掌桥专利:专业的专利平台
掌桥专利
首页

一种燃烧室及气体发动机

文献发布时间:2023-06-19 16:09:34



技术领域

本发明涉及发动机技术领域,尤其涉及一种燃烧室及气体发动机。

背景技术

目前,重型天然气发动机的设计开发一般是在柴油发动机的基础上进行改造,对柴油机而言,旋流气道产生的涡流在一定程度上有助于油束与空气混合,从而实现高效率燃烧以及低污染物排放。而气体机为预混燃烧,燃料在进气过程已经与空气混合,火花塞点火生成火核之后,理想状态是在燃烧过程中缸内存在较高的湍动能。湍动能的提升会加快火焰传播速度,这对于改善气体机燃烧过程,降低循环变动意义重大。如果气体机中继续存在涡流这种大尺寸流动,在压缩末期,火花塞附近流速偏低,纵向流速也偏低,涡流无法破碎成小尺度湍流,导致湍动能较低,因此,大尺度涡流运动不利于气体机的预混燃烧,并且循环变动大。对于气体机,适当提高混合气的滚流强度可以提升湍动能,进而改善燃气燃烧特性。其中,涡流是指气体绕气缸中心轴线有组织的大尺度旋流运动;滚流是指气流绕与气缸中心轴线垂直轴线有组织的大尺度的旋流运动;另外,湍流与层流不同,湍流是指气流速度较高时在流场中产生的许多方向不固定的小尺度旋流。

由于柴油机的中间进气方式和铸造偏差,会导致涡流比一致性差,进而导致各缸一致性差。在柴油机的气门杆无法倾斜的前提下,无法做到类似汽油机的蓬顶型燃烧室,所以,滚流强度偏低,为了配合滚流,气体机通常采用直口活塞,而当前气体机燃烧速度仍较慢,需要对活塞进一步优化,加强滚流程度,提高火焰传播速度,提升发动机热效率。

现有的气体机活塞一般是在柴油机活塞基础上改造而成,活塞的燃烧室01多采用直口的盆形结构,如图1所示,由于存在大尺度涡流运动,会影响火焰发展形态,导致循环变动较高,另外,活塞顶部高度相同,进气门、排气门两侧产生挤流强度相近,使火花塞03附近速度较低,湍动能较低且分布不合理,导致点火初期火焰传播速度较低。如图1所示,位于火花塞03附近示意的虚线框区域为火焰传播低速区域02。与此同时,排气门侧较低的火焰传播速度会使爆震倾向增大。其中,挤流是指活塞表面的某一部分和气缸盖彼此靠近时产生的纵向和横向气流运动;爆震是指燃烧室内燃气点火后,火焰波尚未完全扩散,远处未燃的燃气即因为高温或者高压而自燃,其火焰波与正常燃烧的火焰波撞击而产生极大压力,使得发动机产生不正常的敲击声。本文中所述的横向是指沿气缸径向方向,纵向是指沿气缸轴向方向。

现有技术在柴油机的设计过程中,普遍认为压缩余隙(活塞处于上止点时,活塞顶与气缸盖之间的间隙)为有害容积,因此,柴油机的压缩余隙都设计得很小(通常只有1~2mm),在柴油机改为气体机的设计过程中,也深受这种设计理念的影响,所以,当前气体机压缩余隙也设计得很小。

因此,如何优化气体机的燃烧室结构以改善燃气燃烧特性,是本领域技术人员亟需解决的技术问题。

本发明采用弱滚流气道及通过对燃烧室加以改造,使混合气在燃烧室内翻滚运动,形成滚流,活塞顶部非对称特征引导气流从进气门一侧向排气门一侧运动,提升了火花塞附近的湍动能,从而改善燃气燃烧特性,降低燃气消耗。

发明内容

有鉴于此,本发明的目的在于提供一种燃烧室及气体发动机,本发明通过优化燃烧室结构,并结合现有的弱滚流气道,有利于气缸内滚流的组织,进而有利于提高火焰传播速度,改善燃气燃烧特性。

为了实现上述目的,本发明提供了如下技术方案:

一种燃烧室,用于由柴油机改造成的气体发动机,所述燃烧室与弱滚流气缸盖结构组合使用,该燃烧室包括位于活塞的顶部并相对活塞上顶面向下凹陷的燃烧室凹坑,经过所述活塞的轴线的任一平面为活塞纵向中心面,所述燃烧室凹坑与所述活塞纵向中心面的交线为燃烧室凹坑型线,所述燃烧室凹坑型线包括一段圆滑曲线或多段依次圆滑过渡相接的圆滑曲线,各个所述圆滑曲线的曲率中心均位于活塞上顶面的上方,所述燃烧室的压缩余隙为所述活塞的半径的0.05~0.2倍。

优选地,所述燃烧室凹坑的表面为球弧曲面。

优选地,所述燃烧室凹坑的表面的曲率半径为所述活塞的半径的0.8~2倍。

优选地,所述燃烧室凹坑的深度为所述活塞的半径的0.2~0.5倍。

优选地,所述燃烧室凹坑的上边沿的半径为所述活塞的半径的0.6~0.8倍。

优选地,所述燃烧室凹坑的曲率中心位于所述活塞的轴线上。

优选地,所述活塞上顶面为平面结构。

本发明的工作原理如下:

与传统直口活塞相比,本发明采用浅盆形活塞结构,这样可以使更多气体进入到流线型较好的燃烧室凹坑中,进而增大滚流强度。同时,本发明克服了现有设计中沿用柴油机小压缩余隙的设计理念,发现过小的压缩余隙会导致气体机的压缩余隙内火焰发生淬熄效应,并基于柴油机改为气体机时压缩余隙不是有害容积,采用了适当增大压缩余隙对燃烧有利的新设计理念。当活塞运行至上止点附近时,压缩余隙内的气流仍会受到滚流作用进而提高压缩余隙内的气流速度,与此同时,克服了过窄的压缩余隙引起的火焰淬熄效应,提升了压缩余隙内的火焰传播速度,进而有利于提升燃气燃烧特性。

本发明还提供了一种包括上述燃烧室的气体发动机。该气体发动机产生的有益效果的推导过程与上述燃烧室带来的有益效果的推导过程大体类似,故本文不再赘述。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为现有技术中的直口盆形燃烧室的结构示意图;

图2为现有技术中的采用较小压缩余隙的燃烧室布置结构示意图;

图3为本发明具体实施例中的燃烧室的结构示意图;

图4为本发明具体实施例中的燃烧室的尺寸位置示意图;

图5为本发明具体实施例中的截面位置示意图;

图6为传统直口活塞的进气气流运动形式示意图;

图7为本发明具体实施例中的燃烧室内的进气气流运动形式示意图;

图8为传统直口活塞到达上止点附近时的燃烧室内部气流示意图;

图9为本发明具体实施例中的浅盆型活塞到达上止点附近时的燃烧室内部气流示意图。

图1和图2中的附图标记的含义如下:

01-燃烧室、02-火焰传播低速区域、03-火花塞;

图3至图9中的各项附图标记的含义如下:

1-活塞上顶面、2-燃烧室凹坑、3-进气门、4-排气门、5-活塞中心线。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

请参照图3至图9,图3为本发明具体实施例中的燃烧室的结构示意图;

图4为本发明具体实施例中的燃烧室的尺寸位置示意图;图5为本发明具体实施例中的截面位置示意图;图6为传统直口活塞的进气气流运动形式示意图;图7为本发明具体实施例中的燃烧室内的进气气流运动形式示意图;图8为传统直口活塞到达上止点附近时的燃烧室内部气流示意图;图9为本发明具体实施例中的浅盆型活塞到达上止点附近时的燃烧室内部气流示意图。

本发明提供了一种燃烧室,用于由柴油机改造成的气体发动机,燃烧室与弱滚流气缸盖结构组合使用,其中,弱滚流气缸盖结构请参照发明专利(“一种弱滚流快速燃烧系统与一种燃气发动机”,公开号为CN111287860A)中所述的缸盖,该气缸盖结构由柴油机气缸盖改造而成,其形成的燃烧室顶面为平顶型结构,即,该气缸盖的气门杆沿活塞轴向布置,该气缸盖的进气道为弱滚流气道,具体是指气缸盖的进气道可以使进气气流在气缸内生成大尺度弱滚流运动,本文不再赘述其具体的弱滚流结构设计特征。该燃烧室包括位于活塞的顶部并相对活塞上顶面1向下凹陷的燃烧室凹坑2,经过活塞的轴线的任一平面为活塞纵向中心面,燃烧室凹坑2与活塞纵向中心面的交线为燃烧室凹坑型线,燃烧室凹坑型线包括一段圆滑曲线或多段依次圆滑过渡相接的圆滑曲线,各个圆滑曲线的曲率中心均位于活塞上顶面1的上方,燃烧室的压缩余隙H1为活塞的半径R1的0.05~0.2倍,如图4所示,H1=(0.05~0.2)R1。

本发明的工作原理如下:

与传统直口活塞相比,本发明采用浅盆形活塞结构,这样可以使更多气体进入到流线型较好的燃烧室凹坑中,进而增大滚流强度。同时,本发明克服了现有设计中沿用柴油机小压缩余隙的设计理念,发现过小的压缩余隙会导致气体机的压缩余隙内火焰发生淬熄效应,并基于柴油机改为气体机时压缩余隙不是有害容积,采用了适当增大压缩余隙对燃烧有利的新设计理念。当活塞运行至上止点附近时,压缩余隙内的气流仍会受到滚流作用进而提高压缩余隙内的气流速度,与此同时,克服了过窄的压缩余隙引起的火焰淬熄效应,提升了压缩余隙内的火焰传播速度,进而有利于提升燃气燃烧特性。

需要说明的是,燃烧室凹坑2的表面可以设计为球弧面,或椭球弧面,或球弧面与椭球弧面的组合形式,优选地,本方案中的燃烧室凹坑2的表面为球弧曲面。

进一步优选地,如图4所示,燃烧室凹坑2的表面的曲率半径R3为活塞的半径R1的0.8~2倍,即,R3=(0.8~2)R1。如此设置,可以保证燃烧室凹坑2的整体呈流线型较好的浅盆形凹坑结构,可以使燃烧室内的气流更容易形成滚流。

进一步优选地,燃烧室凹坑2的深度H2为活塞的半径R1的0.2~0.5倍,如图4所示,即,H2=(0.2~0.5)R1。

需要说明的是,本方案中的燃烧室凹坑2为回转形的凹面结构,燃烧室凹坑2的上边沿则呈圆形边缘,在一种具体实施例方案中,燃烧室凹坑2的上边沿的半径R2为活塞的半径R1的0.6~0.8倍,即,R2=(0.6~0.8)R1。

优选地,燃烧室凹坑2的曲率中心位于活塞的轴线(即图3中示出的活塞中心线5)上。当然,本方案也可以将燃烧室凹坑2的曲率中心设计为相距活塞中心线5的一定距离位置上。

需要说明的是,活塞上顶面1为平面结构,如此可以保证活塞压缩过程中保证活塞四周的挤流强度一致。

本发明基于柴油机改气体机压缩余隙不是有害容积,适当增大压缩余隙对燃烧有利的新理念,采用浅盆式燃烧室设计,来适当增大压缩余隙,增强进气及压缩过程滚流强度,并避免上止点附近过小压缩余隙带来的火焰淬熄现象,提高火焰传播速度。以下使用新型大压缩余隙活塞与常用直口活塞流场示意图加以说明。

图6至图9示出了燃烧室的剖面图,其截面位置为如图5所示的A-A截面,可见,其应用的发动机气缸对应设置有两个进气门3和两个排气门4,图5中的两个空心箭头分别代表总进气方向和总排气方向。

如图6所示,在进气过程中,进气气流冲向活塞上顶面,传统的直口活塞容易在图6中的B1区域形成逆向流动,从而阻碍了滚流的生成。同时,直口活塞的燃烧室凹坑整体呈圆柱形腔体结构,不利于滚流的增强。

如图7所示,在进气过程中,本发明提供的浅盆形燃烧室结构可以减少直接冲击到活塞上顶面的气流,如图7中的C1区域所示,可以使更多气流顺利地进入到活塞的燃烧室凹坑2内,此外,由于本方案的燃烧室凹坑2更具流线型,能够更有效引导气流在气缸内滚动,从而减小滚流过程中的能量损失。

如图8所示,当活塞运行至上止点附近时,传统的直口活塞压缩余隙非常小,在压缩余隙小空间内(如图8中示出的B2区域内)气流流动能量很弱,另外,由于活塞顶部挤流的作用,燃烧室内形成左右两侧两个旋转运动,使湍动能主要分布在燃烧室底部,而火花塞附近气体流动速度较慢,不利于火花塞点火。

如图9所示,本发明方案中,大压缩余隙使得活塞运行至上止点附近时也能保留较大的空间,较大的压缩余隙内因此也产生很强的气流扰动,从而加快这部分气体燃烧速度,缸内依然能够保持进气门到排气门的滚流运动,进而加快火花塞附近气流流动,加快前期火焰传播速度。

总而言之,气体机缸内流动存在三种大尺度流动形式:滚流、涡流与挤流,三种流动方式在进气组织及燃烧过程中相互影响,对燃烧过程都有不同程度的影响。本发明设计大压缩余隙浅盆型活塞形状,核心思想有三个:1)在弱滚流气道保持不变的情况下,增强缸内滚流及上止点附近压缩余隙内气流扰动强度来加速燃烧,具体而言,增大压缩余隙,减少直接冲击到活塞顶部的气流,使更多气流进入到燃烧室中,进而形成更强的滚流,加速前期火焰传播速度,此外,在上止点附近,大压缩余隙使余隙内气流产生更强的扰动,加快余隙内火焰传播速度,缩短燃烧整体持续期;2)采用浅盆形燃烧室线型,与传统直口活塞相比,流线型更佳,在引导气流产生滚流时能量损失更小;3)增大压缩余隙,不需要避阀坑设计,没有任何尖角特征,提升整体抗爆震性能。

本发明还提供了一种包括上述燃烧室的气体发动机。该气体发动机产生的有益效果的推导过程与上述燃烧室带来的有益效果的推导过程大体类似,故本文不再赘述。

对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

技术分类

06120114726934