掌桥专利:专业的专利平台
掌桥专利
首页

电芯、电化学装置及电子设备

文献发布时间:2023-06-19 12:02:28


电芯、电化学装置及电子设备

技术领域

本申请涉及一种储能装置,尤其涉及一种用于软包装二次电池的电芯,以及包括该电芯的电化学装置及包含该电化学装置的电子设备。

背景技术

因日益增长的节能环保方面的需求,电动交通工具例如电动自行车、电动汽车等得到越来越广泛的使用。对于这类电动交通工具而言,电池作为动力源具有举足轻重的作用和意义,其直接关系这类电动交通的制造成本、使用寿命、安全性能等等。而现有技术中,电池存在寿命不够长、容量随着充电次数的增加而急剧下降、被外力刺破时容易产生事故等不足。

具体而言,现有技术中的软包锂电池而言,其在充放电循环过程中,由于负极材料的嵌锂行为导致电芯膨胀或者电芯极片变形,电芯的厚度变厚,因而电池容量迅速衰减,导致整个电池的循环寿命缩短。

因此,如何能够延缓电芯的衰减和膨胀的速度,以提高电芯循环性能,并且兼顾电芯的安全性能,同时又不会大幅增加电芯的制造成本,是有待研究的一个重要课题。

发明内容

本申请旨在至少解决现有技术中存在的上述技术问题之一,提供这样一种电芯,其既能够有效地延缓电芯的衰减和膨胀的速度,从而提高电芯的循环性能,同时又不会大幅增加电芯的制造成本;并且,还能够有效地防止由于被外力刺破而发生事故。

本申请同时还提供了包括该电芯的电化学装置及包含该电化学装置的电子设备。

按照本申请所提供的电芯,包括:电极组件和收容所述电极组件的壳体。所述电极组件具有第一表面及第二表面,所述第二表面与所述第一表面相对,所述第一表面和所述第二表面之间具有厚度。所述壳体具有相对设置的第一平板、第二平板及设置于所述第一平板和第二平板之间的弹性件,所述第一平板和所述第二平板分别接触所述电极组件的所述第一表面和所述第二表面,所述弹性件使得所述第一平板和第二平板之间的厚度能够依据所述电极组件厚度的变化而发生变化。

在本申请的一种实施例中,所述壳体大体为长方体结构,其还包括相对设置的第三平板和第四平板,其中所述第一平板和所述第二平板相互平行,且设置于所述第三平板和第四平板之间。

在本申请的上述实施例,所述第三平板和第四平板相互平行且间隔开,二者的一侧与所述第一平板和第二平板中的一者固定连接,另一侧形成开口,以容纳所述第一平板和第二平板中的另一者且允许其移动。

作为本申请的一种实施方式,所述弹性件为弹簧。具体而言,是拉伸弹簧。所述弹簧具有第一端及第二端,所述第一端及所述第二端分别设置于所述第一平板和第二平板上。具体而言,所述弹簧通过粘结或直接注塑成形的方式固定于所述第一平板和第二平板上。

作为上述实施方式的一种实施例,所述弹性件为两个或两组弹簧,其分别设置于所述电极组件的两侧,从而在所述电极组件的两侧将所述第一平板和第二平板弹性连接在一起。

作为上述实施方式的另一种实施例,所述弹性件为一个或一组弹簧,其设置于所述电极组件的一侧,以在该侧将所述第一平板和第二平板弹性连接在一起;在所述电极组件的另一侧,所述第一平板和第二平板借助铰链(例如一对均匀布置的铰链)连接在一起,从而二者之间的距离可变。

可选地,所述弹簧为拉伸弹簧,其在自由状态下的长度等于所述电极组件的厚度的0.9-1.0倍;所述弹簧的材料为60Si2Mn、60Si2MnA或4Cr13;所述弹簧的弹簧模量达到70E/Gpa以上,且使用温度能够达到200℃以上。

可选地,所述第一平板和第二平板中的至少一者为硬酯板,当然,也可以二者都为硬酯板。

更可选地,所述第一平板和第二平板中的至少一者为ABS工程塑料硬酯板、聚碳酸脂硬酯板、聚甲醛硬酯板或聚四氟乙烯硬酯板。

作为本申请的另一种实施方式,所述弹性件为两相对的连接片,所述连接片的两侧分别与所述第一平板和第二平板的两侧固定连接,所述连接片由弹性材料制成。

作为本申请的再一种实施方式,所述弹性件为弹性填充物,所述弹性填充物填充所述第一平板、第二平板与所述电极组件之间的间隙。

在上述实施方式中,所述弹性材料可为橡胶或聚氨酯弹性体,其通过粘结或熔合方式与所述第一平板和第二平板固定在一起。

作为本申请的又一种实施方式,所述电极组件为多个,其依次层叠布置;所述多个电极组件共同收容于所述壳体内;即,所述壳体的第一平板、第二平板分别位于最两端的电极组件的外侧,所述第一平板和第二平板之间的弹性件使得所述第一平板和第二平板之间的厚度能够依据所有电极组件产生的总的厚度的变化而发生变化。

按照本申请所提供的电化学装置,可包括上述各个实施例中的电芯。

按照本申请所提供的电子设备,其包括:设备壳体;及如上所述的电化学装置。

根据本申请所提供的电芯,相比现有技术具有如下优越的技术效果:

首先,由于设置有壳体来收容电极组件,即,电极组件位于壳体的内部,因此,壳体能够保护电极组件,防止其在外力作用下被尖锐物品所刺破而发生爆炸等事故。

其次,由于壳体包括分别与电极组件的正面及反面贴合的第一、第二平板结构,且第一平板和第二平板之间设有弹性件,因此,第一平板和第二平板结构在弹性件的作用下能够给电芯施加一定的均匀的压力,从而可有效地控制电芯循环过程中石墨的膨胀,减少电芯厚度的增加;同时还能改善电芯循环过程中的界面平整度(即,减少电极组件的极片由于膨胀而导致的表面不平整),有效提升电芯循环性能。

再次,由于弹性件使得第一、第二平板之间的距离能够依据电极组件厚度的变化而变化,因此在电极组件发生膨胀的过程(即,充电)中,壳体既能够有效地为与电极组件提供一定的缓冲,又能够给该电极组件提供适当的压力;而当电极组件收缩(即,放电)时,壳体的第一、第二平板仍然能贴紧电极组件,使继续保持在被压紧的状态。通过这种方式使得电芯乃至整个电池的循环寿命得到显著延长。

很显然,与现有技术相比,本申请所采用的技术手段成本低廉、具体较好的经济效益。

附图说明

为了更清楚地说明本申请的具体实施方式及其优越的技术效果,下面结合附图对本申请实施例进行详细描述。

图1是按照本申请的第一实施例所提供的电芯的立体示意图;

图2是图1所示实施例的电芯的俯视示意图;

图3是按照本申请的第二实施例所提供的电芯的俯视示意图;

图4是按照本申请的第三实施例所提供的电芯的俯视示意图;

图5是按照本申请的第四实施例所提供的电芯的壳体的立体示意图;

图6是按照本申请的电芯在不同压力下的充电循环(次数)与电芯容量之间的关系示意图;及

图7是按照本申请的电芯在不同压力下的充电循环(次数)与电芯膨胀率之间的关系示意图。

具体实施方式

下面结合附图具体描述本申请的实施例。通过参考附图来阅读关于下面具体实施例的描述,就更容易理解本申请的各个方面。需要说明的是,这些实施例仅仅是示例性的,其仅用于解释、说明本申请的技术方案,而并非对本申请的限制。本领域技术人员在这些实施例的基础上,可以作出各种变型和变换,所有以等同方式变换获得的技术方案均属于本申请的保护范围。

图1是按照本申请的第一实施例所提供的电芯的立体示意图。如图1中所示,按照本申请所提供的电芯100,包括:电极组件1和壳体2。电极组件1(也称裸电芯)具有第一表面11及第二表面12,所述第二表面12与所述第一表面11相对,且大体上彼此平行,所述第一表面11和所述第二表面12之间具有厚度。壳体2收容所述电极组件1,壳体2具有相对设置的第一平板21、第二平板22及设置于所述第一平板21和第二平板22之间的弹性件23,所述第一平板21和所述第二平板22分别接触所述电极组件1的所述第一表面11和所述第二表面12,所述弹性件23使得所述第一平板21和第二平板22之间的厚度能够依据所述电极组件1厚度的变化而发生变化(为清楚起见,图1中对于壳体2的内部结构及位于其中的电极组件1均以实线绘制,实际上这些内部应当是被遮挡,应当以虚线绘制)。

具有上述结构的电芯100,壳体2不仅能够保护电极组件1,防止其在外力作用下被尖锐物品所刺破而发生爆炸等事故。而且,第一平板和第二平板21、22的结构在弹性件的作用下能够给电极组件1施加一定的均匀的压力,从而可有效控制地电芯循环过程中石墨的膨胀,减少电芯厚度的增加;同时还能改善电芯循环过程中的界面平整度(即,减少电极组件的极片由于膨胀而导致的表面不平整),有助于提升电芯循环的性能。具体而言,在电极组件1发生膨胀的过程(即,充电)中,壳体2的第一平板21、第二平板22既能够有效地为电极组件1提供一定的缓冲,又给该电极组件1提供了适当的压力;而当电极组件1收缩时(即,放电),壳体2的第一、第二平板21、22在弹性件23的作用下也往回收缩,因而仍然能贴紧电极组件1,使其继续保持在被压紧的状态。通过这种方式使得电芯乃至整个电池的循环寿命得到显著延长。

同时请参见图2,其为图2是图1所示实施例的电芯的俯视示意图。如图1、2中所示,在上述实施例中,所述壳体2大体为长方体结构,其还包括相对设置的第三平板24和第四平板25,其中所述第一平板21和所述第二平板22相互平行,且设置于所述第三平板24和第四平板25之间。

如图2中所示,所述第三平板24和第四平板25相互平行且间隔开,二者的一侧(例如,图2中的下侧)与所述第一平板21和第二平板22中的一者(本实施例为第一平板21)固定连接,另一侧(例如,图2中的上侧)形成开口,以容纳所述第一平板21和第二平板22中的另一者(本实施例为第一平板22)且允许其移动(参见图2中的箭头)。

在上述实施例中,所述弹性件23为弹簧。具体而言,弹性件23是拉伸弹簧。所述弹簧具有第一端231及第二端232,所述第一端231(例如图2中的下端)及所述第二端232(例如图2中的上端)分别设置于所述第一平板21和第二平板22上。具体的设置方式为弹簧通过粘结或直接注塑成形的方式固定于所述第一平板21和第二平板22上,这种设置方式是公知技术,本文不赘述。

可选地,上述拉伸弹簧23在自由状态下的长度等于所述电极组件1的厚度的0.9-1.0倍。位于该尺寸范围内的弹簧既能够有效地通过所述第一平板21和第二平板22向电极组件1施加适当的压力,又不至于压力过大以致于破坏电芯的结构。因此,其能够使得电芯乃至整个电池的循环寿命得到显著延长。当然,具体设计时选择多大的倍数应当考虑弹簧的数量、位置、材料等多个因素进行综合考量。

在图1、2所示的实施例中,所述弹性件23为两组(或两个)弹簧,其分别设置于所述电极组件1的两侧(即,电极组件1的左侧一组,右侧一组,每组包括两个),从而在所述电极组件1的两侧将所述第一平板21和第二平板22弹性连接在一起。即,在该实施例中,第一平板21和第二平板22通过分别位于在电极组件1的两侧的弹簧23连接在一起。按照这种结构的电芯,当电极组件1膨胀时,会向所述第一平板21和第二平板22施加压力;如果该压力大于所述两组弹簧23的拉伸力,那么它就会使得第二平板22向外运动(即,向图2中的上方运动)而远离第一平板21。同时,所述第一平板21和第二平板22向电极组件1施加均匀的反作用力,从而限制其膨胀,减少其厚度的增加,从而延长电芯的使用寿命。

参见图3,即本申请的第二实施例所提供的电芯的俯视示意图,与上述第一实施例不同,在第二实施例中,所述弹性件23为一组(或一个)拉伸弹簧,其设置于所述电极组件1的一侧(图3中的左侧),以在该侧将所述第一平板21和第二平板22弹性连接在一起;而在所述电极组件1的另一侧(图3中的右侧),所述第一平板21和第二平板22借助铰链26连接在一起,从而二者之间的距离可变。可选地,所述铰链26为弹簧铰链。

按照这种结构的电芯,当电极组件1膨胀时,会向所述第一平板21和第二平板22施加压力;如果该压力大于所述弹簧23和弹簧铰链26所产生的拉伸力,那么它就会使得第二平板22向外运动(即,向图3中的上方运动)而远离第一平板21。同时,所述第一平板21和第二平板22向电极组件1施加均匀的反作用力,从而限制其膨胀,减少其厚度的增加,从而延长电芯的使用寿命。

参见图4,即本申请的第三实施例所提供的电芯的俯视示意图。在该实施例中,壳体2仅包含所述第一平板21和第二平板22以及设置二者之间的弹簧件23,而不包括图2中的第三、第四平板。所述弹性件23为弹性填充物27、28,所述弹性填充物27、28填充所述第一平板21、第二平板22与所述电极组件1之间的间隙。可选地,所述弹性填充物27、28为橡胶或聚氨酯弹性体,其可以预先已制作完成。在生产电芯的过程中,通过粘结或熔合方式将所述弹性填充物27、28与所述第一平板21和第二平板22固定在一起。

按照这种结构的电芯,当电极组件1膨胀时,会向所述第一平板21和第二平板22施加压力;如果该压力大于所述弹性填充物27、28所产生的弹力,那么它就会使得第二平板22向外运动(即,向图4中的上方运动)而远离第一平板21。同时,所述第一平板21和第二平板22向电极组件1施加均匀的反作用力,从而限制其膨胀,减少其厚度的增加,从而延长电芯的使用寿命。

参见图5,即本申请的第四实施例所提供的电芯的壳体的立体示意图(未示出其中的电极组件)。与上述实施例类似,在该实施例中,壳体2也仅包含所述第一平板21和第二平板22以及设置二者之间的弹簧件23,而不包括第三、第四平板。与上述实施例不同的是,所述弹性件23为两相对的连接片233、234,所述连接片233、234的两侧分别与所述第一平板21和第二平板22的两侧固定连接,所述连接片233、234由弹性材料制成,可以弹性弯折。与上述实施例类似,所述弹性材料也可以是橡胶或聚氨酯弹性体,其通过粘结或熔合方式与所述第一平板21和第二平板22固定在一起。

按照这种结构的电芯,当电极组件1膨胀时,会向所述第一平板21和第二平板22施加压力;如果该压力大于所述弹性的连接片233、234之间的张力,那么它就会使得第一、第二平板21、22向外运动而彼此远离。同时,所述第一平板21和第二平板22向电极组件1施加均匀的反作用力,从而限制其膨胀,减少其厚度的增加,从而延长电芯的使用寿命。

作为本申请的再一种实施方式,在上述各个实施例,所述电极组件1为多个,其依次层叠布置(这是成熟的现有技术,此处不赘述)。所述多个电极组件共同收容于所述壳体2内;即,所述壳体2的第一平板21、第二平板22分别位于最两端的电极组件的外侧,所述第一平板21和第二平板22之间的弹性件23使得所述第一平板21和第二平板22之间的厚度能够依据所有电极组件产生的总的厚度的变化而发生变化。

即,按照这种结构的电芯,当其中一个或多个电极组件1的厚度发生变化时,所述壳体2的第一平板21、第二平板22之间的距离就会发生变化,从而向电极组件1的整体施加适当的压力,从而提升电芯的循环性能。

在上述各实施例中,所述第一平板21和第二平板22中的至少一者为硬酯板。具体而言,所述第一平板21和第二平板22中的至少一者为ABS工程塑料硬酯板、聚碳酸脂硬酯板、聚甲醛硬酯板或聚四氟乙烯硬酯板。所述第三平板24和第四平板25也可为上述材料。

为了方便本领域技术人员实施本申请,下面进一步介绍材料的第一、第二、第三、第四平板以及弹簧的材料的选择。

例如,如上所述,第一、第二、第三、第四平板中的一者或多者可为硬酯板。而硬酯板又有多种不同材质可供选择,可根据不同需求选择不同材质的硬酯板。其中聚碳酸酯抗冲击强度最高且难燃。抗冲击强度和屈服强度影响到是否易于受外力破坏(比如重物冲击和针刺)。变形温度影响到硬酯板能够承受的外界高温温度,若变形对电芯循环和安全有影响。燃烧温度,影响电芯安全性能。对于电芯的使用操作不规范比如摩托车压电芯或暴力拆解电池等,可使用强度、变形温度、燃烧性能良好的聚碳酸酯。表1中显示不同材质硬酯板的不同特性。

表1:不同材质的硬酯板的参考

如上所述,第四、第五实施例中的所述弹性材料可以是橡胶或聚氨酯弹性体。随着聚氨酯弹性材料硬度的下降,撕裂强度大幅度下降,但扯断伸长率显著增加。其中拉伸强度和回弹性,决定了橡胶和聚氨酯弹性材料能够带给电芯的压力的稳定性以及外力针刺等暴力破坏下的安全性。下表2中的橡胶和聚氨酯弹性材料的扯断伸张率、撕裂强度、磨耗及邵A硬度均能满足本申请的电芯的需求。通过使用不同力学强度的橡胶可有效控制硬酯板带给电芯的压力。橡胶材料的拉伸强度和回弹性相对于聚氨酯弹性体较弱,适合需要施加压力较小的电芯。聚氨酯弹性体III拉伸强度和回弹性较强,适合需要压力大的电芯。

表2:橡胶/聚氨酯弹性体的参数

关于第一、第二实施例中弹簧的选择,可以参见下表3。根据弹簧特性,本申请中可选地使用60Si2Mn、60Si2MnA和4Cr13,其弹簧模量可达到70E/Gpa以上,使用温度可达到200℃以上,并且适合做小弹簧。

表3:不同材质的弹簧的参数

最后,参见图6和图7,其分别示出了按照本申请的电芯在不同压力下的充电循环(次数)与电芯容量之间的关系、以及充电循环(次数)与电芯膨胀率之间的关系(实验数据)。该实验的条件是采用弹簧、硬酯板装置(60Si2Mn+聚碳酸酯)(第一个实施例)对电芯的压力和循环效果进行实验。采用其他材料的装置只要造成的压力一样,就会产生相同的效果。根据实验结果可知,20g/mm2下电芯的循环性能最佳(电芯容量衰减最慢,膨胀居中)。有关图6、7中的具体的实验数据可参照下表(其中表4对应图6,表5对应图7)。

表4:充电循环(次数)与电芯容量之间的关系的实验数据

在表4中,第一行的数据(0-40g/mm2)表示不同的压力,第一列的数据(50-500)表示充电循环的次数。

表5:充电循环(次数)与电芯膨胀率之间的关系的实验数据

在表5中,第一列的数据(0-40g/mm2)表示不同的压力,第一行的数据(50-500)表示充电循环的次数。

按照本申请所提供的电化学装置(例如电池),包含如上所述的电芯,由于采用了上述结构,该电芯的衰减和膨胀的速度能够有效延缓,因而提高电芯的循环性能,延长了电化学装置的使用寿命。

根据本申请所提供的电子设备,包括设备壳体及电化学装置。电化学装置包括如上所述的电芯。含有该电芯的电池有助于降低电子设备的成本,提升整个电子设备的性能。

如本申请中所使用,为易于描述可在本申请中使用空间相对术语例如“下面”、“下方”、“下部”、“上方”、“上部”、“下部”、“左侧”、“右侧”等描述如图中所说明的一个组件或特征与另一组件或特征的关系。除图中所描绘的定向之外,空间相对术语意图涵盖在使用或操作中的装置的不同定向。设备可以其它方式定向(旋转90度或处于其它定向),且本申请中所使用的空间相对描述词同样可相应地进行解释。应理解,当一组件被称为“连接到”或“耦合到”另一组件时,其可直接连接或耦合到所述另一组件,或可存在中间组件。

在本申请中,术语″约″通常意指在给定值或范围的±10%、±5%、±1%或±0.5%内。范围可在本申请中表示为从一个端点到另一端点或在两个端点之间。除非另外指定,否则本申请中所公开的所有范围包括端点。

上文中概述本申请的若干实施例和细节方面的特征。本领域技术人员在不脱离本申请的精神和范围的前提下,还可作出各种不同变化、替代和改变,所有这些等效构造均属于本申请的保护范围。

相关技术
  • 电芯、电化学装置及电子设备
  • 电芯及应用所述电芯的电化学装置及用电装置
技术分类

06120113142608