掌桥专利:专业的专利平台
掌桥专利
首页

阀门组件

文献发布时间:2024-04-18 19:52:40


阀门组件

技术领域

本公开一般涉及阀门组件,尤其涉及一种用于气体涡轮引擎的阀门组件。

相关技术的描述

阀门组件用于各种应用,包括气体涡轮引擎。一些阀门组件可以限定移动部件之间的流动路径或流动通道。两个移动部件可能需要密封(即,动态密封件),可以由可移动阀门构件提供该密封。此类密封件的性能通常可能受以下操作因素的影响:诸如由于流体的存在引起的膨胀、配合表面或接合表面的表面粗糙度、润滑性、内部压力、压缩、弹性、湿度、氧化(例如,在升高的温度下)、渗出(例如,在升高的温度和/或湿度下)以及移动部件之间的摩擦。

已经开发出密封件以承受上述操作因素中的一个或多个操作因素。然而,此类密封件的使用可能受到密封件本身的热和环境极限的限制,而具有更高的承受高温的能力的一些密封件可能增大可移动部件之间的摩擦,并且由此引起或增加渗漏(例如,当阀门组件原本应该闭合时从阀门的控制腔或穿过阀门组件)。因此,这些密封件可能易受可以将流体抽吸到阀门组件的控制系统中的寄生渗漏流影响,例如,当使用动态密封件来密封阀门的控制腔时。渗漏随时间推移而增加,从而需要更换此类密封件,这既不方便又花费高。

美国专利申请号US 2020/0109795 A1公开了一种阀门组件,该阀门组件包括阀座、致动器组件和允许流体流动穿过阀门组件的流体流动通道。致动器组件包括金属波纹管,该金属波纹管附接到阀门构件和附接到致动器主体并且设置在流体流动通道内。阀门构件能够相对于致动器主体移动并且围绕致动器主体延伸。致动器主体、金属波纹管和阀门构件限定在它们之间的控制腔。尽管阀门组件提供了改善的防渗漏性和/或有效的使用寿命(尤其是在高温下使用时),但是金属波纹管容易遭受由于控制腔内部与金属波纹管外部之间的流体压差而引起的不平衡力(即,侧向变形)。这种压差可能影响波纹管的循环寿命。

发明内容

根据第一方面,提供了一种阀门组件。该阀门组件包括允许流体流动穿过阀门组件的流体流动通道。该阀门组件还包括阀座和致动器组件。致动器组件包括相对于阀座处于固定位置的致动器主体。致动器组件还包括阀门构件,该阀门构件能够相对于阀座在阀门构件至少部分地与阀座接合以至少部分地阻挡流体流动通道的第一位置与阀门构件远离阀座的第二位置之间移动。阀门构件能够相对于致动器主体移动并且围绕致动器主体延伸,使得致动器主体设置在阀门构件内。阀门构件包括延伸穿过其中的至少一个孔口。致动器组件还包括波纹管,该波纹管接纳在阀门构件内并且附接到阀门构件和附接到致动器主体。波纹管包括内部表面和与内部表面相对的外部表面。波纹管的内部表面、致动器主体和阀门构件限定在它们之间的控制腔。波纹管的外部表面和阀门构件限定在两者间的外部容积,使得该外部容积围绕控制腔。至少一个孔口将控制腔与外部容积流体连通。

至少一个孔口可以允许流体在控制腔与外部容积之间流动,并且因此当阀门构件处于第二位置并且远离阀座时,促使控制腔内部的压力与控制腔外部(即,外部容积)的压力平衡。这可以显著地减少或消除阀门构件上的任何不平衡力,并且因此避免阀门构件的侧向变形。此外,该压力平衡可以增加阀门构件跨阀门组件的操作循环的循环寿命(或使用寿命)。另外,这还可以降低阀门组件的总生命周期成本。

在一些实施方案中,阀门构件包括靠近阀座的第一阀门构件部分和远离阀座的第二阀门构件部分。致动器主体包括第一致动器侧面和与第一致动器侧相对的第二致动器侧面。第一致动器侧面面向第一阀门构件部分,并且第二致动器侧面面向第二阀门构件部分。波纹管附接到致动器主体的第二致动器侧面和附接到第二阀门构件部分,从而波纹管设置在致动器主体与第二阀门构件部分之间。

波纹管可以提供穿过阀门组件的所需密封件,同时满足阀门组件的热能力需求。不需要滑动密封件,并且因此,控制腔可能不太容易受与此类滑动密封件相关联的渗漏和磨损的影响。这继而可以增加阀门组件的使用寿命。因此,阀门组件也可以表现出减小的摩擦负载和粘滞负载。

由于不需要滑动密封件,因此波纹管可以减少穿过阀门组件的寄生渗漏流,特别是当波纹管焊接到致动器主体和焊接到阀门构件时。由于通过阀门组件中的渗漏减少压力损失,阀门组件因此可能具有更快的响应时间。

由于波纹管附接(例如,机械地连接)到致动器主体的第二致动器侧面和第二阀门构件部分两者,因此阀门构件的旋转运动相对于致动器主体受到约束和/或限制。例如,阀门部件可能因其附接到致动器主体和附接到波纹管而在旋转上受到约束。这继而可能减小这些部件的机械损坏倾向。

在一些实施方案中,第一阀门构件部分围绕致动器主体并且在阀门构件的第一位置至少部分地接合阀座。在阀门构件的第一位置第一阀门部分与阀座之间的接合可以阻挡流体流动穿过阀门组件。

在一些实施方案中,致动器主体还包括被构造成引导阀门构件的移动的引导轴。第二阀门构件部分与引导轴滑动接合。因此,引导轴可以以稳健的方式促进阀门构件在第一位置与第二位置之间的移动。

在一些实施方案中,第二阀门构件部分还包括至少部分地且滑动地将引导轴接纳在其中的管状区段。管状区段可以与引导轴滑动接合,以促进第二阀门构件部分和阀门构件在第一位置与第二位置之间的移动。

在一些实施方案中,波纹管的内部表面、致动器主体和第二阀门构件部分限定在它们之间的控制腔。在一些实施方案中,波纹管的外部表面和第一阀门构件部分限定在两者间的外部容积。因此,波纹管可以将控制腔与外部容积隔开。

在一些实施方案中,第二阀门构件部分包括至少一个孔口。因此,至少一个孔口通过第二阀门构件部分将控制腔与外部容积连流体连通。

在一些实施方案中,阀门构件被构造成当在第二阀门构件部分处致动器组件外部的压力大于控制腔内部的压力时朝其第一位置移动。

在一些实施方案中,阀门构件被构造成当在第二阀门构件部分处致动器组件外部的压力小于或等于控制腔内部的压力时朝其第二位置移动。

因此,阀门构件可以响应于跨阀门构件的压差而移动。阀门构件(以及因此阀门组件)可以通过控制(例如,经由控制系统)控制腔内部的压力而保持在任何位置(包括但不限于:完全打开位置和完全闭合位置)。在一些实施方案中,波纹管可以允许阀门构件相对于致动器主体的完全可变控制(例如,定位)。

在一些实施方案中,阀门构件包括面向阀座的第一端部和与第一端部相对的第二端部。至少一个孔口设置为靠近第二端部。至少一个孔口的这种位置可以促进控制腔与外部容积之间的流体流动。

在一些实施方案中,至少一个孔口包括:第一孔口部分,该第一孔口部分设置成与控制腔流体连通;以及第二孔口部分,该第二孔口部分向第一孔口部分倾斜并且设置成与外部容积流体连通。至少一个孔口的这种构型可以促进控制腔与外部容积之间的流体流动。

在一些实施方案中,第一孔口部分具有第一平均宽度,并且第二孔口部分具有第二平均宽度。第一平均宽度小于第二平均宽度。这可以允许计量穿过至少一个孔口的流体流动。此外,至少一个孔口的这种构型可以促进控制腔与外部容积之间的流体流动。

在一些实施方案中,第一孔口部分具有第一长度,并且第二孔口部分具有第二长度。第二长度比第一长度大至少五倍。第一长度和第二长度可以基于阀门构件的设计。

在一些实施方案中,第一孔口部分设置成与第二孔口部分直接流体连通。这可以促进第一孔口部分与第二孔口部分之间的流体流动。此外,第一孔口部分可以接纳来自控制腔的流体,并且第二孔口部分可以接纳来自第一孔口部分的流体。第二孔口部分可以允许从第一孔口部分接纳的流体流动到外部容积。

在一些实施方案中,第一孔口部分垂直于第二孔口部分。这种构型可以基于制造和设计要求。

在一些实施方案中,至少一个孔口还包括以流体方式设置在第一孔口部分与第二孔口部分之间的可调节孔口区域部分。致动器组件还包括与可调节孔口区域部分相邻的活动联接到阀门构件的可调节塞。可调节塞被构造成选择性地调节该可调节孔口区域部分的横截面积。因此,可调节塞可基于可调节塞相对于该可调节孔口区域部分的位置来控制穿过至少一个孔口的流体流动。

在一些实施方案中,至少一个孔口包括相对于阀门组件的纵向轴线成角度地彼此分离的多个孔口。多个孔口可以促进控制腔与外部容积之间的压力均衡。

在一些实施方案中,阀门构件还包括打开阀门止挡件,该打开阀门止挡件被构造成与致动器主体接合以限制阀门构件在远离阀座的方向上的移动。

因此,可以通过该打开阀门止挡件控制阀门构件远离阀座的最大距离。这继而可以控制并限制当阀门组件处于完全打开构型时能够流动穿过阀门组件的最大量的流体。

在一些实施方案中,在阀门构件的第二位置,打开阀门止挡件与致动器主体密封地接合以密封外部容积。至少一个孔口被构造成在打开阀门止挡件与致动器主体之间发生密封接合时至少部分地减少控制腔与外部容积之间的任何压差。因此,控制腔和外部容积可以在阀门构件的第二位置处于压力平衡。此外,由于在阀门构件的第二位置不存在穿过至少一个孔口的流(例如,由于压力平衡),因此阀门组件可以极其耐受污染。

在一些实施方案中,阀门构件还包括闭合阀门止挡件,该闭合阀门止挡件被构造成在阀门构件的第一位置与阀座密封地接合。在阀门构件的第一位置该闭合阀门止挡件与阀座之间的接合可以阻挡流体流动穿过阀门组件。

在一些实施方案中,波纹管能够在波纹管具有第一尺寸的膨胀构型与波纹管具有第二尺寸的收缩构型之间移动。第二尺寸小于第一尺寸。当移动到其膨胀构型时,波纹管被构造成将阀门构件移动到其第二位置,并且当移动到其收缩构型时,波纹管被构造成将阀门构件移动到其第一位置。波纹管可以允许阀门构件相对于致动器主体的完全可变控制(例如,定位)。

在一些实施方案中,波纹管被朝其膨胀构型偏压。因此,阀门组件可以被朝打开构型偏压。因此,波纹管的偏压(例如,弹簧常数)可以将阀门构件朝阀门构件的第二位置偏压。因此,可能不需要实现这种偏压的单独部件(例如,弹簧)。

在一些实施方案中,阀门组件还包括至少一个控制腔流动通道,该至少一个控制腔流动通道与流体流动通道以流体方式分离并且设置成与控制腔流体连通。至少一个控制腔流动通道被构造成允许流体流到控制腔。至少一个控制腔流动通道可以允许加压流体流到控制腔中。因此,控制腔的内部压力可以与波纹管的偏压一起作用,以提供致使阀门构件朝第二位置移动远离阀座的打开力,从而打开阀门组件。控制腔还可以通过控制腔流动通道进行泄压,致使阀门构件朝第一位置移动并与阀座接合,从而闭合阀门组件。

在一些实施方案中,至少一个孔口的总横截面积小于至少一个控制腔流动通道的总横截面积。当流体通过控制腔流动通道流到控制腔中时,这可以促使控制腔内部的压力增加,并且当阀门构件移动远离阀座时,并非通过控制腔流动通道进入的所有流体都必需穿过至少一个孔口到达外部容积。因此,穿过至少一个孔口的流体流可能不会妨碍阀门构件的致动。

在一些实施方案中,壳体构件包括流体流动通道、阀座和至少一个控制腔流动通道。壳体构件还包括相对于阀座延伸并且固定地联接到致动器主体的至少一个延伸部分。至少一个延伸部分至少部分地限定出至少一个控制腔流动通道。因此,至少一个控制腔流动通道可以与阀门组件的流体流动通道以流体方式分离。

在一些实施方案中,致动器主体还包括将至少一个控制腔流动通道与控制腔流体连通的至少一个致动器流动通道。因此,至少一个控制腔流动通道可以与阀门组件的流体流动通道以流体方式分离。

根据第二方面,提供了一种用于飞行器的气体涡轮引擎。该气体涡轮引擎包括引擎核心,该引擎核心包括涡轮、压缩机和将涡轮连接到压缩机的芯轴。该气体涡轮引擎还包括风扇,该风扇位于引擎核心的上游,该风扇包括多个风扇叶片。该气体涡轮引擎还包括第一方面的阀门组件。

在一些实施方案中,阀门组件被构造成使得来自压缩机的空气被构造成流动穿过阀门组件的流体流动通道。在一些实施方案中,阀门组件被构造成使得来自压缩机的空气被构造成流动到阀门组件的控制腔。

如本文其他地方所述,本公开可涉及气体涡轮引擎。此类气体涡轮引擎可包括引擎核心,该引擎核心包括涡轮、燃烧器、压缩机和将该涡轮连接到该压缩机的芯轴。此类气体涡轮引擎可包括位于引擎核心的上游的(具有风扇叶片的)风扇。

本公开的布置结构可以特别但并非排他地有益于经由齿轮箱驱动的风扇。因此,该气体涡轮引擎可包括齿轮箱,该齿轮箱接收来自芯轴的输入并将驱动输出至风扇,以便以比芯轴更低的旋转速度来驱动风扇。至齿轮箱的输入可直接来自芯轴或者间接地来自芯轴,例如经由正齿轮轴和/或齿轮。芯轴可将涡轮和压缩机刚性地连接,使得涡轮和压缩机以相同的速度旋转(其中,风扇以更低的速度旋转)。

如本文所述和/或所要求保护的气体涡轮引擎可具有任何合适的通用架构。例如,气体涡轮引擎可具有将涡轮和压缩机连接的任何所需数量的轴,例如一个轴、两个轴或三个轴。仅以举例的方式,连接到芯轴的涡轮可以是第一涡轮,连接到芯轴的压缩机可以是第一压缩机,并且芯轴可以是第一芯轴。该引擎核心还可包括第二涡轮、第二压缩机和将第二涡轮连接到第二压缩机的第二芯轴。该第二涡轮、第二压缩机和第二芯轴可被布置成以比第一芯轴高的旋转速度旋转。

在此类布置结构中,第二压缩机可轴向定位在第一压缩机的下游。该第二压缩机可被布置成(例如直接接收,例如经由大致环形的导管)从第一压缩机接收流。

齿轮箱可被布置成由被构造成(例如在使用中)以最低旋转速度旋转的芯轴(例如上述示例中的第一芯轴)来驱动。例如,该齿轮箱可被布置成仅由被构造成(例如在使用中)以最低旋转速度旋转的芯轴(例如,在上面的示例中,仅第一芯轴,而不是第二芯轴)来驱动。另选地,该齿轮箱可被布置成由任何一个或多个轴驱动,该任何一个或多个轴例如为上述示例中的第一轴和/或第二轴。

该压缩机或每个压缩机(例如,如上所述的第一压缩机和第二压缩机)可包括任何数量的级,例如多个级。每一级可包括一排转子叶片和一排定子轮叶,该排定子轮叶可为可变定子轮叶(因为该排定子轮叶的入射角可以是可变的)。该排转子叶片和该排定子轮叶可彼此轴向偏移。

该涡轮或每个涡轮(例如,如上所述的第一涡轮和第二涡轮)可包括任何数量的级,例如多个级。每一级可包括一排转子叶片和一排定子轮叶。该排转子叶片和该排定子轮叶可彼此轴向偏移。

技术人员将理解,除非相互排斥,否则关于任何一个上述方面描述的特征或参数可应用于任何其他方面。此外,除非相互排斥,否则本文中描述的任何特征或参数可应用于任何方面以及/或者与本文中描述的任何其他特征或参数组合。

附图说明

现在将参考附图仅以举例的方式来描述实施方案,其中:

图1是气体涡轮引擎的截面侧视图;

图2是气体涡轮引擎的上游部分的特写截面侧视图;

图3是用于气体涡轮引擎的齿轮箱的局部剖视图;

图4A是根据本公开的实施方案的阀门组件的示意图;

图4B是根据本公开的实施方案的沿着穿过阀门组件的中心的平面截取的阀门组件的示意性截面图;

图5A是根据本公开的实施方案的沿着穿过处于阀门构件的第二位置的阀门组件的中心的平面截取的阀门组件的示意性截面图;

图5B是根据本公开的实施方案的包括外部容积的阀门组件的详细示意性截面图;

图6是根据本公开的实施方案的沿着穿过处于阀门构件的第一位置的阀门组件的中心的平面截取的阀门组件的示意性截面图;

图7是根据本公开的实施方案的第二阀门构件部分的示意性透视图;

图8是根据本公开的实施方案的包括至少一个孔口的阀门组件的局部示意性截面图;并且

图9是根据本公开的另一实施方案的包括至少一个孔口的阀门组件的局部示意性截面图。

具体实施方式

现在将参考附图讨论本公开的方面和实施方案。另外的方面和实施方案对于本领域的技术人员而言是显而易见的。

图1示出了具有主旋转轴线9的气体涡轮引擎10。引擎10包括进气口12和推进式风扇23,该推进式风扇产生两股气流:核心气流A和旁路气流B。气体涡轮引擎10包括接收核心气流A的核心11。引擎核心11以轴流式串联包括低压压缩机14、高压压缩机15、燃烧设备16、高压涡轮17、低压涡轮19和核心排气喷嘴20。短舱21围绕气体涡轮引擎10并且限定旁路导管22和旁路排气喷嘴18。旁路气流B流过旁路导管22。风扇23经由轴26和周转齿轮箱30附接到低压涡轮19并由该低压涡轮驱动。

在使用中,核心气流A由低压压缩机14加速和压缩,并被引导至高压压缩机15中以进行进一步的压缩。从高压压缩机15排出的压缩空气被引导至燃烧设备16中,在该燃烧设备中压缩空气与燃料混合,并且该混合物被燃烧。然后,所得的热燃烧产物在通过核心排气喷嘴20排出之前通过高压涡轮17和低压涡轮19膨胀,从而驱动该高压涡轮和该低压涡轮以提供一些推进推力。高压涡轮17通过合适的互连轴27来驱动高压压缩机15。风扇23通常提供大部分推进推力。周转齿轮箱30是减速齿轮箱。

图2中示出了齿轮传动风扇气体涡轮引擎10的示例性布置结构。低压涡轮19(参见图1)驱动轴26,该轴联接到周转齿轮布置结构30的太阳轮或太阳齿轮28。在太阳齿轮28的径向向外处并与该太阳齿轮相互啮合的是多个行星齿轮32,该多个行星齿轮通过行星架34联接在一起。行星架34约束行星齿轮32以同步地围绕太阳齿轮28进动,同时使每个行星齿轮32绕其自身轴线旋转。行星架34经由连杆36联接到风扇23,以便驱动该风扇围绕旋转轴线9旋转。在行星齿轮32的径向向外处并与该行星齿轮相互啮合的是齿圈或环形齿轮38,其经由连杆40联接到固定支撑结构24。

需注意,本文中使用的术语“低压涡轮”和“低压压缩机”可分别表示最低压力涡轮级和最低压力压缩机级(即,不包括风扇23),和/或通过在引擎中具有最低旋转速度的互连轴26(即,不包括驱动风扇23的齿轮箱输出轴)连接在一起的涡轮级和压缩机级。在一些文献中,本文中提到的“低压涡轮”和“低压压缩机”可被另选地称为“中压涡轮”和“中压压缩机”。在使用此类另选命名的情况下,风扇23可被称为第一或最低压力的压缩级。

在图3中以举例的方式更详细地示出了周转齿轮箱30。太阳齿轮28、行星齿轮32和环形齿轮38中的每一者包括围绕其周边以用于与其他齿轮相互啮合的齿。然而,为清楚起见,图3中仅示出了齿的示例性部分。示出了四个行星齿轮32,但是对本领域的技术人员显而易见的是,可以在要求保护的发明的范围内提供更多或更少的行星齿轮32。行星式周转齿轮箱30的实际应用通常包括至少三个行星齿轮32。

在图2和图3中以举例的方式示出的周转齿轮箱30是行星式的,其中行星架34经由连杆36联接到输出轴,其中环形齿轮38被固定。然而,可使用任何其他合适类型的周转齿轮箱30。以另一个示例的方式,周转齿轮箱30可以是恒星布置结构,其中行星架34保持固定,允许环形齿轮(或齿圈)38旋转。在此类布置结构中,风扇23由环形齿轮38驱动。以另一个另选示例的方式,齿轮箱30可以是差速齿轮箱,其中环形齿轮38和行星架34均被允许旋转。

应当理解,图2和图3中所示的布置结构仅是示例性的,并且各种另选方案都在本公开的范围内。仅以举例的方式,可使用任何合适的布置结构来将齿轮箱30定位在引擎10中和/或用于将齿轮箱30连接到引擎10。以另一个示例的方式,齿轮箱30与引擎10的其他部件(诸如输入轴26、输出轴和固定结构24)之间的连接件(诸如图2示例中的连杆36、40)可具有任何期望程度的刚度或柔性。以另一个示例的方式,可使用引擎的旋转部件和固定部件之间(例如,在来自齿轮箱的输入轴和输出轴与固定结构诸如齿轮箱壳体之间)的轴承的任何合适的布置结构,并且本公开不限于图2的示例性布置结构。例如,在齿轮箱30具有恒星布置结构(如上所述)的情况下,技术人员将容易理解,输出连杆和支撑连杆以及轴承位置的布置结构通常不同于图2中以举例的方式示出的布置结构。

因此,本公开延伸到具有齿轮箱类型(例如,恒星或行星齿轮)、支撑结构、输入轴布置结构和输出轴布置结构以及轴承位置中的任何布置结构的气体涡轮引擎。

可选地,齿轮箱可驱动附加的和/或另选的部件(例如,中压压缩机和/或增压压缩机)。

本公开可应用的其他气体涡轮引擎可具有另选配置。例如,此类引擎可具有另选数量的压缩机和/或涡轮和/或另选数量的互连轴。以另外的示例的方式,图1中所示的气体涡轮引擎具有分流喷嘴18、20,这意味着穿过旁路导管22的流具有自己的喷嘴18,该喷嘴与核心排气喷嘴20分开并沿径向位于该核心排气喷嘴的外部。然而,这不是限制性的,并且本公开的任何方面也可应用于如下引擎,在该引擎中,穿过旁路导管22的流和穿过核心11的流在可被称为混流喷嘴的单个喷嘴之前(或上游)混合或组合。一个或两个喷嘴(无论是混合的还是分流的)可具有固定的或可变的面积。虽然所描述的示例涉及涡轮风扇引擎,但是本公开可应用于例如任何类型的气体涡轮引擎,诸如开放式转子(其中风扇级未被短舱围绕)或例如涡轮螺旋桨引擎。在一些布置结构中,气体涡轮引擎10可不包括齿轮箱30。

气体涡轮引擎10的几何形状及其部件由传统的轴系限定,包括轴向方向(与旋转轴线9对准)、径向方向(在图1中从下到上的方向)和周向方向(垂直于图1视图中的页面)。轴向方向、径向方向和周向方向相互垂直。

此外,本发明同样适用于航空气体涡轮引擎、船舶气体涡轮引擎和陆基气体涡轮引擎。

图4A示出了阀门组件100的示意图。在一些实施方案中,气体涡轮引擎10(图1中示出)包括阀门组件100。气体涡轮引擎10在下文中可互换地称为“引擎10”。在一些实施方案中,阀门组件100可用于控制流体穿过引擎10(图1中示出)的流动。在一些实施方案中,阀门组件100沿纵向轴线X-X'延伸。图4B示出了沿着穿过阀门组件100的中心的平面截取的阀门组件100的示意性截面图。

现在参考图4B,阀门组件100包括允许流体流动穿过阀门组件100的流体流动通道102。在一些实施方案中,流体流动通道102限定在阀门组件100的外部壳体101内。在一些实施方案中,流体可以包括空气、油、液压流体和/或燃料等。在一些实施方案中,流体流动通道102包括上游部分102a和下游部分102b。因此,应当理解,当阀门组件100打开时,允许流体流动穿过流体流动通道102从上游部分102a到达下游部分102b。

阀门组件100还包括阀座104和致动器组件120。致动器组件120包括相对于阀座104处于固定位置的致动器主体122。在一些实施方案中,阀门组件100还包括壳体构件110。在一些实施方案中,壳体构件110至少部分地包括流体流动通道102和阀座104。在一些实施方案中,壳体构件110还包括相对于阀座104延伸并且固定地联接到致动器主体122的至少一个延伸部分112。应当理解,壳体构件110可基于应用要求包括阀座104与致动器主体122之间的任何数量的延伸部分112。

致动器组件120还包括阀门构件130,该阀门构件能够相对于阀座104在阀门构件130至少部分地与阀座104接合以至少部分地阻挡流体流动通道102的第一位置P1(图6中示出)与阀门构件130远离阀座104的第二位置P2(如图4B中所示)之间移动。因此,致动器主体122与阀座104之间没有相对运动,然而,阀门构件130能够相对于阀座104和致动器主体122两者移动。应当理解,阀门构件130能够围绕致动器主体122移动以接合阀座104,以便阻挡流体流动穿过流体流动通道102。

将参考图5A描述阀门构件130的第二位置P2,并且将参考图6描述阀门构件130的第一位置P1。因此,应当理解,阀门构件130能够在图5A和图6中所示的构型之间移动。

阀门构件130能够相对于致动器主体122移动并且围绕致动器主体122延伸,使得致动器主体122设置在阀门构件130内。因此,致动器主体122至少部分地由阀门构件130封闭。致动器组件120还包括波纹管124,该波纹管接纳在阀门构件130内并且附接到阀门构件130和附接到致动器主体122。在一些实施方案中,波纹管124设置在阀门组件100的流体流动通道102内。在一些实施方案中,波纹管124可以是金属波纹管。在一些实施方案中,波纹管124焊接到阀门构件130和/或致动器主体122。应当理解,波纹管124可以通过任何合适的附接机构(例如,钎焊、粘合剂、紧固件等)附接到阀门构件130和/或致动器主体122。

图5A和图6分别示出了处于阀门构件130的第二位置P2和第一位置P1的阀门组件100的示意性截面图。另外,图5A示出了处于打开构型的阀门组件100,并且图6示出了处于闭合构型的阀门组件100。出于描述性和示例性的目的,阀门组件100的部件中的一些(例如,外部壳体101)未被示出。

在第一位置P1(图6中示出),阀门构件130至少部分地与阀座104接合,使得穿过流体流动通道102的流体流动被至少部分地阻挡。例如,处于其第一位置P1的阀门构件130可以与阀座104接合以阻挡流体流动通道102。在第二位置P2(如图5A所示),阀门构件130远离阀座104,使得允许流体流动穿过阀门组件100的流体流动通道102。

在一些实施方案中,阀门构件130的第二位置P2(图5A中示出)可以对应于阀门组件100的允许流体经由流体流动通道102流动穿过阀门组件100的打开构型,并且阀门构件130的第一位置P1(图6中示出)可以对应于阀门组件100的限制流体经由流体流动通道102流动穿过阀门组件100的闭合构型。因此,阀门组件100能够在打开构型与闭合构型之间移动,以选择性地允许和/或限制流体流动穿过阀门组件100。

在阀门构件130的第一位置P1(图6中示出),阀门组件100处于闭合构型(其中流体穿过该阀门组件的流动被限制)。当阀门构件130不处于第一位置P1时,阀门构件130可以远离阀座104,从而处于其第二位置P2(图5A中示出),并且因为阀门构件130不与阀座104接合,因此可以允许流体流动穿过流体流动通道102。因此,在阀门构件130的第二位置P2,阀门组件100可以处于打开构型。

阀门构件130设置在流体流动通道102内并且能够在第一方向D1和第二方向D2上移动。阀门构件130在第一方向D1上的移动朝向阀门构件130的第一位置P1(图6中示出),其中阀门构件130与阀座104接合,并且其中阀门组件100处于闭合构型。阀门构件130在第二方向D2上的移动朝向阀门构件130的第二位置P2(图5A中示出),其中阀门构件130远离阀座104,并且其中阀门组件100处于打开构型。因此,第一方向D1朝向流体流动通道102的下游部分102b并且因此是下游方向,并且第二方向D2朝向流体流动通道102的上游部分102a并且因此是上游方向。

在一些实施方案中,阀门构件130包括靠近阀座104的第一阀门构件部分132和远离阀座104的第二阀门构件部分134。具体地,第一阀门构件部分132是阀门构件130的靠近阀座104的一部分。此外,第一阀门构件部分132面向阀座104。在一些实施方案中,第一阀门构件部分132围绕致动器主体122并且在阀门构件130的第一位置P1(图6中示出)至少部分地接合阀座104。第二阀门构件部分134位于阀门构件130的相对侧上并且远离阀座104。在一些实施方案中,第二阀门构件部分134可以呈活塞构件的形式。

在一些实施方案中,致动器主体122包括第一致动器侧面122a和与第一致动器侧122a相对的第二致动器侧面122b。第一致动器侧面122a面向第一阀门构件部分132,并且第二致动器侧面122b面向第二阀门构件部分134。波纹管124附接到致动器主体122的第二致动器侧面122b和附接到第二阀门构件部分134,从而波纹管124设置在致动器主体122与第二阀门构件部分134之间。

波纹管124包括内部表面124a和与内部表面124a相对的外部表面124b。波纹管124的内部表面124a、致动器主体122和阀门构件130限定在它们之间的控制腔126。具体地,波纹管124的内部表面124a、致动器主体122和第二阀门构件部分134限定在它们之间的控制腔126。因此,波纹管124可以为控制腔126提供无渗漏动态密封件,例如,当波纹管124焊接到致动器主体122和焊接到阀门构件130时。此外,如由波纹管124的内部表面124a、致动器主体122和第二阀门构件部分134限定的控制腔126可以基于阀门构件130相对于阀座104的位置具有可变容积。

波纹管124的外部表面124b和阀门构件130限定在两者之间的外部容积128,使得外部容积128围绕控制腔126。具体地,波纹管124的外部表面124b和第一阀门构件部分132限定在两者之间的外部容积128。因此,外部容积128可以围绕控制腔126。

在一些实施方案中,波纹管124能够在波纹管124具有第一尺寸的膨胀构型B2(图5A中示出)与波纹管124具有第二尺寸的收缩构型B1(图6中示出)之间移动。在一些实施方案中,波纹管124的收缩构型B1对应于阀门构件130的第一位置P1并对应于阀门组件100的闭合构型。在一些实施方案中,波纹管124的膨胀构型B2对应于阀门构件130远离阀座104的阀门构件130的第二位置P2,并且还对应于阀门组件100的打开构型。

在一些实施方案中,第二尺寸小于第一尺寸,使得波纹管124的尺寸随着波纹管124从收缩构型B1(图6中示出)移动到膨胀构型B2(图5A中示出)而增加。相反,波纹管124的尺寸随着波纹管124从膨胀构型B2(图5A中示出)移动到收缩构型B1(图6中示出)而减小。波纹管124的尺寸可以是其高度、长度、深度等。然而,波纹管124可以具有恒定宽度。

在一些实施方案中,当波纹管124附接到阀门构件130时(例如,附接到第二阀门构件部分134时),波纹管124的移动使阀门构件130相对于致动器主体122移动。在一些实施方案中,当致动器主体122处于其固定位置时,波纹管124的膨胀使阀门构件130在第二方向D2(例如,上游方向)上移动,并且波纹管124的收缩使阀门构件130在第一方向D1(例如,下游方向)上移动并因此朝阀座104移动。因此,波纹管124被构造成当波纹管124朝膨胀构型B2移动时将阀门构件130移动到第二位置P2,并且波纹管124被构造成当波纹管124朝收缩构型B1移动时将阀门构件130移动到第一位置P1。

在一些实施方案中,波纹管124被朝其膨胀构型B2偏压。因此,波纹管124可以在第二方向D2上被偏压,例如,朝上游偏压。因此,阀门组件100可以被朝打开构型偏压。

如下文将描述的,在第一方向D1上施加到致动器组件120的力可以克服波纹管124的偏压并使波纹管124移动到收缩构型B1,从而使阀门构件130在第一方向D1上朝第一位置P1(图6中示出)移动,并且因此朝向阀座104移动。足够的力由此可以使阀门构件130与阀座104完全接合,从而阻挡流体流动穿过流体流动通道102并闭合阀门组件100。可选地,控制腔126中的力可以使波纹管124移动到膨胀构型B2,并且由此使阀门构件130在第二方向D2上移动到第二位置P2(图5A中示出)。因此,当阀门构件130初始安置在阀座104上以阻挡流体流动通道102时,控制腔126中作用在阀门构件130和致动器主体122上的足够的力可以使阀门构件130变成未被安置,从而打开流体流动通道102并打开阀门组件100。

在一些实施方案中,阀门构件130被构造成当在第二阀门构件部分134处致动器组件120外部的压力大于控制腔126内部的压力时朝其第一位置P1移动。因此,流体流动通道102的上游部分102a上的压力可以提供足够的力以克服波纹管124的偏压并使阀门构件130移动到其第一位置P1(图6中示出)或安置位置,从而闭合阀门组件100。

因此,应当理解,跨阀门构件130的压差可以使阀门构件130在第一位置P1与第二位置P2之间移动,并使波纹管124在膨胀构型B2与收缩构型B1之间移动。在一些实施方案中,比控制腔126中的压力大的施加到流体流动通道102的上游部分102a的压力可以使波纹管124收缩,从而使阀门构件130朝第一位置P1移动以接合阀座104。

在一些实施方案中,阀门构件130被构造成当在第二阀门构件部分134处致动器组件120外部的压力小于或等于控制腔126内部的压力时朝其第二位置P2(图5A中示出)移动。因此,由于在第二阀门构件部分134处致动器组件120外部的压力小于或等于控制腔126内部的压力,因此控制腔126内部的压力(以及波纹管124的偏压)可以使波纹管124膨胀,从而将阀门构件130在第二方向D2上朝其第二位置P2移动,并将阀门组件100移动到打开构型。

附接到阀门构件130的波纹管124的轴向膨胀和收缩(或压缩)可以允许阀门构件130根据差压平移(例如,在第一方向D1和第二方向D2上),以实现阀门组件100完全打开和完全闭合之间的任何位置。因此,阀门构件130的平移可以控制阀门组件100的流动计量、压力调节和/或止回功能,并且因此当阀门组件100与引擎10结合使用时可以控制引擎10(图1中示出)的流动计量、压力调节或止回功能。

在一些实施方案中,阀门组件100还包括至少一个控制腔流动通道142,该至少一个控制腔流动通道与流体流动通道102以流体方式分离并且设置成与控制腔126流体连通。在一些实施方案中,壳体构件110包括至少一个控制腔流动通道142。此外,至少一个延伸部分112至少部分地限定出至少一个控制腔流动通道142。至少一个控制腔流动通道142被构造成允许流体(例如,加压流体)流到控制腔126。“至少一个控制腔流动通道142”在下文中可互换地称为“控制腔流动通道142”。在一些实施方案中,致动器主体122还包括将至少一个控制腔流动通道142与控制腔126流体连通的至少一个致动器流动通道144。

应当理解,当加压流体被供应到控制腔126时,内部压力可以与波纹管124的偏压一起作用,以提供致使阀门构件130朝第二方向D2移动远离阀座104的打开力,从而打开阀门组件100。这可以克服在流体流动通道102的上游部分102a上提供的任何闭合力。这种力不平衡可能导致阀门构件130(在第二方向D2上)移动远离阀座104。当控制腔126被泄压(例如,通过控制腔流动通道142)时,所得的力不平衡可能导致阀门构件130在第一方向D1上移动并变成被安置(例如,与阀座104接合),从而将阀门组件100移动到闭合构型。因此,控制在波纹管124内部供应到控制腔126的压力可以允许阀门构件130被控制到第一位置P1与第二位置P2之间的任何给定位置。此外,波纹管124可以为控制腔126提供密封件。因此,不需要滑动密封件,并且可以减轻和/或防止加压流体从控制腔126渗漏流出。

现在参考图5A,阀门组件100被示出为打开构型。在打开构型中,阀门构件130已经移动到第二位置P2,从而疏通或至少部分地疏通流体流动通道102。由此允许流体流动穿过阀门组件100,如箭头F1-F4所示。

致动器组件120设置在流体流动通道102内,使得当阀门组件100处于打开构型时,流体被构造成围绕致动器组件120(并且因此围绕阀门构件130并围绕波纹管124)从流体流动通道102的上游部分102a流到流体流动通道102的下游部分102b。

如图5A所示,在流体流动通道102的上游部分102a处、第二阀门构件部分134处作用在致动器组件120上的压力不足以克服控制腔126内部的压力,因此波纹管124处于膨胀构型B2,并且阀门构件130远离阀座104。因此,图5A示出了处于打开构型的阀门组件100。

如图5A所示,控制腔流动通道142限定出由箭头C1指示的进入控制腔126的流体路径。在一些实施方案中,可以提供控制器(未示出)并将其构造成向控制腔126供应压力源,例如,加压流体。例如,控制器可以联接到控制腔流动通道142。在一些实施方案中,控制器可以被构造成从流体流动通道102的上游部分102a引导压力。因此,在一些实施方案中,可以将相同的流体或处于相同压力的流体供应到阀门组件100的控制腔126。此外,控制器可以被进一步构造成排出存在于阀门组件100的控制腔126内部的加压流体。

在一些实施方案中,致动器主体122还包括被构造成引导阀门构件130的移动的引导轴152。在一些实施方案中,第二阀门构件部分134与引导轴152滑动接合。在一些实施方案中,第二阀门构件部分134还包括至少部分地且滑动地将引导轴152接纳在其中的管状区段154。在一些实施方案中,管状区段154可以与引导轴152同心。第二阀门构件部分134还包括在管状区段154的端部处将其闭合的盖155。

在一些实施方案中,引导轴152可以相对于阀门构件130以及相对于第二阀门构件部分134进行固定,因为致动器主体122相对于阀座104处于固定位置。因此,当阀门构件130在第一位置P1(图6中示出)与第二位置P2之间移动,引导轴152可以引导管状区段154和第二阀门构件部分134。换句话讲,阀门构件130的平移运动(即,在第一方向D1和第二方向D2上在第一位置P1与第二位置P2之间)至少部分地由引导轴152限定,该引导轴被构造成防止阀门构件130的侧向运动(即,在垂直于第一方向D1和/或第二方向D2的方向上)。

图5B示出了包括外部容积128的阀门组件100的局部截面图。现在参考图5A和图5B,在一些实施方案中,阀门构件130还包括打开阀门止挡件136,该打开阀门止挡件被构造成与致动器主体122接合以限制阀门构件130在远离阀座104的方向(即,第二方向D2)上的移动。因此,直到打开阀门止挡件136接合致动器主体122,阀门构件130才能够在第二方向D2上移动。此外,当打开阀门止挡件136接合致动器主体122时,阀门组件100处于完全打开构型。在一些实施方案中,打开阀门止挡件136是设置在阀门构件130的内表面上的环形突起。在一些实施方案中,阀门构件130还包括闭合阀门止挡件138,该闭合阀门止挡件被构造成在阀门构件130的第一位置P1(图6中示出)与阀座104密封地接合。在一些实施方案中,闭合阀门止挡件138是设置在阀门构件130的外表面上的环形表面部分。

阀门构件130还包括延伸穿过其中的至少一个孔口160。在一些实施方案中,阀门构件130包括面向阀座104的第一端部156和与第一端部156相对的第二端部158。至少一个孔口160设置为靠近第二端部158。在一些实施方案中,第二阀门构件部分134包括至少一个孔口160。“至少一个孔口160”在下文中可互换地称为“孔口160”。

至少一个孔口160将控制腔126与外部容积128流体连通。因此,当控制腔126内部的压力增加并且阀门构件130从第一位置P1(图6中示出)朝第二方向D2平移,流体可以从控制腔126的内部流到外部容积128。

至少一个孔口160可以在控制腔126与外部容积128之间至少部分地在相对于纵向轴线X-X'的径向方向上延伸。在一些实施方案中,至少一个孔口160可以一体形成在第二阀门构件部分134中。在一些实施方案中,至少一个孔口160可以通过任何合适的方法(例如,钻孔)设置在第二阀门构件部分134中。

在一些实施方案中,至少一个孔口160的总横截面积小于至少一个控制腔流动通道142的总横截面积。因此,当阀门构件130在第二方向D2上移动远离阀座104,通过控制腔流动通道142进入的流体能够增加控制腔126内部的压力并且并非通过控制腔流动通道142进入的所有流体都必需穿过孔口160到达外部容积128。此外,控制腔126内部的压力可以与波纹管124的偏压一起作用,以(在第二方向D2上)将阀门构件130移动远离阀座104,并且因此即使在考虑到穿过孔口160的渗漏之后也打开阀门组件100。这可以克服在流体流动通道102的上游部分102a上提供的任何闭合力。

在阀门构件130的第二位置P2,打开阀门止挡件136与致动器主体122密封地接合以密封外部容积128。因此,当打开阀门止挡件136与致动器主体122密封地接合时,如在波纹管124的外部表面124b与第一阀门构件部分132之间限定的外部容积128可以被转换为密封容积。应当理解,仅当打开阀门止挡件136接合致动器主体122时,外部容积128才被密封。

在一些实施方案中,至少一个孔口160被构造成在打开阀门止挡件136与致动器主体122之间发生密封接合时至少部分地减小(例如,通过流体从控制腔126流动到外部容积128)控制腔126与外部容积128之间的任何压差。因此,直到在打开阀门止挡件136与致动器主体122之间发生密封接合时控制腔126与外部容积128之间的压差显著减小,流体才可以通过孔口160从控制腔126流到外部容积128。

控制腔126与外部容积128之间的压差减小可以均衡控制腔126与外部容积128之间的压力,从而减轻波纹管124上的朝任何特定方向的任何不平衡力(例如,引起侧向变形),该任何不平衡力将对波纹管124和阀门组件100的使用寿命具有负面影响。

消除波纹管124上的磨损和裂痕对减少阀门组件100所需的维护活动提供支持。因此,阀门组件100可以实现“省心安装”设计,其在引擎10(图1中示出)的寿命期间不需要大修(维护或更换)并且由于可以减少或避免针对阀门组件100的频繁维护活动(诸如移除和更换、物流、部件拆卸、检查、更换磨损的密封件、重建、重新认证、公司开销等),因此可以对阀门组件100的总生命周期成本提供显著益处。

现在参考图6,阀门组件100被示出为闭合构型,并且阀门构件130处于第一位置P1。因此,当阀门组件100的第一阀门构件部分132与阀座104接合时,不允许流体流过致动器组件120。

在阀门构件130的第一位置P1,波纹管124处于收缩构型B1,即,波纹管124具有小于处于膨胀构型B2的波纹管124的第一尺寸的第二尺寸(例如,深度)。可以通过以下方法来获得阀门构件130的第一位置P1:对致动器组件120的控制腔126泄压(例如,经由控制腔流动通道142并且在控制器的控制下),使得控制腔126内部的压力不足以克服在第二阀门构件部分134处致动器组件120外部的压力。因此,阀门构件130移动到其第一位置P1,压缩波纹管124,将闭合阀门止挡件138抵靠阀座104安置。

从图5A和图6中应当理解,阀门组件100包括可移动部件(例如,阀门构件130)和静止部件(例如,致动器主体122)。在一些实施方案中,致动器组件120包括活塞。例如,阀门构件130可以是可移动活塞的一部分。控制腔126可以是可移动活塞的腔。

应当理解,阀门组件100提供两个移动部件之间的动态密封件(例如,当闭合阀门止挡件138接合阀座104时)。因此,闭合阀门止挡件138和/或阀门构件130可以被认为是用于阀门组件100的动态密封件。因此,闭合阀门止挡件138和/或阀门构件130可以允许需要密封的表面之间发生相对移动。当闭合阀门止挡件138与阀座104接合以阻挡流体流动穿过流体流动通道102时,因此可以在阀门组件100中获得密封件。

由于波纹管124被向膨胀构型B2偏压(从而将阀门组件100偏压到打开构型),因此不需要独立的打开特征(例如,弹簧)来打开阀门组件100。另外,在一些实施方案中,由于波纹管124机械地连接到致动器主体122(静止部件)和阀门构件130(可移动部件),因此其在机械上被限制进行旋转。

应当理解,波纹管124可以提供以下功能中的至少一个功能:用作阀门组件100的“弹簧常数”;限定阀门组件100的缺省状态(以确保阀门组件100在不受差压时打开);密封控制腔126;以及旋转性地约束致动器主体122和阀门构件130的移动。

图7示出了第二阀门构件部分134的示意性透视图。在图7的例示的实施方案中,至少一个孔口160包括相对于阀门组件100(图4至图6中示出)的纵向轴线X-X'彼此成角度地分离的多个孔口160。在一些实施方案中,多个孔口160可以相对于纵向轴线X-X'以相等角度间隔设置在第二阀门构件部分134上。在一些实施方案中,至少一个孔口160可以包括相对于纵向轴线X-X'以120度彼此间隔开的三个孔160。应当理解,多个孔口160可以包括相对于纵向轴线X-X'以规则或不规则间隔彼此间隔开的任何数量的孔口。

图8示出了包括孔口160的阀门组件100的局部示意性截面图。孔口160将控制腔126流体联接到外部容积128。

在一些实施方案中,至少一个孔口160包括:第一孔口部分162,该第一孔口部分设置成与控制腔126流体连通;以及第二孔口部分164,该第二孔口部分向第一孔口部分162倾斜并且设置成与外部容积128流体连通。具体地,第一孔口部分162设置成与控制腔126直接流体连通,而第二孔口部分164设置成与外部容积128直接流体连通。在一些实施方案中,第一孔口部分162设置成与第二孔口部分164直接流体连通,使得来自控制腔126的流体可以流动穿过孔口160到达外部容积128。在一些实施方案中,第一孔口部分162垂直于第二孔口部分164。然而,在一些其他实施方案中,第一孔口部分162可以相对于第二孔口部分164倾斜地倾斜。在图8的例示实施方案中,第一孔口部分162沿阀门组件100的纵向轴线X-X'延伸。此外,第二孔口部分164相对于纵向轴线X-X'从第一孔口部分162朝外部容积128径向向外延伸。

在一些实施方案中,第一孔口部分162和/或第二孔口部分164可以具有任何合适的横截面形状,诸如例如圆形、卵形、椭圆形、多边形或不规则形状。在一些实施方案中,第一孔口部分162具有第一平均宽度166,并且第二孔口部分164具有第二平均宽度168。在一些实施方案中,第一平均宽度166小于第二平均宽度168。在一些实施方案中,第二孔口部分164具有比第一孔口部分162的横截面积大的横截面积。这可以允许计量穿过孔口160的流体流动。在一些实施方案中,第二平均宽度168可以比第一平均宽度166大至少两倍。

在一些实施方案中,第一孔口部分162具有第一长度172,并且第二孔口部分164具有第二长度174。在一些实施方案中,第二长度174比第一长度172大至少五倍。在一些实施方案中,第二长度174比第一长度172大至少四倍、至少三倍或至少两倍。在一些其他实施方案中,第一长度172等于第二长度174。

应当理解,第一孔口部分162和第二孔口部分164的第一平均宽度166和第二平均宽度168以及第一长度172和第二长度174分别可以基于应用要求而适当地选择。

图9示出了根据本公开的另一实施方案的包括孔口160的阀门组件100的局部示意性截面图。孔口160将控制腔126流体联接到外部容积128。此外,在图9的例示实施方案中,孔口160包括设置成与第二孔口部分164间接流体连通的第一孔口部分162。

如图9所示,至少一个孔口160还包括以流体方式设置在第一孔口部分162与第二孔口部分164之间的可调节孔口区域部分176。在一些实施方案中,可调节孔口区域部分176将第一孔口部分162流体联接到第二孔口部分164,使得来自控制腔126的流体可以通过可调节孔口区域部分176流到外部容积128。

致动器组件120(图4B至图6中示出)还包括与可调节孔口区域部分176相邻的活动联接到阀门构件130的可调节塞178。在一些实施方案中,可调节塞178可以呈能够螺纹连接到阀门构件130的与可调节孔口区域部分176相邻的螺钉的形式。因此,可以相对于阀门构件130经螺纹调节可调节塞178。在一些实施方案中,可调节塞178可通过过盈配合联接到阀门构件130。在此类情况下,可以使用适当的工具相对于阀门构件130调节该可调节塞178。在一些实施方案中,可调节塞178被构造成选择性地调节该可调节孔口区域部分176的横截面积。因此,可以基于可调节孔口区域部分176的横截面积的变化通过调节该可调节塞178来调节流体从控制腔126到外部容积128的流动。

在图9的例示实施方案中,可调节孔口区域部分176的横截面积从第二孔口部分164朝第一孔口部分162逐渐变小。然而,可调节孔口区域部分176的横截面积可以根据应用要求具有任何形状。

上述阀门组件100可以用于引擎10的引气系统或子系统中。在一些实施方案中,阀门组件100可以用于系统,诸如双态子系统、流动调节子系统、压力调节子系统和止回子系统。在一些实施方案中,阀门组件100可以与压缩机系统、可操作性引气系统、启动引气系统、抗冰系统、压力调节系统、涡轮壳冷却系统、引气止回流动系统等结合使用。至少一个孔口160可以适用于各种流体,包括空气、油、Skydrol

参考图4A至图9,至少一个孔口160可以允许流体从控制腔126移动到外部容积128,并且因此当阀门构件130处于第二位置P2并且远离阀座104时,促使控制腔126内部的压力与控制腔126外部(即,外部容积128)的压力平衡。这可以显著地减少或消除阀门构件130上的任何不平衡力,并且因此避免阀门构件130的侧向变形。此外,该压力平衡可以增加阀门构件130跨阀门组件的操作循环的循环寿命(或使用寿命)。另外,这可以进一步降低阀门组件100的总生命周期成本。

技术分类

06120116332578