车辆10在平坦表面上,如数字242a所示)的默认力命令88和默认运动命令62之一来调节力命令88和运动命令62之一。接下来,244基于环境温度以及针对预定环境温度(例如,温度为15摄氏度,如数字244a所示)的默认力命令和默认运动命令62之一来调节力命令88和运动命令62之一。该方法还可以包括步骤246:基于障碍物检测以及针对预定障碍物检测(例如,障碍物在门的预定角度范围内,如数字246a所示)的默认力命令和默认运动命令62之一来调节力命令88和运动命令62之一。

因此,控制器50执行对力命令88和运动命令62之一的调节。例如,如果在极端车辆倾斜下,则闭合构件以给定速度的连续运动可能使致动器22的马达36过热,然而如果闭合构件运动的速度被控制器50根据用户选择的优选速度改变,则闭合构件可能仍然以这样的倾斜但是以较低的速度打开,并且马达36没有过热。因此,代替转换到手动模式(其中闭合构件仅由用户75移动),用户75仍可以具有动力操作,但处于降低的性能水平,使得系统20例如致动器马达36不被损坏。由于可以在平坦表面上实现用户偏好,因此边界检查确保在车辆10的其他倾斜或状态下仍然可以满足性能。

返回参照图23和图24,该方法继续步骤248:确定在初始边界检查期间是否存在初始错误。该方法的下一步骤是响应于确定存在初始错误而250防止力命令88和运动命令62之一的发出以及252停止闭合构件。该方法继续步骤254:响应于未确定初始错误,使用至少一个存储的运动控制参数基于闭合构件的位置和速度中的至少一个以及基于运动输入56的力命令88生成力命令88和运动命令62之一。

接下来,该方法包括执行在力命令88和运动命令62之一的生成期间的过程中边界检查的步骤256。更详细地,如图27中最佳所示,执行在力命令88和运动命令62之一的生成期间的过程中边界检查的步骤256可以包括步骤258:确定运动轮廓的加速度曲线是否在多个预存储的校准限制或边界条件91的加速度限制内(例如,在最大加速度限制258a与最小加速度限制258b之间)。过程中边界检查256还可以包括步骤260:响应于加速度曲线不在加速度限制内,记录加速度错误。过程中边界检查256还可以包括步骤262:响应于加速度曲线在加速度限制内,确定速度曲线是否在多个预存储的校准限制或边界条件91的速度限制内(例如,在最大速度限制262a与最小速度限制262b之间)。此外,过程中边界检查256还包括步骤264:响应于速度曲线不在速度限制内,记录速度错误。接下来,过程中边界检查256包括266:响应于减速曲线在减速限制内,确定减速曲线是否在多个预存储的校准限制的减速限制内(例如,在最大减速限制266a与最小减速限制266b之间)。过程中边界检查256另外包括步骤268:响应于减速曲线不在减速限制内,记录减速错误。该方法进行到步骤270:响应于在障碍物检测限制内检测到障碍物,确定在多个预存储的校准限制或边界条件91的障碍物检测限制内(例如,在最大范围检测限制270a与最小范围检测限制270b之间)是否检测到障碍物。过程中边界检查256还包括:确定力命令88和运动命令62之一有效的步骤271;以及响应于在障碍物检测限制内未检测到障碍物,记录障碍物检测错误的步骤272;以及停止闭合构件(例如,停止门,检查门或手动模式)的步骤273。

返回参照图24,该方法进行到274:确定在过程中边界检查期间是否存在过程中错误。该方法以如下步骤继续:响应于确定存在过程中错误而防止力命令88和运动命令62之一的发出的步骤276以及停止闭合构件的步骤278。该方法的下一步骤是:280通过致动器22接收力命令88和运动命令62之一以控制作用在闭合构件上以使闭合构件错误移动的致动器输出力来命令闭合构件的移动以及281结束该方法(图23)。该方法还包括步骤282:响应于未确定过程中错误,返回到执行过程中边界检查的步骤256。图28A和图28B示出了基于用户接口输入的示例轮廓修改(图28A中的用户可选择的门停止位置和图28B中的用户可选择的速度)。还示出了运动轮廓68的多个预存储的校准限制的示例。

图29示出了闭合构件在多个预存储的校准限制之外的示例运动。如图所示,由于在过程中边界检查期间检测到过程中错误,可以命令致动器22制动闭合构件,以确保闭合构件在到达硬停止位置之前停止。如数字284所示,门倾斜度改变(例如,用户75已经将车辆10的一侧抬起以更换轮胎,从而使门在打开期间增加速度)。在数字286处,门速度增加超过校准限制(边界限制91)(例如,如果允许进一步增加速度,则马达36将不足以在门到达硬停止之前制动门)。在数字288处,检测到过程中错误,命令马达36制动门,以确保门在到达硬停止位置之前停止,并且在数字290处示出最大完全行进位置。

因此,用户接口74、76可以例如响应于检测到车辆10的状态(电池电量、倾斜度、温度)显示根据边界条件91或多个预存储的校准限制的用户可修改值限制,并且/或者控制器50可以在操作之前检查闭合构件可以被移动(初始边界检查),并且控制器50可以被配置成在操作期间(在过程中)检查例如由于在车辆10处于极端操作状态(例如,高温、极端倾斜)时的极端用户输入的边界限制没有被超过。

图30示出了闭合构件(例如,门12)在打开位置与关闭位置之间的移动范围。虽然打开位置和关闭位置被示出为彼此分开90度,但是应当理解的是,设想闭合构件12的其他配置和移动(例如,打开位置和关闭位置可以彼此大于或小于90度)。基于至少一个闭合构件反馈传感器64检测到的闭合构件12的位置和/或速度,控制器50可以控制致动器22,以防止闭合构件12的砰击或使闭合构件12的砰击最小化(例如,以防止用户75的滥用)。砰击控制条件取决于砰击的方向(打开或关闭)和检测到砰击的角度。图30中所示的角度X和Y分别是打开方向和关闭方向上的示例砰击控制条件,并且全行进角度以300指示。

由闭合构件12的砰击引起的滥用可能导致对车辆闩锁83、车门12、门铰链16、18的损坏,并且还可能在砰击使致动器22超过致动器的操作额定值时导致对致动器22的损坏。例如,闭合构件12的砰击本身可能使致动器22在高于操作额定值下操作,这可以导致对致动器22的损坏,从而导致寿命缩短和性能降低,并最终导致需要更换或修理致动器22的故障。在一个示例中,闭合构件12的砰击可能使致动器22在高于操作额定值下操作,并且例如使致动器22的马达36在高于马达36的最大旋转速度限制下旋转,高于这样的速度限制可能由于致动器22包括DC有刷马达的配置中的高离心力而以线圈绕组分离的形式对马达36造成损坏,或者其他类型的损坏。闭合板12的这种砰击事件可能导致这种超过马达36的最大旋转速度限制,特别是在齿轮减速单元联接至马达输出时,由于闭合构件12的较慢移动而导致马达36的速度增加。此外,为了减轻由砰击引起的对车门、闩锁、门铰链等的损坏而响应于砰击事件对致动器22造成的滥用也可能对作为响应而被控制的致动器22造成损坏,例如由于为了满足这样的速度减小例如以确保闭合构件12在经历硬停止之前停止,控制致动器22以减小由砰击引起的闭合构件12的速度而不考虑致动器22被控制成超过致动器22的操作限制或额定值。例如,本公开内容提供对致动器22的控制,以用于在致动器22的操作限制内响应砰击事件,以防止和/或减轻由砰击事件导致的对致动器22的损坏,并且例如提供对致动器22的控制以将致动器22的操作保持在低于马达36的最大旋转速度(例如,过大的速度可能使线圈绕组分离或分开)、马达36的最大额定功率(例如,提供给致动器22的马达36的过大功率可能导致对电气部件的损坏和/或导致过热)、最大反电动势(EMF)输出额定值(例如,由于闭合构件12的砰击而允许马达36被反向驱动而不降低反向驱动马达36的速度可能导致马达36产生的反电动势电压的过大量,从而导致电子部件诸如控制器50或其他反EMF保护电路系统的过载)、最大热额定值(例如,由于门12的倾斜——致动器22必须抵抗倾斜控制门12的移动,在失速或缓慢移动的闭合构件中长时间段操作马达36)、以及最大电制动额定值(例如,提供给致动器22的马达36的过大功率可能损坏电气部件和/或导致过热)。设想其他致动器限制或额定值,例如与联接至马达36的输出的减速齿轮系相关的任何额定值或限制。

如图31中所示,存在闭合构件12朝向打开位置砰击的示例。具体地,在数字302处,门在自动模式下开始打开,但是用户75决定朝向打开位置砰击门,从而使闭合板的初始速度超过预定的最大速度阈值Vmax,由如控制器50检测到的峰304所示,由于砰击超过马达36的最大速度额定值,导致马达的速度通过减速齿轮系反向驱动,这可能导致损坏,例如使有刷DC马达的马达线圈分离。此外,因此,砰击可能在马达中产生EMF中的大尖峰,从而造成对连接至马达36的电子部件的损坏。

类似地,图32示出了闭合构件12朝向打开位置砰击的示例。具体地,在数字306处,门在自动模式下开始打开,但是用户75决定朝向打开位置砰击门,从而使闭合构件12的初始速度超过预定的最大速度阈值Vmax,由如控制器50检测到的峰308所示,由于砰击超过马达36的最大速度额定值,导致马达的速度通过减速齿轮系反向驱动,这可能导致损坏,例如使有刷DC马达的马达线圈分离。此外,因此,砰击可能在马达36中产生EMF中的大尖峰,从而造成对连接至马达36的电子部件的损坏。

本文中描述的控制技术将检测使闭合构件12超过预定最大速度阈值的这种砰击事件,并且作为响应,控制器50将例如通过采用马达36的动态制动或变阻制动控制、或DC注入制动控制作为示例控制致动器22以抵抗闭合构件12朝向打开位置的运动。为了使致动器22不超过其操作限制或额定值,本文中描述的控制器50可以被配置成控制致动器22以使得可以允许闭合构件12以一定速度(例如非零速度)移动到硬停止位置或硬停止位置之前(例如,辅助闩锁位置),所述速度已经被致动器22降低一定程度,而未将致动器22操作到如图32所示可能对其造成损坏的限制,由于检测到砰击事件,例如由于闭合构件12超过Vmax或预定速度阈值,作为响应,在允许门12产生势能并增加速度之前,控制致动器22以抵抗闭合构件12的运动。由于致动器22被配置成抵抗门运动,而不是机械制动器或离合器或其他类型的机械联接,因此由于由用户启动的砰击而迅速减小闭合构件12的速度允许致动器将闭合构件12的速度控制并减小到致动器22的安全操作限制内,而不会在致动器22上引起过大的应变(如图31和图32中的虚线所示)。因此,可以减轻对车门12和诸如闩锁83和铰链16、18的部件的砰击影响,并且可以避免对致动器22的损坏。

因此,动力闭合构件致动系统20的控制器50被配置成使用闭合构件反馈传感器64监测闭合构件12的位置和速度中的至少一个。控制器50还被配置成在闭合构件朝向打开位置和关闭位置之一移动时基于闭合构件12的位置和速度中的至少一个生成降低闭合构件12的速度的命令。控制器50另外被配置成通过致动器22接收该命令以改变作用在闭合构件12上的致动器输出力以移动闭合构件12来控制闭合构件12的移动。控制器50被配置成基于使用闭合构件反馈传感器64确定的闭合构件12的位置和速度控制致动器22对闭合构件12的移动,以抵抗闭合构件朝向打开位置和闭合位置之一的移动,但不超过致动器的操作额定值,超过该操作额定值可能损坏致动器,所述闭合构件反馈传感器64例如可以是与控制器50通信的加速度计87。为了增加砰击事件检测的灵敏度以允许控制器快速反应并开始控制致动器提供对由砰击引起的门移动的阻力,加速度计87可以设置为例如与门铰链相对,并且可以设置为闩锁的一部分。本文中讨论的砰击的控制取决于砰击的方向(例如,闭合构件12朝向打开或关闭位置被砰击)和检测到砰击的闭合构件12的位置或角度(对于摆动门)。因此,闭合构件12的速度(speed)或速度(velocity)可以是角速度。第一预定闭合构件角度φ或X°(图30)被示出为在打开方向上的砰击的重要条件(即,闭合构件朝向打开位置的移动),并且第二预定闭合构件角度θ或Y°(图30)被示出为在关闭方向上的砰击的重要条件(即,闭合构件朝向关闭位置的移动)。

如所讨论的,控制器50可在自动模式和动力辅助模式中的至少一个下操作。此外,控制器50还可在防砰击模式下操作。更详细地,控制器50被配置成在自动模式和动力辅助模式之一下控制致动器22以移动闭合构件12。然后,控制器50确定闭合构件12的速度是否大于预定的最大速度阈值。然后,控制器50被配置成响应于闭合构件12的速度不大于预定的最大速度阈值而在自动模式和动力辅助模式之一下继续控制致动器22以移动闭合构件12。此外,控制器50被配置成响应于闭合构件12的速度大于预定的最大速度阈值而退出自动模式和动力辅助模式之一并且进入防砰击模式。

如上所述,控制器50联接至闩锁83的将闭合构件(例如,门12)从闩锁辅助位置移动至闩锁主要位置的系拉致动器或马达99。因此,控制器50还被配置成检测闭合构件12的移动方向。控制器50被配置成响应于检测到闭合构件12朝向打开位置移动而确定闭合构件12的角度是否小于第一预定闭合构件角度Φ。

如图33中最佳示出的,如果闭合构件12朝向打开位置移动,则控制器50总体上被配置成在闭合构件朝向打开位置移动时根据闭合构件12在防砰击模式下的角度来改变闭合构件12的减速速率。控制器50还被配置成确保在打开硬停止之前闭合构件12的角速度Vswing在第一预定闭合构件角度Φ处为零。示出了最小减速310和最大减速312以及示例最大减速314。角速度Vswing的减速速率将取决于检测到砰击的角度,并确保在硬停止之前的预定距离处的门角速度=0°/s。因此,检测到砰击越靠近硬停止,门将减速得越快。

更具体地,控制器50被配置成响应于确定闭合构件12的角度不小于第一预定闭合构件角度Φ而控制致动器22减小闭合构件12的速度Vswing以允许打开硬停止。控制器50响应于确定闭合构件12的角度小于第一预定闭合构件角度Φ来控制致动器22以在打开位置处或之前将闭合构件12的速度减小至零。然后,控制器50确定是否检测到手动控制,并响应于确定未检测到手动控制而确定闭合构件12是否处于打开位置。控制器50被配置成响应于确定闭合构件12未处于打开位置而返回检测闭合构件12的移动方向。控制器50响应于确定闭合构件12处于打开位置而退出防砰击模式。此外,控制器50响应于确定检测到手动控制而在动力辅助模式下控制致动器22并且退出防砰击模式。

如图34中最佳示出的,如果闭合构件12朝向关闭位置移动,则控制器50被配置成在闭合构件12在防砰击模式下朝向关闭位置移动时验证闭合构件12的角度大于第二预定闭合构件角度θ。控制器50还被配置成响应于验证闭合构件12的角度大于第二预定闭合构件角度θ而根据闭合构件12的角度将闭合构件12减慢至预定参考速度Vswing。控制器50另外被配置成保持预定参考速度Vswing,直到闭合构件12移动至闩锁辅助位置。控制器50响应于验证闭合构件12的角度不大于第二预定闭合构件角度θ而将闭合构件12减慢至预定系拉速度Vcinch位置。控制器50被配置成允许闭合构件12以预定系拉速度Vcinch移动至闩锁主要位置。示出了最小减速316和最大减速318以及Y位置之后的示例减速320(门将直接驱动至完全关闭位置)。

因此,如果在关闭方向上检测到砰击,则控制器50将允许门完全关闭。控制器50将在检测到砰击的瞬间验证门角度。如果在大于角度Y的任何门位置处检测到砰击,则控制器将门减慢至Vswing并保持Vswing速度,直到门进入闩锁的系拉范围(角度Y定义为完全关闭+TBD度)。如果在小于Y的起始门位置角度处发起砰击事件,则控制器50将使门减慢,然而,门将直接关闭到完全关闭位置。Vswing的减速速率将取决于检测到砰击的角度,并确保在闩锁辅助位置之前的预定距离处的门角速度=Vswing°/s。因此,检测到砰击越靠近闩锁,门将减速得越快。

更详细地,控制器50响应于检测到闭合构件朝向关闭位置移动而确定闭合构件的角度是否大于第二预定闭合构件角度θ。控制器50被配置成响应于确定闭合构件12的角度不大于第二预定闭合构件角度θ而控制致动器22减小闭合构件12的速度以允许闭合构件12进入闩锁主要位置。控制器50响应于确定闭合构件12的角度大于第二预定闭合构件角度θ而控制致动器22减小闭合构件12的速度以允许闭合构件12进入闩锁辅助位置。控制器50被配置成确定是否检测到手动控制。控制器50响应于确定检测到手动控制而在动力辅助模式下控制致动器22并且退出防砰击模式。此外,控制器50响应于确定没有检测到手动控制而确定闭合构件12是否处于闩锁辅助位置。控制器50还被配置成响应于确定闭合构件12处于闩锁辅助位置而控制系拉致动器99将闭合构件12移动至闩锁主要位置。控制器50还被配置成在控制系拉致动器99期间生成警报信号(例如,向用户75提供听觉或触觉反馈)并返回检测闭合构件12的移动方向。控制器50响应于确定闭合构件12不处于闩锁辅助位置而返回控制致动器22减小闭合构件12的速度以允许闭合构件12进入闩锁辅助位置。

如图35中最佳示出的,控制器50通过动态更新算法中用于重要切换点的比较限制来实现滞后。更具体地,控制器50被配置成允许闭合构件12在自动模式下继续移动,只要闭合构件12的角速度是:(i)在预定参考速度Vswing下;或(ii)在预定参考速度Vswing与自动上角速度UL之间的自动模式上间隙UG内;或(iii)在预定参考速度Vswing与自动下角速度LL之间的自动模式下间隙LG内。控制器50响应于闭合构件12的角速度小于自动下角速度LL或大于自动上角速度UL而进入动力辅助模式。控制器50被配置成一旦闭合构件12的角速度是大于预定最大速度阈值SL的高速上阈值HSB就转换到防砰击模式。此外,控制器50被配置成一旦闭合构件12的角速度减慢至小于预定最大速度阈值SL的高速下阈值HSA就转换回到动力辅助模式。这种操作有助于避免算法在小噪声和速度测量容差的情况下跳回和强制切换。

图36A和图36B示出了控制器50在动力辅助模式和防砰击模式二者下的操作。具体地,如图36B所示,示出了与防砰击模式相关联的防砰击间隙(ASG)范围321以及与动力辅助模式相关联的手动动力辅助范围322,并且控制器50可以基于闭合构件12的速度在这两种模式之间转换。换言之,在执行防砰击时,如果速度返回到正常参考值,则控制器50应能够切换回到动力辅助模式。这在图36B中通过箭头示出以示出模式之间的切换能力,并且不应与加速/减速时的速度间隙混淆。

图37示出了闭合构件的速度与控制器50操作的模式之间的关系。标记为323的箭头指示用户75将门加速到Vswing范围之外,并且标记为324的箭头指示用户75将门减速到Vswing范围之外。动力辅助的范围:防砰击模式示出为326,动力辅助模式的范围示出为328,自动模式的范围示出为330,并且自动速度范围示出为332。图37A示出了例如由控制器50执行的方法401,其用于基于从参考速度轮廓超过例如来自上(UL)速度阈值和下(LL)速度阈值的速度阈值的检测到的偏差在自动模式与动力辅助模式之间转换,作为用户手动移动门12的结果。非接触检测系统可以与方法401结合使用,以用于确认门12是否由于用户靠近门12而移动。方法401可以包括以下步骤:提供参考速度轮廓403,例如从存储器例如存储器92检索存储的门运动/速度轮廓,门12根据所述存储的门运动/速度轮廓移动,然后接下来在步骤405处比较或确定参考速度轮廓与门12的实际检测的速度407之间的差,以确定门运动与参考速度轮廓的任何偏差或误差,然后接下来在步骤409中确定偏差是否大于阈值速度水平,在实际门角度处高于参考速度预定阈值或者在实际门角度处低于参考速度预定阈值。如果在步骤409处控制器50没有确定偏差超过预定阈值,则方法进行在步骤411处控制器50继续在自动模式下控制门12并返回到步骤403。如果在步骤409处控制器50的确确定偏差超过预定阈值,则方法进行在步骤413处控制器50转换到动力辅助模式。如果接下来在步骤415处控制器50在接收到自动模式命令——例如使用自动模式的门关闭命令之后确定,控制器50将确定门的速度是否为零,或者换言之门是否静止。如果门是静止的,则控制器50可以在步骤411处继续在自动模式下控制门。如果在接收到自动模式命令时控制器50没有确定门是静止的,则控制器50可以在步骤413处继续在动力辅助模式下控制门。在在自动模式下控制门之前验证门是静止的确保了例如通过来自车辆内部的开关的自动模式命令、通过远程FOB等作为示例不超越动力辅助模式,以确保使用动力辅助模式移动门的用户保持在动力辅助模式下对门的控制而不被系统20的另一操作模式超越。因此,借以用户控制并接触门的动力辅助模式优先于其他控制源。

如图38和图39中最佳示出的,还提供了基于闭合构件12的位置和速度中的至少一个来控制车辆10的闭合构件12相对于车身14在打开位置与关闭位置之间的移动的方法。该方法包括:开始门命令生成器功能的步骤400;以及使用联接至闭合构件12和车身14的动力闭合构件致动系统20的致动器22相对于车身14移动闭合构件12(例如,朝向打开位置)的步骤401。如所讨论的,控制器50可在自动模式、动力辅助模式和防砰击模式中的至少一个下操作。因此,该方法还包括在自动模式和动力辅助模式之一下控制致动器22以移动闭合构件12的步骤。该方法继续步骤402:使用动力闭合构件致动系统20的闭合构件反馈传感器64确定闭合构件12的位置和速度中的至少一个。该方法的下一步骤是404:使用动力闭合构件致动系统20的联接至闭合构件反馈传感器64和致动器22的控制器50来监测闭合构件12的位置和速度中的至少一个。

接下来,406确定闭合构件12的速度是否大于预定的最大速度阈值。该方法还包括步骤408:响应于闭合构件12的速度不大于预定的最大速度阈值,继续在自动模式和动力辅助模式之一下控制致动器22以移动闭合构件12。该方法的下一步骤是响应于闭合构件12的速度大于预定的最大速度阈值而410退出自动模式和动力辅助模式之一以及412进入防砰击模式。

通常,该方法还包括以下步骤:当闭合构件12朝向打开位置和关闭位置中的一个移动时,使用控制器50基于闭合构件12的位置和速度中的至少一个来生成减小闭合构件12的速度的命令。该方法通过由致动器22接收该命令以改变作用在闭合构件12上的致动器输出力以移动闭合构件12来控制闭合构件12的移动而继续。

参照图39,该方法还包括检测闭合构件12的移动方向的步骤414。因此,如果闭合构件12朝向打开位置移动,则该方法继续步骤416:响应于检测到闭合构件12朝向打开位置移动,确定闭合构件12的角度是否小于第一预定闭合构件角度Φ。该方法的下一步骤是418:响应于确定闭合构件12的角度不小于第一预定闭合构件角度φ,控制致动器22减小闭合构件12的速度以允许打开硬停止。然后该方法包括步骤420:响应于确定闭合构件12的角度小于第一预定闭合构件角度φ,控制致动器22以在打开位置处或之前将闭合构件12的速度减小至零。该方法以以下步骤进行:步骤422确定是否检测到手动控制;以及步骤424响应于确定未检测到手动控制,确定闭合构件12是否处于打开位置。该方法的下一步骤是426:响应于确定闭合构件12不处于打开位置,返回检测闭合构件12的移动方向。该方法以以下步骤进行:步骤428响应于确定闭合构件12处于打开位置,退出防砰击模式;以及步骤430响应于确定检测到手动控制,在动力辅助模式下控制致动器22并且退出防砰击模式。

如果闭合构件12朝向关闭位置移动,则该方法包括步骤432:响应于检测到闭合构件12朝向关闭位置移动,确定闭合构件的角度是否大于第二预定闭合构件角度θ。该方法通过434继续:响应于确定闭合构件12的角度不大于第二预定闭合构件角度θ,控制致动器22减小闭合构件12的速度,以允许闭合构件12进入闩锁主要位置。该方法还包括步骤436:响应于确定闭合构件12的角度大于第二预定闭合构件角度θ,控制致动器22减小闭合构件12的速度,以允许闭合构件12进入闩锁辅助位置。该方法另外包括以下步骤:438确定是否检测到手动控制;以及响应于确定检测到手动控制而439在动力辅助模式下控制致动器22以及440退出防砰击模式。该方法的下一步骤是442:响应于确定没有检测到手动控制,确定闭合构件12是否处于辅助位置。该方法继续步骤444:响应于确定闭合构件12处于闩锁辅助位置,控制系拉致动器99将闭合构件12移动至闩锁主要位置。接下来,446在控制系拉致动器99期间生成警报信号,以及448返回检测闭合构件12的移动方向。该方法进行450:响应于确定闭合构件12不处于闩锁辅助位置,返回控制致动器22减小闭合构件12的速度以允许闭合构件12进入闩锁辅助位置。

如前所讨论的,控制器50通过动态更新算法中用于重要切换点的比较限制来实现滞后。因此,该方法还包括以下步骤:允许闭合构件12在自动模式下继续移动,只要闭合构件12的角速度是:(i)在预定参考速度Vswing下;或(ii)在预定参考速度Vswing与自动上角速度UL之间的自动模式上间隙UG内;或(iii)在预定参考速度Vswing与自动下角速度LL之间的自动模式下间隙LG内。该方法通过响应于闭合构件12的角速度小于自动下角速度LL或大于自动上角速度UL而进入动力辅助模式来继续。该方法还包括以下步骤:一旦闭合构件12的角速度为大于预定最大速度阈值SL的高速上阈值HSB就转换到防砰击模式。该方法另外包括以下步骤:一旦闭合构件12的角速度减慢至小于预定最大速度阈值SL的高速下阈值HSA就转换回到动力辅助模式。

返回参照图12和图13,控制器50被配置成接收至少一个环境条件以用于调节力命令88和/或运动命令62。因此,控制器50使用至少一个环境条件生成力命令88和运动命令62之一,以提供给动力信号生成器118。运动速度调节因子122可以与环境条件相关。例如,低于0摄氏度的温度读数的感测的环境条件可以与被调节以导致目标运动速度增加百分之十的速度调节因子122相关,以及例如低于-10摄氏度的温度读数的感测的环境条件可以与被调节以导致目标运动速度增加百分之十五的速度调节因子122相关。同样,自动模式启动输入54可以是来自闭合构件开关58的闭合构件触发信号。应当认识到,控制器50可以被配置成以其他方式根据环境条件生成运动命令62。

具体地,图13示出了与脉冲宽度调制占空比从50%至55%的变化相对应的占空比寄存器的示例变化。这种变化可以通过控制器50的运动命令计算器基于至少一个环境条件对运动命令62的计算来提示。同样,如图所示,脉冲宽度调制控制信号的脉冲宽度调制占空比增加。

返回参照图19,作为示例,当环境条件被感测到低于0摄氏度的温度读数时,可以增加基于环境条件的力命令88,并且响应于来自用户75的模拟较轻的物理闭合构件(例如,门12)的手动输入,调节该力命令88以用更大的力移动闭合构件。例如,作为示例,闭合构件的重量增加了与环境条件相关的乘数因子。应当认识到,控制器50可以被配置成以其他方式根据环境条件生成力命令88。

返回参照图20,控制器50可以替选地使用后补偿来计算力命令88。对于后补偿,控制器50响应于接收到运动输入56而在动力辅助模式下根据从运动输入56、闭合构件模型102、至少一个环境条件计算的初始力命令132以及力灵敏度因子130来计算力命令88。

图40示出了根据感测的环境条件并相对于正常或默认速度500针对多个闭合构件角度中的每一个对与闭合构件的运动相关的运动轮廓的调节。例如,如数字502所示(例如,如果检测到的温度比预定阈值热或冷),闭合构件的预定速度Vswing可以根据温度而增加或减小。

图41示出了根据感测的环境条件针对多个闭合构件角度中的每一个对与所示的闭合构件经受的(例如,在闭合构件的把手处测量的)力相关的力轮廓的调节。由致动器22提供预定辅助力Fswing,该预定辅助力Fswing贯穿闭合构件的运动范围直到其中辅助力增加至较高的预定辅助力Fcheck的检查位置,然后返回到Fswing,直到其中辅助力Fstop施加至闭合构件的停止位置。该辅助力可以根据环境条件例如温度而增加或减小。例如,该辅助力可以根据环境条件例如有风的环境条件而增加,以帮助在感测的有风条件期间将闭合板保持在门检查位置。

如图42中最佳示出的,还提供了基于车辆10的至少一个环境条件来控制闭合构件12的移动的方法。该方法包括步骤600:接收运动输入56和自动模式启动输入54之一,以响应于接收到运动输入而在动力辅助模式下控制闭合构件12的移动以及响应于接收到自动模式启动输入而在自动模式下控制闭合构件12的移动。该方法继续步骤602:使用环境传感器检测车辆10的至少一个环境条件。该方法通过604进行:根据至少一个环境条件生成自动模式下的运动命令62和动力辅助模式下的力命令88之一。如以上所讨论的,环境传感器80、81可以是温度传感器80,因此该方法还可以包括步骤606:基于车辆10的环境温度来调节运动命令62和力命令88之一。类似地,如果环境传感器是雨传感器81,则该方法还可以包括步骤608:基于检测到的雨调节运动命令62和力命令88之一。该方法的下一步骤是610:通过致动器22接收运动命令62和力命令88之一以改变作用在闭合构件12上的致动器输出力以移动闭合构件12来命令闭合构件12的移动。

现在参照图43,示出了通信系统699,其示出了环境传感器80、81被与经由蜂窝或无线网络706提供本地天气信息或环境条件705的远程服务器701的网络连接替代或补充。BCM 52可以设置有通信接口700和GPS模块702,GPS模块702被配置成例如从GPS卫星704接收GPS数据。通信接口700可以是无线接口,例如操作为客户端的基于蜂窝网络的无线接口,用于通过无线网络706向远程服务器701提供由GPS模块702检索到的当前GPS信息(例如位置信息707),远程服务器701被配置成根据所提供的当前GPS位置信息作出响应,并通过无线网络706向通信接口700发送环境数据,例如温度、风速、降水、湿度、压力等。控制器50将使用这种网络提供的环境数据来执行本文中上面描述的门控制技术和方法。

现在参照图44,机动车辆10示出为包括车身14,车身14限定通向内部乘客车厢的开口814。闭合构件例如后乘客门17被说明性地示出为可枢转地安装至车身14以在打开位置(所示出的)与完全关闭位置之间移动,从而相应地利用闩锁组件83打开和关闭开口814。闩锁组件83的示例可以在美国公开第2018/0100331号中找到,其通过引用并入于此。虽然示出了后乘客门17,但是应当理解,闩锁组件83可以替选地或附加地用于门12以及/或者动力闭合构件致动系统20可以用于后乘客门17。闩锁组件83被示出为邻近于后乘客门的边缘部分17A而紧固至后乘客门17,并且包括闩锁机构83(图45),该闩锁机构能够与固定地紧固至开口814的凹入边缘部分814A的碰销820以可释放的方式接合。如将详细描述的,闩锁组件83能够操作成接合碰销820并且将闭合构件17以可释放的方式保持处于闭合构件17的完全关闭位置。设置有外部把手822和内部把手824,以用于选择性地对闩锁组件83的闩锁释放机构进行致动,从而将碰销820从闩锁机构830释放并且允许闭合构件17随后移动至闭合构件17的打开位置。可选的锁钮826提供了对闭合闩锁组件83的锁定状态的视觉指示并且也可以能够操作成机械地改变闩锁组件83的锁定状态。车身14中的开口814的边缘部分814A上安装有抗天气或门密封件828,并且抗天气或门密封件828适于在闭合构件17由闩锁组件83的闩锁机构830保持处于闭合构件17的完全关闭位置的情况下在与闭合构件17的配合密封表面接合时被弹性地压缩,以在抗天气或门密封件828与闭合构件17的配合密封表面之间提供密封的接口,该密封的接口被配置成例如在使可听到的风噪音最小化的同时防止雨水和泥土进入到乘客车厢中。

如图45中最佳所示,闩锁组件83包括闩锁机构830、闩锁释放机构832、闩锁系拉机构134、动力释放致动器136、系拉马达或动力系拉致动器99、系拉分离机构840和动力系拉分离致动器。尽管被分开地并且示意性地示出,但车辆闭合闩锁领域的普通技术人员将理解,由以上指出的动力致动器(836、99)中的一个或更多个动力致动器提供的特定功能可以被组合以提供对所指出的机构中的任意两个或更多个机构的协同致动。

在图45中,闩锁组件83的各个部件在车门17位于其打开位置——其中,闭合闩锁组件83从碰销820移开——中时定向和/或定位成建立未闩锁模式。动力闭合闩锁组件83的各个部件在车门或后乘客门17位于第一或“软关闭”(即,部分关闭)位置——其中,碰销820由闩锁机构830保持——中时可以替代地定向和/或定位成建立闩锁-未系拉或“辅助闩锁”模式。此外,动力闭合闩锁组件83的各个部件也可以在门17位于第二或“硬关闭”(即,完全关闭)位置——其中,碰销820由闩锁机构830保持——中时定向和/或定位成建立闩锁-系拉或“主要闩锁”模式。车门17从其部分关闭位置到其完全关闭位置的移动可以基于由车辆操作者对车辆施加的闭合力来手动地完成,或者替代性地,可以基于致动闩锁系拉机构834的动力系拉致动器99经由被配置成提供“软关闭”特征的动力操作式系拉操作来完成。

闩锁组件83被示出为包括支承并封闭以上描述的机构和动力致动器的框架板850和板盖852(图44)。框架板850是被配置成固定地紧固至车门17的边缘部分17A并且限定进入开孔854的刚性部件,在车门17相对于车身14移动时,碰销820行进穿过进入开孔854。闩锁机构830在此非限制性示例中被示出为包括棘轮856和棘爪858的单棘轮和棘爪装置。棘轮856经由棘轮枢轴销160被支承为相对于框架板850进行旋转移动。棘轮856被配置成包括:终止于碰销捕获套864的波状导引通道862;棘轮接合部件或关闭凹口866;系拉凹口868;以及在关闭凹口866与系拉凹口868之间延伸的第一凸轮表面870。棘轮856还被配置成包括弓形延伸部872,弓形延伸部872具有在鼻状末端部分876与系拉凹口168之间延伸的第二凸轮表面874。以箭头878示意性示出的棘轮偏置构件适于通常将棘轮856偏置成绕棘轮枢轴销860沿第一或“释放”方向(即,图45中的逆时针方向)旋转。棘轮856在图45中被示出为旋转至碰销释放位置,其中导引通道862与框架板850中的进入开孔54大致对准。如将详细描述的,棘轮856能够在介于其碰销释放位置、两个不同的碰销捕获位置以及棘轮超程位置之间的运动范围内移动,所述两个不同的碰销捕获位置包括辅助碰销捕获(即,“软关闭”)位置和主要碰销捕获(即,“硬关闭”)位置。

棘爪858被支承为相对于从框架板850延伸的棘爪枢轴销880进行旋转移动。棘爪858被配置成包括本体部分,本体部分具有闩锁肩部884,闩锁肩部884适于响应于棘轮856在其辅助碰销捕获位置与其主要碰销捕获位置之间的移动而倚靠(ride against)在棘轮856的第一凸轮表面870上。棘爪858上的闩锁肩部884还被配置成在棘轮856位于其主要碰销捕获位置时接合关闭凹口866。棘爪858还包括释放突部部分886和开关突部部分888。动力释放致动器836经由闩锁释放机构832作用于棘爪858的释放突部部分886上或联接至棘爪858的释放突部部分886,并且动力释放致动器836能够操作成使闩锁释放机构832选择性地使棘爪858在棘轮释放位置与棘轮保持位置之间移动。棘爪开关890(图5A所示的多个主要棘轮位置传感器或开关85和辅助棘轮位置传感器或开关85中的一个)安装至框架板850并且与棘爪858的开关突部部分888对准以提供棘爪858位于其棘轮释放位置时的确定的棘爪位置信号。棘爪偏置构件(未示出)被设置成用于通常将棘爪858沿第一旋转方向(例如,图45中的顺时针方向)朝向其棘轮保持位置偏置。棘爪858在图45中被示出为位于其棘轮释放位置并且并且可以移动到其棘轮保持位置。

闩锁释放机构832——尽管仅示意性示出——被本领域技术人员理解为能够在第一或“非致动”状态下操作以使棘爪858位于其棘轮保持位置以及能够在第二或“致动”状态下操作以使棘爪858位于其棘轮释放位置。通常,闩锁释放机构832被配置成由除了动力释放致动器836以外的一个或更多个手动致动的释放机构致动。例如,图45示意性示出了内侧释放机构833,内侧释放机构833被布置成将内侧把手824与闩锁释放机构832互连以允许经由内侧把手824的致动选择性地释放闩锁机构830。同样,还示意性示出了外侧释放机构835,外侧释放机构835被布置成将外侧把手822与闩锁释放机构832互连以允许经由外侧把手822的致动选择性地释放闩锁机构830。动力释放致动器836——尽管仅示意性地示出——被理解为包括能够致动以提供动力释放功能的任何类型的动力操作装置(即,电动马达等)。

如所指出的,闩锁组件83还包括由动力系拉致动器99控制的闩锁系拉机构834以及由动力系拉分离致动器(未示出)控制的系拉分离机构840。闩锁系拉机构834总体上包括系拉杆200和系拉连杆202,而系拉分离机构840总体上包括分离杆204和致动杆(未示出)。系拉连杆202操作性地联接至分离杆204,使得动力系拉致动器99和动力系拉分离致动器中的至少一者的选择性致动将引起这两个部件的协同移动。此外,动力系拉致动器99和动力系拉分离致动器——尽管仅示意性地示出——被设想为动力操作式致动器比如电动马达,以提供对闩锁系拉机构834的致动和/或系拉分离机构140的致动的选择性控制。

系拉杆900被示出为经由系拉杆枢轴销910以可旋转的方式安装至框架板850。系拉连杆902是具有第一端部部分、第二端部部分以及位于第一端部部分与第二端部部分之间的中间部分的伸长部件。系拉连杆902的中间部分包括伸长波状导引槽922。系拉滑轮924以可旋转的方式安装在系拉杆枢轴销910上,并且包括限定凹口和开口928的外围凸缘926,系拉杆900保持在开口928内。由于此布置,系拉滑轮924经由动力系拉致动器99的受控致动而沿系拉(即,逆时针方向)方向的旋转将引起系拉杆900在其系拉开始位置与其系拉停止位置之间的旋转。系拉分离机构840能够操作成使系拉连杆902(当位于其未系拉位置时)在其系拉连杆接合位置与其系拉连杆分离位置之间枢转。

分离杆904经由分离杆枢轴销940以可旋转的方式安装至框架板850,并且被配置成包括从动突部942、致动突部944和开关突部部分946,从动突部942保持在系拉连杆902的导引槽922中。分离杆开关948安装至框架850并且定向成提供关于分离杆904的位置的确定的分离杆位置信号。还应指出的是,闩锁组件83包括接近于系拉连杆902的第二端部部分安装至框架板850的保持销980。保持销880在发生碰撞事故情况下提供对系拉连杆902的硬停止。

图46示出了闭合构件(例如,门12或17)的各种位置1000、1002、1004、1006、1008、1010、1012、1014、1016、1018,包括机械硬停止位置1000、完全打开位置1002、闭合构件12、17的预期位置1004的示例、闭合构件12、17的实际位置1006的示例、以及预期位置1004与实际位置1006之间的差或增量1008。图45所示的闭合构件12、17的位置1000、1002、1004、1006、1008、1010、1012、1014、1016、1018还包括弹出位置1010、闭合构件或闩锁打开位置1012、闩锁辅助或辅助碰销捕获位置1014(对应于辅助闭合构件位置)、闭合构件或闩锁完全关闭位置或主要碰销捕获位置1016(对应于主要闭合构件位置)、以及闭合构件或闩锁超程位置1018。所示的位置1000、1002、1004、1006、1008、1010、1012、1014、1016、1018仅旨在作为示例,设想闭合构件12、17的其他位置和配置。

图47A至图47D示出了闩锁组件83(例如,使用传感器190、248)的闩锁状态开关状态。因此,例如可以使用闩锁组件83的传感器190、248来确定闭合构件12、17的位置。如所讨论的,至少一个闭合构件反馈传感器64和/或与致动器22相关联的马达位置传感器可以替代地或附加地用于确定闭合构件的位置和/或速度。

图48示出了示例闭合构件运动轮廓68,其示出了闭合构件12、17的速度如何可以受到老化密封载荷的影响。如以上所讨论的,控制器50被配置成接收运动输入56和自动模式启动输入54之一,以控制闭合构件12、17向打开位置的移动。控制器50还被配置成通过使用运动输入56和自动模式启动输入54之一命令致动器22来控制闭合构件12、17的移动。如图所示,对运动输入56和/或自动模式启动输入54的接收还可以使动力闭合构件致动系统20命令闩锁组件83解锁/未闩锁(例如,使用释放致动器836),从而允许闭合构件12、17在密封载荷下打开至弹出位置。闭合构件12、17将在动力下(例如,通过致动器22)无缝地连续运动,以便例如以预先计划的角度满足打开请求。已老化的密封件828的密封载荷减小弹出速度(即,由虚线示出并用数字1020指示的速度差),直到棘轮156将不从其主要位置或辅助位置旋转。

因此,控制器50另外被配置成使用至少一个闭合构件反馈传感器64(或使用如图47A至图47D中所示的闩锁状态开关)来监测闭合构件12、17的实际速度和实际位置中的至少一个。控制器50还计算闭合构件12、17的预期位置1004与闭合构件12、17的实际位置1006之间的位置差(例如,在图46中示为增量1008)以及闭合构件12、17的预期速度与闭合构件12、17的实际速度之间的速度差(例如,在图48中示出)中的至少一者。然后,控制器50可以调节对致动器22的命令以补偿位置差和速度差中的至少一个,以将闭合构件12、17移动至预期位置和预期速度中的至少一个。因此,动力闭合构件致动系统20的控制器50可以通过增加变化水平的动力(例如,来自致动器22)来维持致动器22的一致性能,以补充在车辆寿命期间来自门密封件828或其他部件磨损或润滑变化的损失。控制器50在确定可能需要的补偿量时也可以考虑存储在存储器装置92(图5)中的日期和里程以及循环计数97。

控制器50还被配置成确定闭合构件12、17是否移动到预期位置。然后,响应于确定闭合构件12、17没有移动到预期位置,控制器50可以返回调节对致动器22的命令,以补偿位置差1008和速度差中的至少一个,以将闭合构件12、17移动到预期位置和预期速度中的至少一个。控制器50另外被配置成响应于确定闭合构件12、17移动到预期位置而确定闭合构件12、17是否移动到最终位置。然后,响应于确定闭合构件12、17没有移动到打开位置,控制器50可以返回以使用至少一个闭合构件反馈传感器64监测闭合构件12、17的实际速度和实际位置中的至少一个。控制器50还被配置成响应于确定闭合构件12、17移动到最终位置而命令致动器22停止闭合构件12、17的移动。由于控制器50还可以与闩锁83通信,因此控制器50还被配置成向闩锁83发出释放命令。例如,控制器50可以被配置成命令动力释放致动器836(图45)将棘爪158移动到棘轮释放位置。

如图49和图50最佳所示,还提供了控制车辆10的闭合构件12、17的移动的方法。该方法包括步骤1100:接收运动输入56和自动模式启动输入54之一以控制闭合构件12、17向打开位置的移动。该方法还可以包括步骤1102:向闩锁83发出释放命令。然后,该方法可以包括步骤1104:通过使用运动输入56和自动模式启动输入54之一命令致动器22来控制闭合构件12、17的移动。该方法通过1106继续:使用至少一个闭合构件反馈传感器64监测闭合构件12、17的实际速度和实际位置中的至少一个,所述至少一个闭合构件反馈传感器64被配置成感测闭合构件12、17的实际速度和实际位置中的至少一个(例如,可以经由闩锁信号、门位置信号或门致动器位置信号来监测闭合构件的实际位置)。接下来,该方法包括步骤1108:计算闭合构件12、17的预期位置与闭合构件12、17的实际位置之间的位置差以及闭合构件12、17的预期速度与闭合构件12、17的实际速度之间的速度差中的至少一者(例如,密封件828的载荷不能移动闭合构件,使得闩锁83移出辅助位置)。该方法继续步骤1110:调节对致动器22的命令以补偿位置差和速度差中的至少一个,以将闭合构件12、17移动到预期位置和预期速度中的至少一个(例如,闭合构件移动到如来自828的载荷例如使用比例积分微分(PID)控制将其移动到的预期位置)。如所讨论的,这种补偿还可以例如可以考虑存储在存储器装置92(图5A)中的日期和里程以及循环计数97。

具体地参照图49,如果闭合构件12、17例如由于因铰链周围或致动器齿轮系中缺乏润滑而引起的摩擦增加、马达的操作的变化(例如,马达电刷磨损等)而没有以预期的方式移动,则动力闭合构件致动系统20可以补偿。因此,该方法可以另外包括步骤1112:确定闭合构件12、17是否移动到预期位置。该方法的下一步骤是1114:响应于确定闭合构件12、17未移动到预期位置,返回到以下步骤——调节对致动器22的命令以补偿所计算的差以将闭合构件12、17移动到预期位置和预期速度中的至少一个。该方法可以继续步骤1116:响应于确定闭合构件12、17移动到预期位置,确定闭合构件12、17是否移动到最终位置。然后,该方法包括步骤1118:响应于确定闭合构件12、17未移动到最终位置,返回到以下步骤——使用至少一个闭合构件反馈传感器64监测闭合构件12、17的实际速度和实际位置中的至少一个,所述至少一个闭合构件反馈传感器64被配置成感测闭合构件12、17的实际速度和实际位置中的至少一个。该方法还包括步骤320:响应于确定闭合构件12、17移动到最终位置,命令致动器22停止闭合构件12、17的移动。

如以上所讨论的,密封载荷可以根据密封件828的温度和老化而变化。因此,该方法可以继续步骤1122:确定闭合构件12、17是否移动到打开位置(例如,使密封件828的载荷将闭合构件移动到闩锁83已经移动经过辅助位置的位置)。该方法可以继续步骤1124:响应于确定闭合构件12、17未移动到打开位置,返回到以下步骤——使用至少一个闭合构件反馈传感器64监测闭合构件12、17的速度和位置之一,所述至少一个闭合构件反馈传感器64被配置成感测闭合构件12、17的实际位置。该方法还包括步骤1126:响应于确定闭合构件12、17移动到打开位置(即,可以开始正常的门控制),命令致动器22在自动模式和动力辅助模式之一下移动闭合构件12、17。

返回参照图12,控制器50还被配置成接收至少一个环境条件以用于调节力命令88和/或运动命令62,并且力命令88和/或运动命令62还可以由人工智能学习算法61基于控制器50对动力闭合构件致动系统20的历史操作的监测和分析来修改。因此,控制器50生成如由人工智能学习算法61修改的力命令88和运动命令62之一,以提供给动力信号生成器118。

根据操作示例,运动速度调节因子122可以与环境条件相关和/或由人工智能学习算法61修改。例如,低于0摄氏度的温度读数的感测的环境条件可以与被调节以导致目标运动速度增加百分之十的速度调节因子122相关,以及例如低于-10摄氏度的温度读数的感测的环境条件可以与被调节以导致目标运动速度增加百分之十五的速度调节因子122相关。基于控制器50对动力闭合构件系统20的历史操作的监测和分析,还可以通过人工智能学习算法61修改速度调节因子122。具体地,控制器50可以基于对动力闭合构件系统20的历史操作的监测和分析来使用人工智能学习算法61调节用于确定运动命令62的多个自动闭合构件运动参数68、93、94、95。同样,控制器50在自动模式下使用控制器50的脉冲宽度调制控制信号生成器118的占空比寄存器126和比较器128基于运动命令62生成脉冲宽度调制控制信号。应当认识到,控制器50可以被配置成以其他方式根据环境条件和/或如由人工智能学习算法61修改的来生成运动命令62。

返回参照图13,与脉冲宽度调制占空比的变化相对应的占空比寄存器的变化可以通过由控制器50的运动命令计算器基于至少一个环境条件和/或如由人工智能学习算法61修改的对运动命令62的计算来提示。因此,如图所示,脉冲宽度调制控制信号的脉冲宽度调制占空比增加。

返回参照图19,控制器50还被配置成在动力辅助模式下从至少一个闭合构件反馈传感器64接收闭合构件的位置和速度中的至少一个。因此,控制器50被配置成在动力辅助模式下使用控制器50的力命令算法98和闭合构件模型102基于运动输入56和闭合构件的位置和速度中的至少一个来确定力命令88。基于对动力闭合构件系统20的历史操作的监测和分析,控制器50可以使用人工智能学习算法61调节用于确定力命令88的多个动力闭合构件运动参数96、100、102、106。因此,控制器50被配置成在动力辅助模式下使用控制器50的脉冲宽度调制控制信号生成器118基于力命令88生成脉冲宽度调制控制信号,以改变作用在闭合构件上的致动器输出力以辅助闭合构件的移动。

控制器50还使用预补偿来计算力命令88,并且还被配置成响应于接收到运动输入56而在动力辅助模式下基于运动输入56以及由人工智能学习算法61修改的力灵敏度因子130、至少一个环境条件和闭合构件模型102的函数来计算力命令88。例如,当感测的环境条件低于0摄氏度的温度读数时,可以增加基于感测的环境条件的力命令88,并且响应于来自用户75的模拟较轻的物理闭合构件(例如,门12)的手动输入,调节该力命令88以用更大的力移动闭合构件。例如,作为示例,闭合构件的重量增加了与环境条件相关的乘数因子。应当认识到,控制器50可以被配置成以其他方式根据环境条件和/或如由人工智能学习算法61修改的来生成力命令88。

返回参照图20,如所讨论的,控制器50可以替选地使用后补偿来计算力命令88。对于后补偿,控制器50响应于接收到运动输入56而在动力辅助模式下根据从运动输入56、闭合构件模型102、至少一个环境条件计算的初始力命令132以及如由人工智能学习算法61修改的力灵敏度因子130来计算力命令88。闭合构件模型102利用多个模型参数106,所述多个模型参数106例如包括闭合构件重量属性和闭合构件摩擦属性以及闭合构件惯性属性和闭合构件长度属性。例如,控制器50将确定根据感测的环境条件的所需的灵敏度变化,系统20将力灵敏度因子130应用于力命令计算132的结果,这将导致脉冲宽度调制控制信号生成器的占空比计算的输入值的变化。通过调节力命令88(后处理)来完成对灵敏度的修改。

返回参照图40,示出了针对多个闭合构件角度中的每一个对与闭合构件的运动相关的运动轮廓的调节。这种调节可以是感测的环境条件的函数和/或由于人工智能学习算法61对自动闭合构件运动参数68、93、94、95的调节。例如,闭合构件的预定速度Vswing可以根据温度而增加或减小。类似地,返回参照图41,还示出了针对多个闭合构件角度中的每一个对与闭合构件经受的(例如,在闭合构件的把手处测量的)力相关的力轮廓的调节。这种调节可以是感测的环境条件的函数和/或由于人工智能学习算法61对动力闭合构件运动参数96、100、102、106的调节。由致动器22提供预定辅助力Fswing,该预定辅助力Fswing贯穿闭合构件的运动范围直到其中辅助力增加至较高的预定辅助力Fcheck的检查位置,然后返回到Fswing,直到其中辅助力Fstop施加至闭合构件的停止位置。该辅助力可以根据环境条件例如温度而增加或减小,并且还可以由人工智能学习算法61来修改。例如,该辅助力可以根据环境条件例如有风的环境条件而增加,以帮助在感测的有风条件期间将闭合板保持在门检查位置。

返回参照图43,动力闭合构件致动系统20还可以包括无线网络接口700,所述无线网络接口700与控制器50通信并且被配置成从远程服务器701接收车辆10在车辆10的位置处的至少一个环境条件705。因此,使用人工智能学习算法61监测和分析的历史操作包括车辆10的至少一个环境条件705。因此,控制器50还被配置成基于车辆10的至少一个环境条件来调节多个自动闭合构件运动参数68、93、94、95和多个动力闭合构件运动参数96、100、102、106。类似地,动力闭合构件致动系统20可以包括全球定位系统模块702,所述全球定位系统模块702被配置成从全球定位系统卫星704接收全球定位系统数据和车辆10的至少一个环境条件705。因此,使用人工智能学习算法61监测和分析的历史操作包括全球定位系统数据,并且控制器50还被配置成基于全球定位系统数据调节多个自动闭合构件运动参数68、93、94、95和多个动力闭合构件运动参数96、100、102、106。

图53示出了用于使用神经网络1202执行人工智能学习算法61和/或用于训练神经网络的示例性系统1200。更详细地,如以上所讨论的,控制器50可以包括存储器装置92以及处理器或其他计算单元110。控制器50还包括数据存储装置1204。代码1206(例如,用于人工智能学习算法61的软件指令)、神经网络1202(例如,训练的)、训练代码1208和历史数据集1210(例如,先前的输入和相关联的车辆状态)被存储在存储器装置92中。

示例神经网络1202在图54中示出,并且包括第一输入节点1212(例如,用以操作的输入)、第二输入节点1214(例如,环境状态或环境条件)、第三输入节点1216(例如,车辆位置)和第四输入节点1218(例如,当日时间)。神经网络1202还包括与输入节点1212、1214、1216、1218互连且彼此互连的第一隐藏层1220、第二隐藏层1222、第三隐藏层1224、第四隐藏层1226、第五隐藏层1228和第六隐藏层1230。神经网络1202另外包括与隐藏层1220、1222、1224、1226、1228、1230互连的第一输出节点1232(例如,闭合构件打开/关闭速度)、第二输出节点1234(例如,门停止位置)、第三输出节点1236(例如,窗户打开命令)和第四输出节点1238(例如,在超时时段之后自动闭合构件关闭)。然而,设想层和节点的其他配置。

如图51至图52中最佳示出的,还提供了使用动力闭合构件致动系统20来控制车辆10的闭合构件12的移动的方法。首先参照图51,该方法包括步骤1300:接收与动力辅助模式相关联的运动输入56和与自动模式相关联的自动模式启动输入54之一。接下来,该方法包括步骤1302:向致动器22发送自动模式下基于多个自动闭合构件运动参数68、93、94、95的运动命令62和动力辅助模式下基于多个动力闭合构件运动参数96、100、102、106的力命令88之一,以改变作用在闭合构件12上的致动器输出力以移动闭合构件12。该方法进行步骤1304:使用人工智能学习算法61监测和分析动力闭合构件致动系统20的历史操作,并相应地调节多个自动闭合构件运动参数68、93、94、95和多个动力闭合构件运动参数96、100、102、106。

如以上所讨论的,多个自动闭合构件运动参数68、93、94、95包括多个闭合构件速度和加速度轮廓68和多个闭合构件停止位置93以及闭合构件检查灵敏度94和多个闭合构件检查轮廓95中的至少一个。多个动力闭合构件运动参数96、100、102、106包括多个固定的闭合构件模型参数96和力命令生成器算法100以及门模型102和多个闭合构件部件轮廓106中的至少一个。

如在图52中最佳示出的,如果环境传感器80、81是雨传感器81,则该方法还可以包括步骤1306:确定使用雨传感器81是否检测到雨(例如,用户历史数据示出了在下雨时更快地打开闭合构件12的动力打开循环的手动超控)。该方法还包括步骤1308:响应于确定使用雨传感器81未检测到雨,利用第一速度算法移动闭合构件12。该方法可以进行步骤1310:响应于确定使用雨传感器81检测到雨,利用第二速度算法(例如,第二速度算法可以实现比第一速度算法更高的闭合构件12的速度)移动闭合构件12。因此,第二速度算法可以基于用户历史数据来优化性能。

此外,由于动力闭合构件致动系统20还可以包括被配置成从全球定位系统卫星704接收全球定位系统数据的全球定位系统模块702(图43),该方法还可以包括以下步骤:使用通过无线链路(707,705)通信的无线网络接口700从远程服务器701接收车辆10在车辆10的位置处的至少一个环境条件。该方法还可以包括以下步骤:基于车辆10的至少一个环境条件来调节多个自动闭合构件运动参数68、93、94、95和多个动力闭合构件运动参数96、100、102、106。

因此,所描述的对门运动控制算法的人工智能学习增强允许控制器50(例如,在软件中)修改运动算法输出62和力算法输出88的能力。例如,作为示例,可以采用以软件实现的图54所示的神经网络。可以基于历史用户数据以确定使用趋势(门摆动速度、门打开角度、基于车辆位置(GPS输入-家庭、办公室、停车场)的门打开角度、环境条件(雨、冷、热)等)进行修改。然后,控制器50基于该历史数据预测用户对门功能的期望。最终意图是控制器50打开动力打开门12,这与用户75在任何给定情况下手动进行的相同。因此,本文中公开的动力闭合构件致动系统20提供了对于每个驾驶员唯一的高度优化的动力门解决方案。因此,代替将某些门性能值或参数硬编码到算法中,本文中公开的动力闭合构件致动系统20提供了修改实际算法。本文中公开的动力闭合构件致动系统20通过调节性能设置以适合各个使用情况而不是针对所有情况的单一设置而有利地改进了与车辆10的用户接口。此外,控制器50可以学习并结合用户模式以预期并优化交互(例如,如果用户总是在炎热的天气打开门12以冷却车辆10,则系统20可以选择在操作者物理地到达车辆10之前降下窗户和/或打开门12,从而节省时间)。例如,如果操作者在下午5点(即,匆忙中)连续超控动力关闭,则系统20可以选择与其他时间相比在下午5点实现更高速度的动力关闭。

现在另外参照图55A至图66,提供了动力闭合构件致动系统20在操作中的一些说明性流程图。例如,参照图55A和图55B,示出了当在自动模式下操作时从完全闩锁位置移动门的方法1400。该方法开始于在步骤1402处控制器50例如从内门部把手开关或诸如FOB、蜂窝电话等的无线装置接收自动打开命令。接下来,该方法继续到步骤1406:控制闩锁83以将门从其主要闩锁位置释放。例如,电子信号可以从控制器50传输至闩锁83,以用于命令闩锁83控制闩锁83的动力释放马达。接下来,该方法继续到步骤1408:在闩锁83已经被释放之后不控制致动器22,例如控制闩锁83的动力复位功能以将棘爪返回到其可以阻挡棘轮的状态,或者控制闩锁83以维持其动力释放状态。该方法允许由围绕车身14的周边的抗天气密封件施加到门上的膨胀密封力,闭合构件被配置成在门完全关闭时由于其在车身14与门12之间的压缩状态而关闭,以将门12推出其主要闩锁位置并且朝向门12的弹出位置(例如以3度的门打开角度),而无需来自致动器22的帮助。换言之,致动器22直到门12在密封载荷的力下从其主要关闭位置移动离开到其弹出位置之后才被通电。因此,提供了具有控制器50的一种动力闭合构件致动系统20,控制器50与闩锁83的动力释放机构和用于移动门12的致动器22通信,其中控制器50被配置成控制动力释放机构以释放闩锁83,以允许门在门密封件的影响下移动到弹出位置而不控制致动器22,或者换言之,致动器22在门12的密封载荷下在弹出期间不被通电,并且控制器还被配置成在门12已经到达弹出位置之后控制致动器22移动门12。接下来,该方法以如下步骤继续到步骤1410:检测门是否移动到弹出位置例如图46的位置1012。如果控制器50检测到门12已经移动到弹出位置,则在步骤1412处该方法以如下步骤进行:控制非接触障碍物检测系统例如至少一个非接触障碍物检测传感器66的激活。在一种可能的配置中,非接触障碍物检测系统仅在自动门模式期间被激活,以及将被禁用或启用,但是在动力辅助模式下,从非接触障碍物检测系统到控制器50的信号将被控制器50忽略,以便在动力辅助模式期间不会由于用户接近门12——这将被非接触障碍物检测系统检测到——而触发门运动的中断。如果控制器50没有检测到门12已经移动到弹出位置,则在步骤1414处该方法以如下操作进行:确定在到达门12的弹出位置之前控制器50是否已经接收到停止命令。如果控制器50在门12移动到弹出位置之前没有接收到类似于自动模式启动输入54但是打算停止门12的停止命令,则在步骤1416处该方法进行以下操作:例如通过从闩锁83接收到指示闩锁83部件的各种位置的霍尔传感器信号来确定门12是否已经移动离开主要闩锁位置(参见图46)。如果控制器50确定门12已经移动离开主要闩锁位置,则该方法返回到检测门12是否已经移动到弹出位置的步骤1410。如果控制器50已经确定门12没有移动离开主要闩锁位置,则该方法进行到以下操作:已经确定门12处于阻挡状态例如如果对象倚靠在门12上,或者门12处于冻结状态例如如果在门12与车身14之间存在结冰,在步骤1420处执行阻挡或冻结门例程(如图65和图66中说明性地示出的)。该方法在已经执行了(例如图65和图66的)阻挡或冻结门例程之后,该方法将返回到步骤1416,以确定作为执行阻挡或冻结门例程的结果,门12是否已经成功地从主要闩锁位置移动。如果在步骤1416处控制器50在门12已经移动到弹出位置之前接收到停止命令,则该方法进行到步骤1424:重置闩锁83,并且当棘轮返回到主要碰销保持位置时,允许棘爪返回到与棘轮的锁定接合。接下来,在步骤1424之后,该方法以如下步骤继续:在步骤1426处不控制系拉致动器99。接下来,在步骤1426之后,该方法以如下步骤继续:将动力闭合构件致动系统20的操作状态从自动模式转换到手动或动力辅助模式。在步骤1412之后,控制器50可以在步骤1430中确定使用非接触检测系统在车辆10旁边以及例如在门的摆动路径内是否检测到障碍物。如果在步骤1430处控制器50确定在车辆10或门12旁边没有检测到障碍物,则在步骤1432中控制器50可以命令动力门致动器22将门12从弹出门位置移离并移向打开位置,或者控制闩锁83以允许门移动到弹出位置并将操作模式转换到动力辅助模式。控制器50可以控制致动器22以在步骤1432中将门移动到计划的门位置,该位置可以是预定位置,例如75度的门角度。该方法继续到步骤1436,由此控制器50继续在门运动期间确定使用非接触检测系统在车辆10旁边以及例如在门12的摆动路径内是否检测到障碍物。例如,虽然在步骤1430中可能没有检测到障碍物或者在步骤1430中可能没有检测到门12的摆动路径内的障碍物,但是障碍物可能随后在门打开期间移动到门12的摆动路径中。如果在步骤1436中没有检测到障碍物,则该方法以如下步骤继续:在步骤1438处控制器50监测门位置并检测门位置是否已经移动到其计划的门位置。如果在步骤1436中检测到障碍物,则该方法继续步骤1440:执行非计划停止例程以停止门移动。接下来在步骤1441处,一旦控制器50已经接收到自动模式恢复命令——例如由于用户第二次按下内部把手开关,该方法就可以返回到步骤1432,并且当系统20在自动模式下操作时,从门运动停止的点恢复门运动轮廓,例如如本文在一些示例中讨论的位置与速度运动轮廓的关系。提供了转换连续性,或者换言之,提供了来自完全相同的“操作点”的操作连续性的特性,而没有状态和控制变量的任何离散变化,以确保门不会经历任何突然的急动,从而提供了模式之间的平滑的不引人注意的转换。在重复原始打开命令时,门12将继续移动跟踪到打开轮廓,并以基本的打开轮廓结束操作。控制器50可以通过在最终门角度的最终20%内在图58A中的框897处示出的将门运动轮廓会聚到发起恢复之前的轮廓来控制恢复之后的门运动。控制器50可以在接收到具有相同轮廓——例如与恢复之前的原始打开门运动轮廓相同的斜率——的门恢复命令之后开始门运动。可以控制恢复命令之后的门运动,以便不超过门轮廓移动速度,以减少门振荡的发生,从而提供平滑的门运动。例如,在中断点处,系统变量和数据可以在中断之前被存储到存储器中,并且在接收到恢复命令之后被调用,以在中断之前和在从中断恢复之后提供来自相同操作点的操作连续性。当在自动模式与动力辅助模式之间切换时,例如在自动模式中断时从自动模式切换到动力辅助模式,或者在恢复命令之后从动力辅助模式切换到自动模式,动力闭合构件致动系统20可以具有来自相同操作点的操作连续性,以及换言之,状态和控制变量没有任何离散变化。因此,提供了一种具有控制器50的动力闭合构件致动系统20,控制器50与致动器22通信,被配置成根据门运动轮廓控制致动器22移动门12,其中,控制器50被配置成在致动器22的控制中断后根据中断前的门运动轮廓控制致动器20,而在从中断恢复后不超过门运动轮廓的最大操作限制。例如,这种超过操作限制在图58A中示出为在位置1001处的中断之前自动模式门运动轮廓997上方的线999。将包含在线997的操作限制下方的线995指示的恢复之后的运动作为目标。图58A示出了根据说明性实施方式的速度与门角度的关系的门运动图表991,其示出了在自动模式操作期间在中断之前在打开方向899上的门运动993、在自动模式操作中的中断之后在动力辅助操作期间的门运动995、随后是具有不超过在中断之前的门运动的运动轮廓的自动模式操作的恢复996。如果在步骤1438处控制器50没有检测到或确定门12已经移动到其最终的门打开位置,则该方法返回到步骤1430:使用非接触障碍物传感器进行监测以确定在车辆10旁边是否检测到障碍物。如果在步骤1438处控制器50已经检测到或确定门已经移动到其计划的门打开位置,则在步骤1444处控制器50可以控制致动器22停止门12。控制器50可以根据本文中上面的示例性教导预先预期门12在计划位置之前的位置处到达计划位置,并减小门12的速度,以与系拉速度匹配或几乎匹配,从而提供动力操作模式与系拉模式之间的无缝转换。因此,提供了具有控制器50的动力闭合构件致动系统20,控制器50与致动器22和用于控制门的运动的辅助致动器(例如,门呈现器或破冰器2717的致动器、系拉致动器99)通信,其中,控制器50被配置成在致动器20与辅助致动器之间转换控制,使得门12在被致动器20或辅助致动器控制时的速度在控制的转换期间匹配或基本上匹配。在步骤1444之后,该方法继续以下步骤:在门12以例如上文所述的方式静止时,在步骤1446处控制器50激活致动器22的门检查操作(参见图60),以检查门12是否在计划位置。如果门被偏置(例如,例如由于铰链的几何形状)成在根据门停止时的位置的重力下略微朝向打开位置或关闭位置之一摆动,则致动器22可能需要被供应足以抵抗由于该偏置引起的门运动的运动的一定程度的动力。随着时间的推移,用于对在这种门检查模式下操作的致动器22供电的这种电力的供应可能耗尽任何这种电源,例如备用电池电源等。因此,控制器50可以被配置成在诸如例如15分钟的超时时间段之后控制致动器22将门移动到完全打开位置或完全关闭位置之一。如果门被移动到完全关闭位置,则用于防止门移动的门检查功能现在将由门闩锁83承担,并且致动器22可以被断电或去激活,并且用于电源的能量被保留。如果提供了单独的门检查装置,并且该装置不是由致动器22的控制而产生的门检查功能,而是由例如基于摩擦的制动或止动机构产生的门检查功能,则控制器50可以激活门检查装置,以替代控制致动器22检查门12是否在计划位置。如果在步骤1430处控制器50确定在门运动期间在车辆10旁边检测到障碍物,则在步骤1432中控制器50可以命令门停止。在步骤1446之后,该方法可以结束,并且门可以保持在计划的停止位置,直到控制器50接收到下一个自动门模式命令,或者用户在动力辅助模式下控制门12。

现在参照图56A和图56B,示出了方法1500,其示出了用于从打开位置关闭门的动力闭合构件致动系统20的操作。方法1500开始于控制器50监测用户或人发起的其打算关闭门12的指示,例如通过在步骤1502处控制器50以上文仅作为示例描述的方式监测诸如来自内部门把手开关、或键FOB按钮、或远程装置输入的自动关闭命令。当控制器50接收到自动关闭命令时,门12可以处于任何打开位置。如果在步骤1502处控制器50确定人已经打算将门12移动到关闭和完全闩锁位置,则在步骤1504处控制器50可以使用非接触障碍物检测系统确定用户是否在门12旁边或接近门12。控制器50可以能够基于由非接触障碍物检测系统检测到的信号更好地区分人类对象和非人类对象,例如如果非接触障碍物检测系统包括雷达传感器,则可以基于对象的轨迹速度、对象的反射率特性、对象的大小——如由作为人类可能会以可检测的方式改变发射波的对象反射之后由雷达传感器接收到的发射雷达波之间的差异所确定的——来区分人类和非人类对象。如果在步骤1504处控制器50确定用户接近门12,例如在距门的阈值距离内,例如1米,则接下来在步骤1506处该方法可以进行以下步骤:控制器50确定门12是否静止。可以可选地执行该步骤1506,以确保用户没有手动移动门,从而避免由用户对门的手动移动被门的自动控制超控之间的冲突情况。如果在步骤1506处控制器50没有确定门12是静止的,则控制器50可以进行到步骤1508,在步骤1508处控制器50可以监测门12已经停止移动的检测,并且如果没有停止移动,则控制器50可以继续监测门12是否静止。如果在步骤1508处控制器50确定门是静止的,则该方法可以进行到下一步骤:在步骤1510处检测门在预定时间段内是否没有从静止移动。如果在步骤1510处控制器50确定门12在预定时间段内没有保持静止,则该方法可以返回到步骤1508以确定门12是否已经停止移动。如果在步骤1510处控制器50确定门已经在预定时间段内保持静止,或者从步骤1506继续,则接下来该方法进行到以下操作:在步骤1516处,控制器50使用非接触障碍物检测系统确定在门的关闭路径内是否检测到障碍物。如果在步骤1516处控制器50使用非接触障碍物检测系统确定在门12的关闭路径内检测到障碍物,则控制器50可以进行到步骤1518,以以本文说明性描述的方式(例如,在接触障碍物之前,允许与障碍物的一些接触之前)执行计划的停止位置例程以停止门12。如果在步骤1516处控制器50使用非接触障碍物检测系统确定在门12的关闭路径内没有检测到障碍物,则控制器50可以进行到步骤1520,以控制致动器22将门移向辅助闩锁位置。如果在步骤1504处控制器50确定用户没有接近门,则该方法可以进行到旁路步骤1506和1516并进行到步骤1520。可选地,提供这样的旁路模式从而允许减少由于非静止的门状态引起的任何门关闭延迟。此外,旁路模式可以采用尽可能快地移动门的门运动轮廓,而该轮廓没有如在自动模式期间所采用的在门的加速部分与恒定速度部分之间的平滑过渡,平滑过渡可以为用户提供平滑的门关闭的可视化。在非接触障碍物检测系统检测到没有用户接近门12以观察这种平滑的门运动的情况下,与自动模式下的门运动相比,可以控制门运动以在更少的时间内优化运动的快速性。在可能的配置中,在该旁路期间可以采用仅基于接触的障碍物检测感测。在另一个可能的配置中,基于接触的障碍物检测和基于非接触的检测二者可以被采用,当在车辆附近没有检测到用户时,致动器22控制具有整体降低的速度的门运动,以便如果期望这样的配置满足任何规定的安全要求,则在门12的可能无监督关闭期间增加安全性。接下来在步骤1520之后,该方法进行到步骤1524:如果在门12附近检测到用户,则在门移动到辅助闩锁位置之前,确定在门朝辅助闩锁位置关闭期间在门12的关闭路径中是否检测到障碍物。如果在步骤1524处控制器50确定在门12的关闭路径中检测到障碍物,则该方法可以进行以下操作:在步骤1526处控制器50执行非计划的停止例程。如果在步骤1524处控制器50确定在门12的关闭路径中没有检测到障碍物,则该方法可以进行以下操作:在步骤1528处控制器50控制致动器22以在到达辅助闩锁位置之前减小门速度,并且可以包括例如控制致动器22以在到达辅助闩锁位置之前减小门速度,使得门速度可以匹配或可以略微大于由系拉致动器99确定的预定系拉速度,从而在门关闭模式之间(例如,在各自由不同致动器控制时在自动模式与系拉模式之间)提供平滑过渡。接下来,在步骤1526之后,该方法进行到如下步骤:在步骤1530处控制器50确定是否已经接收到恢复命令。如果在步骤1530处控制器50确定已经在步骤1532处接收到恢复命令,则接下来该方法在步骤1534处进行控制器50确定门角度是否已经停止在小于小角度位置的位置处。例如,小角度位置可以是门12相对于车身14的角度的10度。如果在步骤1532处控制器50确定门角度已经停止在小于小角度位置的位置,则该方法可以以以下操作进行:在步骤1534处控制器50执行小角度关闭例程(参见图59)。如果在步骤1532处控制器50确定门角度未停止在小于小角度位置的位置,则该方法可以进行返回到步骤1520以控制致动器22将门移向辅助闩锁位置但不超过运动中断之前的门运动轮廓。控制器50在控制致动器22将门移向辅助闩锁位置时可以控制致动器22使门移动不高于如下门速度:该门速度大于在由系拉机构对门的系拉期间的门速度。换言之,门运动将不被控制成返回到跟踪中断之前的门运动轮廓以防止门振荡,而是将被控制成不超过下一操作模式——在该特定示例中为系拉模式的操作限制。从步骤1528和步骤1534,该方法进行到在步骤1536处控制器50检测门12是否已经移动到辅助闩锁位置。如果在步骤1536处控制器50没有检测到门12已经移动到辅助闩锁位置,则该方法可以进行返回到步骤1520以控制致动器22以将门12朝向辅助闩锁位置移动。如果在步骤1536处控制器50检测到门12已经移动到辅助闩锁位置,则该方法可以进行到步骤1538:控制器50禁用致动器22。接下来,该方法可以进行以下操作:在步骤1542处激活系拉致动器99以将门12从辅助闩锁位置朝向主闩锁位置移动。接下来,该方法可以进行以下操作:在步骤1546中控制器50使用接触障碍物检测系统和/或非接触障碍物检测系统来确定在系拉期间是否检测到对象以及是否正在发生或将要发生系拉状况。如果在步骤1546中控制器50确定在系拉操作模式期间检测到对象,则该方法可以进行步骤1548:控制器50去激活系拉致动器99。接下来该方法可以在步骤1550处进行激活致动器22,以使门朝向辅助位置反向运动。可以附加地或替代地激活辅助致动器,例如门呈现器2717。如果在步骤1546处没有检测到障碍物,则该方法可以进行到步骤1552:控制器50确定由于致动系拉马达99门12是否到达完全关闭位置。如果在步骤1552中控制器50没有检测到门12已经到达完全关闭位置或主要闩锁位置,则该方法可以返回到步骤1542。如果在步骤1502处控制器50确定人没有打算使门12移动,例如关闭门的命令源自车辆控制系统例如自主车辆控制系统,则该方法可以旁路与人发起的命令相关联的步骤,并进行到步骤1558:控制器50使用车辆12中和周围的检测传感器来确定用户是否已经离开座舱,例如已经离开车辆12。例如,控制器50可以与乘客座椅传感器通信,由于检测到的重量被抬离传感器,所述乘客座椅传感器指示用户何时不再坐在座椅中。接下来,该方法进行到步骤1560:控制器使用障碍物检测系统跟踪用户离开车辆12的运动,所述障碍物检测系统可以包括感测与门12相邻的区域的障碍物检测系统以及其他远程传感器系统——例如如果车辆12配备有这种系统则用于ADAS系统的传感器系统以及其他检测或视觉系统。接下来,该方法进行到步骤1562:控制器50确定用户是否离开距闭合构件12的预定距离,例如用户在邻近区域之外。例如,可以采用能够检测范围的非接触检测系统,例如基于FMCW雷达的系统。接下来在步骤1564处,一旦控制器50在步骤1525处确定用户已经离开车辆附近,则该方法可以进行以下操作:控制器50以最大操作模式、例如以最大关闭和打开速度控制车门,因为在检测到用户已经离开车辆固有距离减轻的附近之后来自用户的任何障碍物的风险被降低,或者如果对于用户的无监督关闭需要附加的安全性,则控制器50可以进行以具有增加的障碍物检测灵敏度和门停止反应时间的较慢的操作速度控制车门12。此外,可以旁路和不执行附加的步骤,例如在门关闭期间发出警报、向环境添加噪声、确保门是静止的以避免动力辅助模式与自动模式之间的冲突、扫描障碍物以减少错误检测的机会。因此,提供了一种具有控制器50的动力闭合构件致动系统20,控制器50与障碍物检测系统(例如,基于非接触的障碍物检测系统)和致动器22通信,其中,与当检测到用户接近车门时相比,当使用障碍物检测系统未检测到用户接近门时,控制器50被配置成在旁路模式下控制致动器20以更快地或在更短的时间段内将门从起始位置移动到结束位置。

现在参照图57,示出了方法1600的流程图,其示出了当动力闭合构件致动系统20在动力辅助模式下操作时用于从停止的门位置移动门的动力闭合构件致动系统20的操作。该方法开始于以下操作:在步骤1602处,控制器50监测用户或人是否在非接触障碍物检测系统检测到的接近检测区域内,以及用户或人是否可能在该接近检测区域内接近门,该接近检测区域指示用户可能期望在动力辅助模式下移动门12。系统20可以已经在自动模式下操作,或者在该步骤期间可以是静止的。接下来,该方法进行到步骤1604:控制器50确定用户是否已经被非接触检测系统检测到接近门12。如果在步骤1604中控制器50确定用户已经被非接触检测系统检测到接近门,则该方法可以在步骤1606处进行到控制器50减小或消除门检查力的保持力,例如由致动器22或其他制动机构(如果门12如此受到的话)产生的阻力——当预期用户试图手动移动门并允许用户避免检测到任何保持,门检查功能有效的情况下。如果在步骤1604中控制器50确定用户没有被非接触检测系统检测到接近门,则该方法可以返回到步骤1604。接下来,该方法进行到步骤1608:控制器50监测用户是否已经对门进行手动控制,并且例如如果门已经静止,则通过使用门运动系统(例如传感器系统)监测门移动。如果在步骤1610中控制器50确定用户已经在步骤1612处对门进行手动控制,则控制器50可以在步骤1610中转换到动力辅助模式并且在动力辅助模式下控制致动器22,如在本文中更详细地描述的,例如一旦用户已经移动超过了门检查功能的位置限制,该位置限制已经克服在步骤1606中可能已经减小或消除的阻力门检查力。例如,控制器50可以检测门的位置或门的运动或者二者的变化,作为转换到动力辅助模式的条件。在步骤1612之后,该方法将进行到步骤1614:控制器50禁用NCOD(非接触障碍物检测)系统或忽略来自NCOD系统的任何信号,所述信号指示由于用户在动力辅助操作期间恒定地邻近门而检测到对象,并且由于用户手动控制门并且可以控制门来判断门是否应当相应地停止或移动以避免与障碍物相撞,从而代替非接触障碍物检测系统。因此,提供了一种具有控制器50的动力闭合构件致动系统20,控制器50与障碍物检测系统(例如基于非接触的障碍物检测系统)和致动器22通信,其中控制器50被配置成在自动模式下控制致动器20并处理来自障碍物检测系统的信号,以及还被配置成在动力辅助模式下控制致动器20并忽略来自障碍物检测系统的信号。在另一个可能的配置中,控制器50可以忽略来自检测区域的子集的障碍物检测系统的信号,诸如例如当用户站在车辆外部并且邻近车辆关闭门时,障碍物检测系统具有如下检测区域,该检测区域是邻近车辆的外部面向外的空间,其中用户将被要求站在该外部面向外的空间中以便使用例如设置在外部门把手或侧后视镜中的传感器将门移动到关闭位置,指示以用户的形式检测到的障碍物的这样的信号被忽略,而控制器50可以考虑来自从门面向内以检测门与车身14之间的对象的障碍物检测系统传感器的信号,例如来自面向内的传感器例如设置在内装饰板后面的面向内的雷达传感器或者是位于门槛板处的向外传感器的信号。在可能的配置中,控制器50可以在在动力辅助模式下操作时考虑来自基于接触的传感器的信号,例如作为一个示例来自防夹条的信号。当系统20在手动模式下操作时,可以忽略来自障碍物检测系统的信号。在步骤1614之后,该方法可以以如下操作进行:在步骤1616处控制器50检测用户在完全打开位置与辅助闩锁位置之间的位置处是否已经停止对门的手动控制。例如,用户可以在动力辅助模式期间在其手动控制下使门停止,或者用户可以释放门使得用户对门的任何手动输入停止。如果在步骤1616中控制器50确定用户已经停止对门的手动控制,则该方法接下来将进行到步骤1618:控制器50在门检查模式下控制致动器22。如果作为动力闭合构件致动系统20的一部分提供,则控制器50可以替代地或附加地控制另外的机电式门检查装置或制动装置。接下来在步骤1618之后,该方法接下来可以以如下操作进行:在步骤1620中启用非接触检测系统,并返回到步骤1604以检测用户是否移动到门的范围之外,或者用户是否保持在门的范围内以辅助控制器50作出关于门的控制的任何进一步决定,作为示例,例如用于确定是否接收到用于相应地控制门的自动关闭命令——如果风可能正在移动门,以确保邻近门的用户的安全。在步骤1614之后,该方法可以以如下操作进行:在步骤1622处控制器50检测用户在辅助闩锁位置与主要闩锁位置之间的位置处是否已经停止对门的手动控制。例如,用户可以在辅助门位置之前向门施加可以驱动门经过辅助位置并直接进入主要闩锁位置的力。如果在步骤1622中控制器50确定用户已经在辅助闩锁位置与主要闩锁位置之间的位置处停止对门的手动控制,则该方法可以在步骤1624处进行到不控制致动器22以在这些位置之间在门上提供门检查功能。接下来,该方法可以在步骤1626处进行到激活用于检测夹紧事件的非接触障碍物检测系统。当已经检测到门已经移动到辅助门位置时,控制器50可以激活非接触障碍物检测系统或者接触防夹传感器系统。接下来,该方法可以在步骤1628处进行到激活系拉致动器99以将门12系拉到主要闩锁位置。门12将处于主要闩锁位置,并且该方法可以结束。因此,提供了一种具有控制器50的动力闭合构件致动系统20,控制器50与障碍物检测系统(例如,基于非接触的障碍物检测系统和基于接触的障碍物检测系统)和用于移动门的至少一个致动器进行通信,其中控制器50被配置成基于门在动力辅助模式、自动模式、手动模式和系拉模式中的至少一个下的操作模式来处理或接收来自障碍物检测系统的信号。

现在参照图58,示出了如下流程图,其示出了当门被自动模式下配置的动力闭合构件致动系统20移动时用于在非计划停止期间控制门的动力闭合构件致动系统20的操作方法。在步骤1710处,非计划停止例程开始,其中控制器50必须确定行进中断的原因,并控制致动器22或另一制动机构(如果提供的话)或者二者以停止门的运动。接下来,该方法可以从步骤1710进行到步骤1728,其中控制器50等待接收自动门模式命令以在步骤1726处发生行进中断之前恢复门运动。一旦接收到恢复自动模式下的门运动的自动模式命令,该方法可以进行到下面描述的步骤1746。在步骤1710处,控制器50可以确定行进中断的原因是来自外部源——例如由控制器50感测来自检测到的致动器信号控制线的增量电流所检测到的,该增量电流是由作用在门12上的外力在预定时间段内引起的。如果在步骤1728处控制器50确定行进中断的原因源自外部源,则接下来在步骤1732处控制器50确定非接触障碍物检测系统是否检测到对象,该对象可以是作为对象的用户。如果在步骤1730处控制器50确定非接触障碍物检测系统已经检测到对象,则该方法可以在步骤1732处进行将干预解释为用户命令的手动输入(例如,打开、关闭或停止门的请求),其中用户被非接触障碍物检测系统检测到。接下来,该方法进行到步骤1734:控制器50转换到动力辅助模式以帮助用户以如上文说明性描述的方式手动移动门。接下来,该方法进行到步骤1736:控制器50禁用非接触障碍物检测系统,因为现在假设用户具有对门的控制并且能够停止和移动门以避免任何障碍物接触门,并且因此当在动力辅助模式下检测到障碍物时不会发生门运动的中断,例如制动或停止门。如果在步骤1732处控制器50确定非接触障碍物检测系统没有检测到对象,则该方法可以在步骤1738处进行将干预解释为非操作者输入(例如,非用户力可以施加在门上,例如通过阵风或机械扰动)。接下来,该方法进行到步骤1740:控制器50控制致动器22停止门运动。接下来,该方法进行到步骤1742:控制器50确定是否已经接收到自动门模式命令或动力辅助门模式命令。因此,提供了一种具有控制器50的动力闭合构件致动系统20,控制器50与障碍物检测系统(例如,基于接触的障碍物检测系统或基于非接触的障碍物检测系统)、门运动感测系统(例如,诸如用于检测门运动的绝对位置传感器、或用于检测马达轴位置的霍尔传感器、或用于对作为示例指示马达的旋转的马达电流中的波纹进行计数的波纹计数系统、或其他电路系统和感测配置)、以及致动器22通信,其中控制器50被配置成根据使用障碍物检测系统未检测到障碍物和使用门运动感测系统对门移动的检测来控制致动器20停止门。如果在步骤1742处控制器50确定控制器接收到自动模式命令,则该方法将进行到步骤1746:控制器50在自动模式下控制致动器22继续将门移动到计划的门打开位置。如果在步骤1742处控制器50确定控制器50接收到动力辅助模式命令,则该方法将进行到步骤1748:控制器50执行动力辅助模式例程以控制门12运动。

现在参照图59,示出了在自动模式下从大于辅助位置的小角度停止位置控制门12的方法1760,也称为小角度位置关闭命令例程。该方法开始于以下操作:在步骤1762处控制器50确定是否已经接收到关闭门的命令,例如门12是否先前已经停止在小的门打开角度位置并且控制器50是否已经接收到自动模式下的门恢复命令。接下来,该方法进行以下操作:在步骤1764处,在控制器50接收到门关闭命令时,在自动模式下控制致动器22,并且例如控制致动器22将门加速到用于将门12移动到辅助闩锁位置的速度。控制器50可以控制致动器22以零速度将门12停止在辅助闩锁位置处,或者可以控制致动器22以大约零速度将门移动到辅助闩锁位置。控制器50可以控制致动器22将门12以与如上文所述的系拉速度匹配的速度移动在辅助闩锁位置处。接下来,该方法进行到步骤1766,其中控制器50将确定或检测门12是否已经移动到辅助闩锁位置。如果在步骤1776处控制器50检测到门12已经移动到辅助闩锁位置,则该方法将进行到步骤1768:控制器50禁用致动器22。可替选地,控制器50可以在门接近辅助关闭位置时监测门位置,并控制致动器22以在门到达辅助之前稍微降低门12的速度以使得门12以零或接近零的速度或与系拉速度匹配移动到辅助关闭位置。可替选地,控制器50可以控制致动器22以允许门的一些接近速度以确保闩锁83将至少被闩锁到辅助闩锁位置中。如果在步骤1776处控制器50没有检测到门12已经移动到辅助闩锁位置,则该方法将返回到步骤1774。接下来,该方法进行到步骤1770以激活系拉致动器99,从而以如上文详细描述的方式将门12从辅助闩锁位置朝向主要闩锁位置移动。因此,提供了一种具有控制器50的动力闭合构件致动系统20,控制器50与门运动感测系统(例如,诸如设置在闩锁83内用于检测指示门12的位置的闩锁83的状态的霍尔传感器)、用于以系拉速度将门从系拉开始位置诸如辅助闩锁位置移动到系拉结束位置诸如主要闩锁位置的系拉机构、以及致动器22通信,其中控制器50被配置成控制致动器22以与系拉速度匹配(例如近似或精确匹配)的速度将门12移动到系拉开始位置。

现在参照图60,示出了在在自动模式或动力辅助模式下控制门之后检查或保持门12的方法1800,也称为无限门检查功能或例程。该方法开始于步骤1802:控制器50控制致动器22在停止位置检查门12,或者换言之,使用致动器22的门检查功能开启。接下来在步骤1806处控制器50将监测门移动。如果在步骤1806处控制器50没有检测到门移动,例如在0.75秒之后没有移动,则该方法将在步骤1808处不控制致动器22对移动施加阻力或移动门以节省动力,或者可替代地,如果致动器22例如设置有无刷电机,则控制器50可以控制致动器22例如使用场定向控制(FOC)制动方法对移动施加一些阻力,并且接下来返回到步骤1806,或者可替代地,例如,如果门由于铰链取向或配置而在离开停止位置的方向上被偏置,则控制器50可以控制致动器22对移动施加一些阻力,以至少阻止偏置使门12在处于检查位置时移动。如果在步骤1808处控制器50确实检测到门移动,则该方法将进行到步骤1810以使用非接触障碍物检测系统检测用户是否接近门12。换言之,在门已经停止并且门检查功能被激活之后,控制器50将不供应动力,或者仅在控制器50检测到与停止位置的偏离的情况下才增加向致动器22的动力输送以在该停止位置处保持/检查门。因此,由控制器50执行的门检查功能可以不连续地向门施加力以将门保持在检查位置,而是仅在检测到门12移动离开检查位置时。门可以被配置成是平衡的,并且不朝向关闭位置和打开位置之一偏置。因此,提供了一种具有控制器50的动力闭合构件致动系统20,控制器50与门运动感测系统以及致动器22通信,其中控制器50被配置成当门不从静止位置移动时控制致动器20不向门12施加检查力,以及当使用门运动感测系统感测到门正在移动离开静止位置时向门施加检查力,该力检查力抵消使门移动离开静止位置的外力。在步骤1810处,例如,控制器50可以被配置成基于跟踪邻近门12的区域中的用户、感测诸如尺寸、反射率的特性(在非接触障碍物系统是用户邻近门12的基于雷达的系统的情况下)、和/或结合用户可能携带的识别无线装置使用任何PKE/FOB系统来确定障碍物是否不是用户。如果在步骤1810处控制器50检测到障碍物或非用户接近门12,则该方法将进行到步骤1812:控制器50控制致动器22以基于门位置和高于动力辅助力的门检查力轮廓例如使用本文示例性描述的力轮廓来增加检查门力或对门12的移动的阻力。接下来,该方法将进行到步骤1814:控制器50确定或检测门位置是否在预定位置或距停止位置的预定距离处(在门已经移动之前)。如果在步骤1814处控制器50确定或检测到门位置在预定位置或距停止位置的预定距离处,则该方法在步骤1816处进行去激活门检查功能,并且换言之,不控制致动器22来阻止门移动。因此,如果门的偏差没有超过门位置的角度变化,则控制器50将控制致动器22使门12返回到初始门检查位置。在该角度变化期间,控制器50将增加抵消使门移动离开门检查位置的力的阻力,直到门超过预定位置或距停止位置的预定距离,如图60A所示。在该过程期间,在一种可能的配置中,控制器50可以限制(cap)向致动器22的最大动力输送以节省动力,例如30瓦。接下来,该方法进行到在动力辅助模式下控制门12的步骤1818。如果在步骤1810处控制器50没有检测到用户接近门12,则该方法将进行到控制器50控制致动器22阻止门移动以停止门运动的步骤1820。例如,当没有检测到用户时,阵风可能使门移动。接下来,该方法将进行到步骤1822:控制器50控制致动器22将门返回到门移动之前的位置。这种可能的配置可以与用户有意地将门移动到新位置的配置形成对比,在新位置,当门停止在这样的新位置时,门检查功能被复位,如果NCOD系统检测到邻近门12的用户,则可以允许这样的新位置,然而,门被未由使用障碍物检测系统检测到的用户施加的外力移动的配置可以返回到其初始静止位置,以便避免位置蠕变,其中随着时间的推移,门可以移动离开其初始门检查位置并且最终撞击障碍物,或者移动到其可以在障碍物的路径中的位置,例如进入交通车道或行人或自行车走道。接下来,该方法将进行到步骤1824:控制器50使用具有增加的保持力的门检查门轮廓或更积极的门检查轮廓。例如,控制器50将在较小的门移动角度内施加较大的阻力,或者响应时间将减少而阻力响应力将增加。接下来,该方法将进行到步骤1826:控制器50使用非接触障碍物检测系统确定邻近门12是否检测到用户,换言之,用户现在是否已经进入门12附近,其中用户可能希望手动或在动力辅助模式下控制门。如果在步骤1826处控制器50确定已经检测到用户,则该方法将进行到步骤1828:控制器50使用正常的门检查轮廓或正常的响应力和时间或者甚至使用预期较不积极的门检查轮廓和用户手动控制门以允许用户不必克服步骤1824中增大的门检查力的较低响应力。该方法进行从步骤1828返回到步骤1806。如果在步骤1826处控制器50确定没有检测到用户,例如用户已经移动到门12的附近之外,则该方法将进行到步骤1832:在控制器50使用非接触障碍物检测系统没有检测到用户之后经过了预定时间之后,控制器50使用正常的门检查轮廓、或者甚至较不积极的门检查轮廓。该方法进行从步骤1832返回到步骤1806。因此,提供了一种具有控制器50的动力闭合构件致动系统20,控制器50与障碍物检测系统和致动器22通信,其中控制器50被配置成控制致动器20以在使用障碍物检测系统邻近门检测到障碍物例如用户时向门12施加第一检查力,以及在使用障碍物检测系统邻近门12未检测到障碍物或用户时向门施加与第一检查力不同、例如大于或小于第一检查力的第二检查力。另外参照图60A,示出了由控制器50在自动模式或动力辅助模式下控制致动器22将门12已经移动到停止位置1801之后——在停止位置处,激活门检查功能——通过致动器22施加到门12的示例性力轮廓1799。在门检查模式下操作期间,控制器50将利用在动力辅助模式或自动模式下所产生的参考力D来控制致动器22,直到门12到达最终角度1801,在最终角度处,参考力D跳到较高的检查力C值,当门位置在门角度1803、1805之间时,该检查力C将被保持为参考力。可替选地,门12可以被控制成停止在最终角度1801,在该点处,在门静止之后致动器22不被供应能量,直到检测到离开最终角度1801的偏离,在该点处控制器50将检测门运动并且控制参考力D以增加到较高的检查力C值。作为无限检查功能,检查力C应当高于正常摆动力D以保持门位置1801,除非更大量的力(例如由用户施加的外力)施加到门12。当门位置达到膝角度1803或1805时,参考力开始增加。任何试图手动移动门的用户将感测到抵抗用户对门手动力输入的增加的阻力。在某些门角度1807、1809处,阻力将在门12的角移动上保持恒定,并且此后返回到所产生的参考力D。进一步超过释放角位置1811,门检查功能可能被去激活或关闭。如果门位置没有超过释放角位置1811,则可以控制致动器22使门返回到最终角度1801,或者可以在这个新的最终角度1801处重新初始化门检查轮廓,或者换言之,图60A的门检查力轮廓围绕新的最终角度1801重新定中心。如图60A所示,控制器50可以根据诸如车辆10或门12的状态的各种考虑来增大或减小检查力(在A与C之间的范围内),以提供非对称和动态的无限门检查功能。例如,控制器50响应于检测到车辆10处于倾向于对门12施加重力以将门推向关闭位置的倾斜状态,可以改变或增加门检查力B以进一步抵抗门仅在关闭方向上的移动,从而抵抗倾向于对门施加门关闭运动的外部重力。并且同样地,可以改变或减小门检查力B以进一步抵抗门仅在打开方向上的移动,使得当用户试图在打开方向上移动门时,用户不必克服外部重力以及门检查力B二者。图60A示出了这种非对称门检查力轮廓,其也可以作为对称门检查力轮廓提供。因此,提供了一种具有控制器50的动力闭合构件致动系统20,控制器50与用于检测车辆的状态例如车辆的倾斜或取向的车辆传感器以及致动器22通信,其中控制器50被配置成控制致动器20以在门移动的一个方向期间施加与门运动的另一方向(例如相反方向)期间的门门检查力不同的门检查力。

现在参照图61,示出了确定在自动模式下操作来移动门的动力闭合构件致动系统20的操作的行进超控状态的方法,所述行进超控状态例如由用户在门运动期间抓住门12而引起的,其意图是手动或在动力辅助模式下移动门12并停止门12的自动模式操作,即中断在自动模式下的门操作。该方法开始于以下操作:在步骤1902处控制器50确定或检测门的位置或加速度或速度的非预期变化。可以基于使用门位置传感器的门位置的非预期变化、或在致动器信号线中检测到的电流尖峰的检测来进行这种确定,如下面本文中更详细描述的。接下来,该方法进行以下操作:在步骤1904处控制器50使用非接触障碍物检测系统确定或检测用户是否邻近门12以确定用户是否可能引起门12的位置或加速度或速度的非预期变化。如果在步骤1904处控制器50没有确定或检测到用户在门12旁边,则该方法可以进行以下步骤:在步骤1906处,控制器50确定门运动的中断或干预是由非用户施加的力、例如由阵风或机械扰动施加的力引起的。接下来,该方法进行到步骤1908:控制器50使用致动器22来停止门,并且例如控制致动器22以例如在不损坏致动器的情况下立即在最短的可能距离内停止门12。如果在步骤1904处控制器50确实确定或检测到用户在门12旁边,则该方法可以进行到步骤1910:控制器50确定或检测门在与门运动相同的方向上是否被加速。如果在步骤1910处控制器50没有确定或检测到门在与门运动相同的方向上被加速,则在步骤1912处控制器50可以控制致动器22例如通过增加对非预期的门移动的阻力来补偿非计划的门移动。如果在步骤1910处控制器50确实确定或检测到门在与门运动相同的方向上被加速,则在步骤1914处控制器50可以确定或检测门正加速是否超过自动门操作范围或阈值。图61A示出了由控制器50例如从致动器22或如上文详细描述的位置传感器接收的电流和位置信号的示例,这些信号用于说明性地识别用户进行的行进超控。在这种情况下,示出了在打开方向上的运动,但是该示例也适用于关闭方向。在示例性的图61A中,电流可能由于来自操作者的引起致动器22中的速度减小的力的输入而减小,而门位置(和位置的变化速率)可能增加。如果在步骤1914处控制器50没有确定或检测到门正加速超过自动门操作范围或阈值,则该方法可以进行到步骤1912。如果在步骤1914处控制器50确实确定或检测到门12正加速超过自动门操作范围或阈值,则在步骤1918处控制器50可以确定已经发生手动超控。如果在步骤1904处控制器50确实确定或检测到用户在门旁边,则该方法可以进行步骤1920:控制器50确定或检测门在与门运动相同的方向上是否被减速。如果在步骤1920处控制器50没有确定或检测到门在与门运动相同的方向上被减速,则在步骤1912处控制器50可以控制致动器22补偿或增加对抗非计划的门移动的阻力。如果在步骤1920处控制器50确实确定或检测到门在与门运动相同的方向上被加速,则在步骤1924处控制器50可以确定或检测门正减速是否超过自动门操作范围或阈值。如果在步骤1924处控制器50没有确定或检测到门正加速超过自动门操作范围或阈值,则该方法可以进行到步骤1912。如果在步骤1924处控制器50确实确定或检测到门正减速超过自动门操作范围或阈值,则在步骤1928处控制器50可以确定门方向是否已经反转,例如从打开方向到关闭方向。图61B示出了用于识别行进反转的电流和位置信号的示例。图61B中所示的电流可以由于来自操作者的引起抵抗打开门移动的阻力的力的输入而增大,而门位置可能减小。如果在步骤1928处控制器50确实确定或检测到门运动有反转方向,则在步骤1918处控制器50可以确定已经发生手动超控。如果在步骤1928处控制器50没有确定或检测到门运动有反转方向,则该方法可以进行到步骤1912。该方法可以从步骤1918进行以下步骤:在步骤1932中,控制器50从在自动门模式下控制门的步骤转换到动力辅助门模式。因此,动力闭合构件致动系统20可以允许用户在自动门运动期间的任何时间超控自动门模式,并且例如比在自动动力门模式期间所控制的更快速地移动门。因此,提供了一种具有控制器50的动力闭合构件致动系统20,控制器50可在动力辅助模式和自动模式下操作,控制器50还与障碍物检测系统、门运动感测系统和致动器22通信,其中控制器50被配置成:当控制器50在控制器在自动模式下移动门时使用障碍物检测系统感测用户以及使用门运动感测系统检测门运动时,从自动模式转换到动力辅助模式。

现在另外参照图62A,动力闭合构件致动系统20可以利用至少一个角度传感器来检测闭合构件12的位置和移动。应当理解,可以以本文中说明性描述的其他方式检测门的位置和移动。因此,控制器50可以被配置成检测闭合构件12的移动。由于动力闭合构件致动系统20还可以检测在闭合构件12附近的障碍物或人(例如,使用至少一个非接触障碍物检测传感器66。说明性地示出了三个传感器66,所述传感器具有使用虚线说明性地示出的单独的视场(FOV)),例如,控制器50可以确定闭合构件12的任何检测到的移动可能是由于风力(WF)、外部非用户力的示例引起的。因此,在控制器50使用非接触障碍物检测传感器或系统检测到没有人接触门或没有人接近门——有人接触门或有人接近门可能引起门运动,从而引起闭合构件12的移动——之后,作为结果,由动力闭合构件致动系统20(例如,由致动器22)可以停止或以其他方式改变闭合构件12的运动。因此,在检测到闭合构件12的移动时,如果控制器50使用至少一个非接触障碍物系统检测到不存在障碍物,则控制器50可以响应于未检测到障碍物来控制致动器22改变闭合构件12的移动(例如,停止移动)。因此,代替动力闭合构件致动系统20仅被操作成感测障碍物以在障碍物存在时使门或闭合构件停止,动力闭合构件致动系统20可以另外检测闭合构件12的不是由人物理地移动它引起的例如由风引起的移动,并且不使用附加的和专门的风传感器例如风向标或风速计或其他复杂的运动检测计算和算法。因此,可以从风(WF)中辨别出门的任何手动移动,以允许用户正确地将动力闭合构件致动系统20的模式从门检查模式转换为手动或动力辅助模式,而不将门的手动控制解释为会导致致动器22或另一制动装置被控制成停止或阻止门12的移动的风力。

如图62B中最佳示出的,另外提供了操作动力闭合构件致动系统20以检测由于与闭合构件的非物理接触而引起的闭合构件12的移动的方法2000,并且例如由于作用在门上的风例如突然的阵风而引起的闭合构件12的移动。该方法开始于确定闭合构件12是否处于打开位置的步骤2002。该方法的下一步骤是2002:确定闭合构件12是否正在移动(例如,当处于打开位置时)。该方法继续步骤2004:使用非接触障碍物检测系统确定是否没有检测到障碍物。该方法进行到步骤2006:响应于闭合构件移动以及没有检测到障碍物而使用致动器22改变闭合构件的运动。具体地,响应于闭合构件移动以及没有检测到障碍物而改变闭合构件的运动的步骤可以在步骤2008处进一步限定为:响应于闭合构件移动以及没有检测到障碍物而(作为示例而非限制,使用致动器22、或另一制动机构例如致动器内或远离致动器的机电制动装置,例如设置在门检查装置上的机电制动装置)停止闭合构件12的运动。例如,可以通过单独控制致动器22和/或使用单独的制动机构来提供抵抗风(WF)影响的闭合构件12的运动。

如图62C中最佳示出的,另外提供了一种操作动力闭合构件致动系统20以检测由于用户与闭合构件的物理接触而引起的闭合构件12的移动以允许用户例如在手动模式或动力辅助模式下控制门12的方法2100。该方法可以包括由控制器50执行的步骤,并且开始于步骤2102:例如通过控制器50监测来自位置传感器或其他位置感测装置或技术的门位置信号的变化来确定闭合构件12是否正在移动(例如,当处于打开位置时)。该方法继续监测非接触障碍物检测系统的步骤2104,随后在步骤2105处确定使用非接触障碍物检测系统是否没有检测到障碍物。该方法进行到步骤2106:响应于闭合构件移动以及没有检测到障碍物而例如通过控制器50控制致动器22来改变闭合构件12的运动。具体地,响应于闭合构件12移动以及没有检测到障碍物而改变闭合构件的运动的步骤可以进一步限定为响应于闭合构件12移动以及没有检测到障碍物而停止闭合构件12的运动。例如,可以通过单独控制致动器22和/或使用单独的制动机构来提供由在门12上的非用户施加力或外部系统力引起的闭合构件12的运动。响应于闭合构件12移动以及在步骤2107中检测到障碍物或用户,该方法可以进行到步骤2109:将动力闭合构件致动系统转换到动力辅助模式,例如如上面本文中所述的控制器50将在动力辅助模式下控制门运动。因此,如果检测到用户在门12旁边,则当用户移动门时,门检查功能将不被应用或将被禁用,其中控制器50已经确定风力等不会无意地移动门。接下来,该方法进行步骤2108:由控制器50验证门在预定时间段(例如秒)内的运动。如果在步骤2110处检测到在步骤2108处门在预定时间段内的运动,则该方法返回到步骤2104。如果在步骤2112处没有检测到在步骤2108处门在预定时间段内的运动,则该方法进行到在门检查模式下控制致动器22的步骤2101,然后返回到步骤2102。

如图63中最佳示出的,另外提供了一种操作动力闭合构件致动系统20以检测由于与闭合构件的非物理接触而引起的闭合构件12的移动的方法2200。该方法开始于确定闭合构件12是否处于打开位置的步骤2202。该方法的下一个步骤是2204:确定闭合构件12是否正在移动(例如,当处于打开位置时)。该方法继续步骤2206:使用运动传感器(例如,诸如加速度计/倾斜计)来确定车辆10的运动或倾斜的变化,该变化可能使闭合构件12无意地移动,例如由于人在车辆10的相对侧进入车辆10而因此使闭合构件12移动,或以其他方式使闭合构件12移动。该方法进行到步骤2208:响应于闭合构件12移动以及检测/确定存在车辆12的运动而例如通过控制致动器22来改变闭合构件12的运动。具体地,响应于闭合构件12移动以及检测/确定存在车辆10的运动而改变闭合构件12的运动的步骤可以进一步限定为2208:响应于闭合构件12移动以及检测/确定存在车辆10的运动而停止闭合构件12的运动。

如图64中最佳示出的,结合上文中描述的图62和图63的步骤,另外提供了一种操作动力闭合构件致动系统20以检测由于与闭合构件的非物理接触而引起闭合构件12的移动的方法2300。该方法开始于确定闭合构件是否处于打开位置的步骤2302。该方法的下一步骤是2304:确定闭合构件是否正在移动(例如,当处于打开位置时)。该方法继续步骤2306:确定使用NCOD系统是否检测到障碍物,例如人可以站在闭合板12旁边并被检测到,而没有移动闭合板或与闭合板12的任何交互的意图。该方法继续步骤2308:使用运动传感器(例如,诸如加速度计/倾斜计)来确定车辆的运动或倾斜的变化,该变化可能使闭合构件无意地移动,例如由于人在车辆的相对侧进入车辆而因此使闭合构件移动,或者例如由于不稳定地面的移动。该方法进行步骤2310:响应于闭合构件移动以及检测/确定存在车辆的运动以及检测到障碍物而改变闭合构件的运动。具体地,响应于闭合构件移动以及检测/确定存在车辆的运动以及检测到障碍物而改变闭合构件的运动的步骤可以进一步被限定为响应于闭合构件移动以及检测/确定存在车辆12的运动而停止闭合构件的运动。

现在参照图65,提供了一种当门12处于冻结状态时用于从关闭的门位置移动门12的方法2400。该方法包括步骤2402:由控制器50接收打开门命令,例如如本文中上面描述的例如用于门12的自动模式运动的打开门命令。接下来,该方法进行以下步骤:在步骤2404处,使用控制器50监测非接触障碍物检测系统以确定邻近门是否检测到对象。如果在步骤2406处控制器50确定邻近门检测到对象,则控制器50将确定门处于阻挡状态,例如大的对象抵靠在门上。因此,在步骤2408处,控制器50将不控制致动器22将门12朝向打开位置移动。控制器50可以激活警报,例如用于向用户指示门的致动状态的钟声。在一种可能的配置中,控制器50可以控制接口装置74、76来显示门系统20的状态,以向用户提供除不提供信息的钟声或蜂鸣声之外的更多信息。例如,接口装置74、76可以被控制成向用户显示接下来的允许的输入:“门在动力辅助模式下操作”或“门已停止,按下开关以在自动模式下继续,或采取门控制”或“检测到障碍物,门已移动到打开位置。对门运动的其余部分采取手动控制”或“门被冻结且无法通电打开。仅手动控制门”。用户接口装置的这种显示器可以设置在车辆上的其他位置处,例如在车辆外部的贴花上,作为用户从车辆外部识别门的状态的示例。在步骤2410处,控制器50确定邻近门没有检测到对象,控制器50将确定门可以打开而不与障碍物碰撞。因此,在步骤2412中,控制器50将控制致动器22将门朝打开位置移动。该方法可以进行以下步骤:在步骤2414处确定控制器50是否接收到错误信号。如果在步骤2414处控制器50接收到错误信号(例如过载信号),则在步骤2415中控制器50可以控制致动器22停止并不移动门,已经确定例如已经发生电气错误或其他错误。控制器50可以发出作为用于向用户指示门的致动状态的钟声的警报。如果在步骤2416处控制器50没有接收到错误信号,则控制器50可以进行到步骤2418:确定或检测是否存在门的运动,以及是否存在在例如3秒的预定时间段内检测到的门运动。如果在步骤2418处控制器50没有检测到运动,则该方法继续验证车辆或门的温度的步骤2420。如果在步骤2422处控制器50确定检测到的温度小于预定温度例如0.5摄氏度,则该方法可以进行到下一步骤2426:控制器50控制破冰器或门呈现器机构(例如具有可移动柱塞的呈现器2717,该可移动柱塞是与致动器22分离的装置)以将门12移动离开关闭位置以克服冻结门状态,例如以打破任何冰,以及/或者并且可以控制致动器22以输出高于正常(例如与正常动力辅助或自动模式期间相比)的输出力例如从门把手测量的至少400N的力,以用于破冰以释放冻结门状态。如果在步骤2428处控制器50确定检测到的温度大于预定温度例如0.5摄氏度,则该方法可以进行到下一步骤2430:控制器50确定门被机械地卡住以及例如由于结冰防止门移动离开主要关闭位置,并且控制器50不控制致动器22(例如主要门移动器)或门呈现器2717或其他辅助门移动器来移动门以防止损坏。控制器50可以激活例如用于向用户指示门的致动状态的钟声的警报。

现在参照图66,提供了一种当门处于机械阻挡或阻住或卡住状态时用于从关闭的门位置移动门的方法2500。例如,如果车辆已经处于碰撞中并且门或框架的一部分变得变形而阻止门正常地移动离开关闭位置(仅作为示例),则可能发生这种状态。该方法包括步骤2502:由控制器50接收打开门命令,例如如本文中上面描述的例如在自动模式下的打开门命令。接下来,该方法进行以下步骤:在步骤2504处,控制器50使用非接触障碍物检测系统来确定邻近门是否检测到对象。如果在步骤2506处控制器50确定邻近门检测到对象,则控制器50将确定门处于阻挡状态例如大的对象抵靠在门上并且门没有被机械地卡住或阻挡。因此,在步骤2507处,控制器50将不控制致动器22将门朝向打开位置移动。控制器50可以激活警报,例如用于向用户指示门的致动状态的钟声。如果在步骤2508处控制器50确定邻近门没有检测到对象,则控制器50将确定门可以打开而不与障碍物碰撞。因此,在步骤2510中,控制器50将控制致动器22将门朝向打开位置移动。该方法可以进行以下步骤:在步骤2512处确定控制器50是否接收到错误信号。如果在步骤2512处控制器50接收到错误信号,则在步骤2514中控制器50可以控制致动器停止并不移动门,已经确定例如已经发生电气错误。控制器50可以发出作为用于向用户指示门的致动状态的钟声的警报。如果在步骤2516处控制器50没有接收到错误信号,则控制器50可以进行到步骤2518:确定或检测是否存在门的运动,以及是否存在在例如3秒的预定时间段内检测到的门运动。如果在步骤2518处控制器50没有检测到门的运动,则该方法继续到步骤2520:验证在控制器50控制致动器22以试图移动门12时门是否在预定时间段内保持静止。如果在步骤2520处控制器50确定在控制器50控制致动器22以试图移动门时门在预定时间段内仍保持静止,则该方法可以进行到下一步骤1422,在步骤2522处,控制器50确定门处于机械卡住的门状态并停止控制致动器22的激活。可替选地,在得出门被机械卡住的结论之前,控制器50可以一前一后地控制致动器22和单独的机构例如门呈现器2717二者,以试图将门12移动离开其机械阻挡的位置一段时间。如果在步骤2524处控制器50确定门由于致动器22的致动或者门呈现器与致动器22一起被激活而移动,则该方法可以进行到控制器50继续使用致动器22将门移动到计划位置的下一步骤2526。因此,提供了一种具有控制器50的动力闭合构件致动系统20,控制器50与用于在打开位置与关闭位置之间移动门的主要致动器(例如致动器22)以及用于在部分打开位置与部分关闭位置之间移动门的辅助致动器(例如呈现器2717)进行通信,其中控制器50被配置成单独地控制(例如,一个被控制用于移动门而另一个不被控制用于移动门)用于在第一运动范围(例如从弹出位置到打开位置)内移动门的主要致动器和用于在第二运动范围(例如从关闭位置到弹出位置)内移动门的辅助致动器。在另一个可能的配置中,控制器50可以同时控制主要致动器和辅助致动器以在第二运动范围内移动门,这可以是在控制器50检测到门的冻结状态或阻挡状态的情况下。

现在参照图67,示出了由控制器50执行的用于计算用于控制致动器输出力以移动门并且例如在动力辅助模式下移动门的力命令88的方法2600。该方法开始于步骤2602:控制器50使用例如反馈传感器64或更一般地反馈系统接收表示由用户施加到闭合板的力的信号,如上文更详细描述的。该方法在步骤2604处继续以下操作:控制器50确定关于公共参考点的相关扭矩,以用于计算。例如,相关扭矩的公共参考点围绕门枢转轴线2650(参见图70)。换言之,该方法包括使用控制器50来确定关于闭合板12的枢转轴线2650的至少一个扭矩值,所述扭矩值影响、阻碍或促进闭合板12围绕枢转轴线的枢转。步骤2604还可以包括子步骤2606,所述子步骤2606包括控制器50确定任何辅助门系统是否处于活动,例如由于上文详细描述的冻结门状态或阻挡门状态,呈现器2717是否处于活动。例如,控制器50可以确定门呈现器2717或辅助门移动器是否被激活以也帮助移动门12,或者确定机电制动器是否处于活动以帮助减慢或制动门的运动。这样的辅助门系统可以由控制器50选择性地激活,以便在动力闭合构件致动系统20的不同操作中在门角度的一部分、在离散的门角度处或门12的整个运动中作用在门12上,并且可以被设置成与致动器22互补以用于移动或减慢门,或者为门12提供其他功能。步骤2604还可以包括子步骤2608,所述子步骤2608包括控制器50确定门12的状态变化。例如,控制器50可以确定门重量是否已经增加或减小,例如从尾门或举升门添加或移除备用轮的示例;如果密封载荷已经改变,例如敞篷车顶被移除,使得门在关闭期间不必作用于额外的门密封件;如果发生了碰撞情况,例如控制器50将假定发生了一些损坏,这些损坏将增加抵抗门打开的扭矩。该方法继续到步骤2610:控制器50接收来自传感器或存储在存储器中的门和车辆状态信息,以用于在门运动期间实时更新力命令88的计算。例如,控制器50将接收门角度数据,以用于在门移动控制期间实时地更新相关扭矩。例如,控制器50将接收关于门循环的存储数据,以用于在门移动期间实时更新与磨损和撕裂有关的相关扭矩,例如,由于摩擦引起的扭矩可能随时间或门打开/关闭循环而增加,并且可能影响不同门角度下的扭矩。因此,可能在门打开之前不能模拟门运动,但是控制器50将利用从各种传感器接收的更新数据和存储在存储器中的数据来计算门运动期间的相关扭矩。该方法继续到步骤2612:控制器50根据接收到的门和车辆状态信息实时地分别计算每个扭矩。该方法继续到步骤2614:对分别计算出的扭矩求和以确定围绕门枢转轴线的净扭矩响应。换言之,步骤2616包括控制器50使用关于枢转轴线2650的至少一个扭矩值来确定净扭矩响应,以确定净扭矩响应。例如,由于计算是在门从关闭位置打开期间实时执行的而不是模拟的,因此控制器50可以检测到冻结门,并且在叠加计算中还包括由于门呈现器或辅助移动器帮助克服冻结门状态而产生的扭矩。一旦门已经解冻,控制器50将在其叠加计算中不包括由于门呈现器或辅助门移动器产生的扭矩。由于冻结状态不能被提前模拟,换言之控制器50不能根据结冰的量和在门打开角度中的什么位置来确定冻结门状态何时将结束,因此控制器50将能够从其计算步骤中去除由于呈现器2717产生的扭矩,而不必重新计算其他扭矩值,从而导致较不复杂的力计算过程。该方法继续到步骤2616:控制器50基于在步骤2612中的计算出的扭矩的总和来计算围绕门枢转轴线2650的补偿净扭矩响应。并且换言之,控制器50将计算抵消净扭矩响应值的力命令,以帮助用户移动闭合件,同时向用户提供由用户感测到的可控阻力。例如,可以通过使用力传感器检测在门上的位置处例如门把手上或门的边缘处测量的力来量化用户体验的这种阻力。该方法接下来继续到步骤2618:控制器50使用在步骤2618中确定的计算出的补偿净扭矩响应来控制致动器22。因此,可以用精确的扭矩实时控制致动器22,以补偿作用在门12上的其他扭矩。换言之,控制器50将经由从控制器50到致动器22的力命令88的传输来控制来自致动器的输出扭矩,以抵消或减小净扭矩响应值,从而帮助用户移动闭合板。在一种可能的配置中,控制器50可以修改来自致动器的输出扭矩,以完全抵消净扭矩响应,从而为用户提供失重门的感觉,其中用户响应于在门上施加力输入而不经历阻力或基本上不经历阻力。在另一个可能的配置中,控制器50可以修改来自致动器的输出扭矩,以不抵消净扭矩响应,从而为用户提供加重门的感觉,其中用户响应于在门上施加力输入而经历阻力。在一些情况下,随着由诸如复合材料的轻便型材料制成的门12的发展,可能期望在动力辅助模式下操作的系统20使用致动器20正常地增加对用户的阻力,以增加感测到的门重量,以便用户体验到与移动传统重量门(例如金属制成的门)期间的门运动类似的门运动。在这种情况下,系统20在动力辅助模式下被配置成正常地向门运动引入阻力,而不是减少阻力并提供辅助。

现在参照图68,根据动力闭合构件致动系统20、2700的另一个示例性配置,控制器50、2702被配置成接收与在动力辅助模式下操作的动力闭合构件致动系统20、2700相关联的运动输入56、2704之一。然后,控制器50、2702被配置成在动力辅助模式下基于根据存储在控制器50、2702的存储器中的扭矩模型2708的至少一个计算出的扭矩2705向致动器22、2705发送力命令88、2706,以改变作用在闭合构件12、2710上的致动器22、2705输出力以移动闭合构件12、2710。此外,动力闭合构件致动系统20、2700包括用于确定闭合构件12、2710的位置和速度以及姿态中的至少一个的至少一个闭合构件反馈传感器64、2712。因此,至少一个闭合构件反馈传感器64、2712检测通过对电动马达36、2714的转数进行计数而来自致动器22、2705的信号、可延伸构件(未示出)的绝对位置,或者检测来自门12、2710(例如,作为示例在门铰链上的绝对位置传感器)的信号,以向控制器50、2702提供位置信息。可以提供其他类型的反馈系统以用于感测门12的位置。控制器50、2702还被配置成接收运动输入56、2704并进入动力辅助模式以输出力命令88、2706(例如,如上文所描述的,根据力命令算法100例如被配置为存储在存储器中的叠加算法2718使用控制器50、2702的力命令生成器98、2716)。叠加算法2718被配置成接收扭矩计算器2720的输出,所述扭矩计算器2720被配置成使用也存储在存储器中的扭矩模型2708来确定围绕门枢转轴线2650的净扭矩响应,所述扭矩模型2708基于接收反馈传感器64、2712的表示闭合构件12、2710的位置和速度的信号以及还可能接收来自其他传感器2713诸如例如环境传感器80、81的信号以及与闭合构件12、2710的当前状态相关的其他参数被实时更新。叠加算法2718将输出补偿净扭矩响应,并且控制器50、2702被配置成基于所计算的净扭矩响应来生成力命令88、2706,以控制作用在闭合构件12、2710上的致动器输出力以移动闭合构件,同时提供与移动正常的无动力受控门相比用户移动门所感受到的阻力的变化。因此,提供了一种具有控制器50的动力闭合构件致动系统20,控制器50可在动力辅助模式下操作,控制器50与致动器22通信,其中控制器50被配置成控制致动器22在门运动期间不一致地改变在门处可检测到的阻力。在另一种可能的配置中,在门处可检测到的阻力的不一致变化、例如由用户或力传感器检测到的阻力的不一致变化复制了当门运动不受致动器22控制时在门处可检测到的阻力的不一致变化。

现在参照图69和图70,示出了由控制器50使用至少一个相关扭矩2705执行的叠加算法(图69)的示例。例如,图69中所示的是:与倾斜或铰链偏置有关的相关扭矩2705a,作为围绕门枢转轴线2560起作用的示例,其可以说明性地起作用以使门12如图70中箭头2800所示(顺时针方向)摆动打开;与门的惯性有关的相关扭矩2705b,其最初作用于门以使其朝打开位置移动,但随着门速度增加,其作用是继续朝打开位置推动门,如图70中箭头2802所示;与摩擦有关的相关扭矩2705c,其作用是抵抗门朝向打开位置打开,如图70中箭头2804所示,围绕轴线2650逆时针所示;与门铰链的止动位置或者门检查车辆是否配置有这样的止动有关的相关扭矩2705d,所述这样的止动倾向于阻止门仅在门的预定角位置处朝向打开位置移动,例如如图70中箭头2806所示。在叠加计算中可以包括其他相关扭矩2705,诸如例如由可能影响门运动的阻尼支柱或装置等施加的阻尼扭矩2705e。叠加算法2718可以计算补偿净扭矩响应2707,以抵消如由致动器22的扭矩提供的各个相关扭矩的总和,并且控制器50被配置成基于所计算的净扭矩响应来生成力命令88,以控制作用在闭合构件上的致动器输出力以生成补偿净扭矩响应2707并因此移动闭合构件以便控制用户在动力辅助下移动门时所感受到的阻力或者控制用户在移动动力门时所感受到的辅助,如图70中的箭头2808所示。箭头2808被示为顺时针方向以提供将门朝向打开位置移动的辅助,但可以是逆时针方向以提供对朝向打开位置的门运动的阻力。补偿净扭矩响应2707可以随着门的角度变化而可变,以在门12的整个运动上向用户提供一致的门感觉,而不管可以随着门12的角度变化而变化的门的重量、门的运动速度、重力效应等如何。在另一可能的配置中,补偿净扭矩响应2707可以随着门的角度变化而可变,以在门12的整个运动上向用户提供不一致的门感觉,以在门12的角度变化上引入由用户感测的阻力或辅助的变化。例如,这种不一致可以通过增加模拟的止动位置周围的力而向用户提供感觉。作为另一示例,控制器50、2702可以提供阻力和辅助的不一致,使得用户在在手动模式下移动门期间感受到相同的力,但是其中这样的力被缩放以向用户提供熟悉的门打开体验,例如如移动手动无动力门,但是由用户感测到的力减小。例如,控制器50、2702可以被配置成改变阻力,使得用户仍然感受到与克服门在静止时的惯性相关联的力,或者例如控制器50、2702可以被配置成改变阻力,使得用户仍然感受到与门在运动时的持续惯性相关联的力,或者例如控制器50、2702可以被配置成改变辅助,使得用户在门正被移动且车辆10处于倾斜状态时仍然感受到与克服重力作用相关联的力,使得门感觉不到好像它在水平表面上。这种在门阻力和辅助的不一致的有目的的引入被提供来模仿通常与用户熟悉的无动力门相关联的力,以便与在整个门运动中一致的有动力的辅助相比向用户提供变化程度的触觉反馈,与当移动无动力门时相比,用户可能不熟悉有动力的辅助。在门运动期间,补偿净扭矩响应2707可以是正的以向门提供辅助力,以及也可以是负的以向门提供阻力,使得用户在门的手动交互期间将在整个门的运动上感受相同或缩放的力。在一些情况下,控制器50可以例如通过应用内部缩放变量来计算补偿净扭矩响应2707,使得用户感受到的阻力减小到几乎为零以提供失重的门感觉,以及在其他配置中,控制器50可以计算补偿净扭矩响应2707,使得用户感受到的阻力增加以向用户提供较重的门感觉。在该说明性示例中,由致动器22引起的围绕轴线2650的顺时针扭矩将用于移动门,同时还减小了由用户感受到的作用在门上的阻力,或者换言之,用户必须输入围绕轴线2650所需的打开扭矩2709以移动门12。因此,取决于用户的期望体验,对致动器的控制可以使用户体验较重的门(当移动门时用户感觉到较多阻力)或较轻的门(当移动门时用户感觉到较小阻力)以及模拟正常的无动力门运动但具有由用户移动门感测到的缩放力的门。如上文所讨论的,可以使用力传感器来测量由用户感测的力。图70示出了作为具有可延伸齿条的齿条和小齿轮型致动器的致动器22,作为可以在本文描述的动力闭合构件致动系统20中采用的仅一种类型的致动器22。在一个可能的配置中,本文中描述的致动器22不设置有离合器,并且在其他情况下在马达2711与车身14上的安装支架2713之间具有连续接合的驱动(例如,总是联接的)连接。因此,在动力辅助模式和自动模式二者下,控制器50可以在一种可能的配置中根据门的位置实时地控制门,以便确定力命令88或运动命令62。虽然用户在动力辅助模式下移动门时可以具有门的准手动控制,但是动力闭合构件致动系统20可以在在动力辅助模式下操作时限制用户可以移动门的门的速度,例如控制器50可以将门的速度限制或限定到最大值每秒60度,并且可以如上文所述在高于此速度的情况下转换到防砰击模式。

现在参照图71,示出了控制器50、2702确定任何辅助门系统是否处于活动状态并更新相关扭矩以包括与辅助门系统有关的相关扭矩的示例,如上文所述,辅助门系统例如是用于门角度的门呈现器2717,门呈现器2717将被激活,例如以辅助破冰功能。例如,控制器50、2702可以确定门呈现器是否被激活以也辅助移动门,并且包括基于门角度实时更新的围绕轴线2650作用的辅助系统的相关扭矩2902以包括作为叠加计算功能2718的一部分。这样的辅助门系统可以被选择性地激活,以如图70中的箭头2808所示针对门角度的一部分作用在门上。作为示例而非限制,例如如果单独的门检查机构作用在门上,如果单独的制动机构作用在门上,如果另一门与该门相互作用——例如在无B柱门系统的情况下,具有相关的相关扭矩2904的其他门系统可以由控制器50在执行叠加功能2718时被包括或去除。因此,控制器50、2702可以执行如在上文所描述的方法步骤2612中说明性地确定的净扭矩响应2908的求和2906,参照图69该求和说明性地包括扭矩2705a至2705d的总和、如在方法步骤2616中说明性地确定的补偿扭矩2910,并且说明性地包括上文描述的致动器22围绕轴线2650的扭矩,并且进行到使用力命令生成器2914来计算要提供给马达2916的力命令2912。当由于辅助系统未被激活(例如基于门角度)或不可用(例如未被安装在车辆上,或由于损坏而被禁用)而导致的这种其他相关扭矩没有影响正常(没有辅助门系统影响门运动)动力辅助补偿计算时,如果门呈现器2717正在影响门移动,则可以添加或去除相关扭矩例如扭矩2902的任何包含或排除。因此,动力闭合构件致动系统20可以支持附加的门运动影响功能在门运动期间的扩展,例如仅在门的某些运动范围或门的某些状态期间可操作的功能,或者支持动力闭合构件致动系统20的不同配置的模块化,例如安装附加的机构,例如机械门检查、阻尼器例如平衡支柱、机电制动机构等等,而没有限制。

显然,然而,在不脱离所附权利要求中限定的范围的情况下,可以对本文描述和说明的内容做出改变。出于说明和描述的目的已经提供了对实施方式的前述描述。这并非旨在是详尽无遗的或限制本公开内容。特定实施方式的各个元件或特征通常不限于该特定实施方式,而是在适用的情况下是可互换的并且可以用于所选择的实施方式中,即使没有具体示出或描述也是如此。特定实施方式的各个元件或特征在许多方面也可以变化。这样的变型不被视为是脱离本公开内容,并且所有这样的修改旨在被包括在本公开内容的范围内。

本文中使用的术语仅用于描述特定示例实施方式的目的,并且不旨在是限制性的。如本文所使用的,除非上下文另有明确指示,否则单数形式“一”、“一个”和“该”也可以旨在包括复数形式。术语“包括”、“包含”、“含有”以及“具有”是包括性的,并因此指定陈述的特征、整数、步骤、操作、元件和/或部件的存在,但是不排除一个或更多个其他特征、整数、步骤、操作、元件、部件和/或其组合的存在或添加。除非本文中描述的方法步骤、处理以及操作被特别地标识为执行的顺序,否则不应当被解释为必须要求其以所讨论或示出的特定顺序来执行。还应当理解的是,可以采用附加步骤或替代性步骤。

当元件或层被称为“在另一元件或层上”、“接合至”、“连接至”或“耦接至”另一元件或层时,其可以直接在另一元件或层上、接合、连接或耦接至另一元件或层,或者可以存在中间元件或层。相比之下,当元件被称为“直接在另一元件或层上”或者“直接接合至”、“直接连接至”或“直接耦接至”另一元件或层时,可以不存在中间元件或层。用于描述元件之间的关系的其他词语应以类似的方式来解释(例如,“在……之间”与“直接在……之间”,“邻近”与“直接邻近”等)。如在本文中所使用的,术语“和/或”包括一个或更多个相关联所列项的任意和所有组合。

尽管术语第一、第二、第三等可以在本文中用于描述各种元件、部件、区域、层和/或部分,但这些元件、部件、区域、层和/或部分不应受到这些术语的限制。这些术语可以仅用于将一个元件、部件、区域、层或部分与另一区域、层或部分区分开。当在本文中使用术语例如“第一”、“第二”以及其他数值术语时,除非由上下文清楚地指明,否则不意味着次序或顺序。因此,在不偏离示例实施方式的教导的情况下,以下讨论的第一元件、第一部件、第一区域、第一层或第一部分可以称为第二元件、第二部件、第二区域、第二层或第二部分。

为了便于描述,在本文中可以使用空间上相关术语例如“内部”、“外部”、“下方”、“下面”、“下部”、“上面”、“上部”、“顶部”、“底部”等来描述如图所示的一个元件或特征与另一个元件或特征的关系。空间上相关术语可以意为包括在使用或操作中的装置的除了在附图中描绘的取向之外的不同取向。例如,如果附图中的装置被翻转,则被描述为其他元件或特征的“下面”或“下方”的元件将定向为所述其他元件或特征的“上面”。因此,示例术语“下面”可以包括上面和下面两种取向。装置可以以其他方式定向(旋转90度或以其他取向),并且相应地解释本文中使用的空间相关描述。

根据所示出的实施方式采用的示例性设备、系统以及方法的组件可以至少部分地以数字电子电路系统、模拟电子电路系统或以计算机硬件、固件、软件或其组合来实现。这些组件可以实现为由处理设备执行的指令的集合,例如实现为计算机程序产品,诸如有形地在信息载体或机器可读存储设备中实施以由诸如可编程处理器、微处理器、计算机或多个计算机的数据处理装置执行或控制数据处理装置的操作的计算机程序、程序代码或计算机指令。在本申请中使用的术语“控制器”是无论是单个还是多个部分都能够携带用于执行本文中提供的功能、方法和流程图的程序的任何这样的计算机、处理器、微芯片处理器、集成电路或任何其他元件的综合。控制器可以是与其他电子元件一起位于印刷电路板上的单个这种元件。可替选地,控制器可以远离本文中描述的其他元件系统存在。例如但不限于,至少一个控制器可以采用在车门内、闩锁或在车辆内其他位置处的车辆的车载计算机中编程的形式作为示例。控制器也可以存在于多个位置或包括多个部件。

指令列表例如计算机程序可以以包括编译或解释语言的任何形式的编程语言编写,并且它可以以任何形式来部署,包括作为独立程序或作为模块、部件、子例程或适合在计算环境中使用的其他单元。计算机程序可以被部署成在一个计算机上执行或者在多个计算机上执行,所述多个计算机处于一个站处或者被分布成跨多个站并且通过通信网络进行互连。此外,用于实现说明性实施方式的功能程序、代码和代码段可以由说明性实施方式所属领域的熟练程序员容易地解释为在说明性实施方式所例示的权利要求的范围内。与说明性实施方式相关联的方法步骤可以通过由一个或更多个可编程处理器执行计算机程序、代码或指令以执行功能(例如,通过对输入数据进行操作并且/或者生成输出)来执行。例如,方法步骤也可以由专用逻辑电路系统例如FPGA(现场可编程门阵列)或ASIC(专用集成电路)执行,并且说明性实施方式的装置可以被实现为所述专用逻辑电路系统。

结合本文中公开的实施方式描述的各种说明性逻辑块、模块、算法、步骤和电路可以通过以下来实现或执行:通用处理器、数字信号处理器(DSP)、ASIC、FPGA或其他可编程逻辑器件、分立的门或晶体管逻辑、分立硬件部件或被设计成执行本文中所描述的功能的其任意组合。通用处理器可以是微处理器,但在替代方案中,作为示例,处理器可以是任何常规处理器、微控制器或状态机。处理器还可以被实现为计算设备的组合,例如DSP和微处理器的组合、多个微处理器的组合、一个或更多个微处理器与DSP核的结合、或任何其他这样的配置。

通过示例的方式,适合于执行计算机程序的处理器包括通用微处理器和专用微处理器二者以及任何种类的数字计算机的任何一个或更多个处理器。通常,处理器将从只读存储器或随机存取存储器或这二者接收指令和数据。计算机的基本元件是用于执行指令的处理器以及用于存储指令和数据的一个或更多个存储器装置。通常,计算机还将包括或在操作上耦接至用于存储数据的一个或更多个大容量存储装置例如磁盘、磁光盘或光盘以从其接收数据或向其传送数据或两者兼具。适用于实施计算机程序指令和数据的信息载体包括所有形式的非易失性存储器,包括作为示例的半导体存储器装置,例如电可编程只读存储器或ROM(EPROM)、电可擦除可编程ROM(EEPROM)、闪存装置以及数据存储盘(例如,磁盘、内部硬盘或可移动盘、磁光盘以及CD-ROM和DVD-ROM盘)。处理器和存储器可以由专用逻辑电路系统补充或并入专用逻辑电路系统中。

本领域技术人员理解,可以使用各种不同工艺和技术中的任何工艺和技术来表示信息和信号。例如,以上描述通篇可以提及的数据、指令、命令、信息、信号、比特、符号和码片可以由电压、电流、电磁波、磁场或粒子、光场或粒子或者它们的任何组合来表示。

本领域技术人员还理解,结合本文中公开的实施方式描述的各种说明性逻辑块、模块、电路、算法和步骤可以实现为电子硬件、计算机软件或二者的组合。为了清楚地说明硬件和软件的这种可互换性,上面已大体上在其功能方面描述了各种说明性部件、块、模块、电路和步骤。这种功能被实现为硬件还是软件取决于施加在整个系统上的特定应用和设计约束。技术人员可以针对每个特定应用以不同方式实现所描述的功能,但是这种实现决策不应被解释为导致脱离由说明性实施方式例示的权利要求的范围。软件模块可以驻留在随机存取存储器(RAM)、闪存、ROM、EPROM、EEPROM、寄存器、硬盘、可移动磁盘、CD-ROM或本领域已知的任何其他形式的存储介质中。示例性存储介质耦接至处理器,使得处理器可以从存储介质读取信息并将信息写入到存储介质。在替代方案中,存储介质可以是处理器的组成部分。换言之,处理器和存储介质可以驻留在集成电路中或者实现为分立部件。

计算机可读非暂态介质包括所有类型的计算机可读介质,包括磁存储介质、光存储介质、闪存介质和固态存储介质。应当理解,软件可以安装在中央处理单元(CPU)设备中并与之一起出售。可替选地,可以获得软件并且将其加载到CPU设备中,包括通过物理介质或分配系统来获得软件,包括例如从软件创建者所拥有的服务器或从并非由软件创建者拥有但由软件创建者使用的服务器来获得软件。例如,软件可以存储在服务器上以便通过因特网分发。

技术分类

06120116223783