掌桥专利:专业的专利平台
掌桥专利
首页

技术领域

本申请属于智能交通技术领域,具体涉及一种终端定位方法、终端定位装置、碰撞预警系统、计算机可读介质以及电子设备。

背景技术

在诸如十字路口、丁字路口、停车场等行人、非机动车和机动车交叉混行的场景中,由于横穿马路、闯红灯、视野盲区等原因,通常会发生交通事故。为了保证交通安全,随着车联网技术的快速发展,多种碰撞预警技术应运而生。

目前所采用的定位技术比较单一,难以平衡定位精度和功耗,特别是对于不存在充电条件的终端设备,例如行人、非机动车驾驶员、特殊交通工具(轮椅)使用者等所使用的终端设备,其电池无法支持长时间的续航,如果采用低精度的定位方法虽然能在一定程度上延长续航时间,但是定位精度较低,无法实现精准地碰撞预警。另外在定位时,通过蜂窝网络接收定位信号受蜂窝网络信号影响大,会出现接收不稳定的情况,进而导致定位精度降低。

发明内容

本申请的目的在于提供一种终端定位方法、终端定位装置、碰撞预警系统、计算机可读介质以及电子设备,能够克服相关技术中存在的终端无法同时兼顾精度定位和续航时间的问题。

本申请的其他特性和优点将通过下面的详细描述变得显然,或部分地通过本申请的实践而习得。

第一方面,本申请实施例提供了一种终端定位方法,应用于车联网终端,该方法包括:接收直连通信PC5消息;当确定所述PC5消息为目标路侧单元发送的消息时,激活定位模块进行定位,并在移动过程中根据当前终端位置采用不同的定位模式进行定位;其中,所述定位模式的定位精度随所述当前终端位置和碰撞易发区域之间的距离减小而增大,并随所述距离增大而减小。

第二方面,本申请实施例提供了一种终端定位装置,配置于车联网终端,该装置包括:接收模块,用于接收直连通信PC5消息;定位模块,用于当确定所述PC5消息为目标路侧单元发送的消息时,激活定位模块进行定位,并在移动过程中根据当前终端位置采用不同的定位模式进行定位;其中,所述定位模式的定位精度随所述当前终端位置和碰撞易发区域之间的距离减小而增大,并随所述距离增大而减小。

第三方面,本申请实施例提供了一种碰撞预警系统,该系统包括:车联网终端,用于接收直连通信PC5消息;当确定所述PC5消息为目标路侧单元发送的消息时,激活定位模块进行定位,并在移动过程中根据当前终端位置采用不同的定位模式进行定位;其中,所述定位模式的定位精度随所述当前终端位置和碰撞易发区域之间的距离减小而增大,并随所述距离增大而减小;路侧单元,用于向所述车联网终端发送PC5消息,所述PC5消息包含于所述第一消息集;车辆,用于接收所述车联网终端通过PC5通信接口广播的定位信息,根据所述定位信息和当前车辆位置生成预警信息,并根据所述预警信息进行避让。

第四方面,本申请实施例提供一种计算机可读介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如以上技术方案中的终端定位方法。

第五方面,本申请实施例提供了一种电子设备,该电子设备包括:处理器;以及存储器,用于存储所述处理器的可执行指令;其中,所述处理器被配置为经由执行所述可执行指令来执行如以上技术方案中的终端定位方法。

第六方面,本申请实施例提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读介质中。电子设备的处理器从计算机可读介质读取该计算机指令,处理器执行该计算机指令,使得该电子设备执行如以上技术方案中的终端定位方法。

在本申请实施例提供的技术方案中,车联网终端在运行过程中,接收车联网系统中各类终端发送的PC5消息,通过对PC5消息进行解析,判断其是否为目标路侧单元发送的消息,并在判定PC5消息是由目标路侧单元发送的时,激活定位模块进行定位,同时在移动过程中根据当前终端位置采用不同的定位模式进行定位,以获取定位信息。本申请一方面能够基于接收到目标路侧单元发送的PC5消息触发定位,这样就可以在目标路侧单元信号覆盖范围之外不用开启定位模块,只需检测PC5消息即可,减少了终端的电量损耗;另一方面,在进行定位时,根据车联网终端所处位置的不同采用不同的定位模式进行定位,并且定位模式的定位精度随着车联网终端与碰撞易发区域之间的距离缩小而增大,随着距离的增大而缩小,有效平衡了定位精度和功耗之间的关系,也就是说,既保证了高精度定位又减少了功耗,延长了车联网终端的续航时间。

附图说明

图1示意性地示出了应用本申请技术方案的碰撞预警系统的架构框图。

图2示意性地示出了本申请实施例中终端定位方法的流程示意图。

图3示意性地示出了本申请实施例中一种车联网专用行人终端的结构示意图。

图4示意性地示出了本申请实施例中确定接收到的PC5消息为目标路侧单元发送的消息的流程示意图。

图5示意性地示出了本申请实施例中位于十字路口的目标路侧单元信号覆盖区域划分为多个区域的界面示意图。

图6示意性地示出了本申请实施例中包含带宽区域的区域划分界面示意图。

图7示意性地示出了本申请实施例中切换定位模式的流程示意图。

图8示意性地示出了本申请实施例中切换定位模式的流程示意图。

图9A-9F示意性地示出了本申请实施例中车联网终端在移动过程中所处区域以及采用的定位模式的变化界面示意图。

图10示意性地示出了本申请中终端定位装置的结构框图。

图11示意性示出了适于用来实现本申请实施例的电子设备的计算机系统结构框图。

具体实施方式

现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本申请将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。

此外,所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本申请的实施例的充分理解。然而,本领域技术人员将意识到,可以实践本申请的技术方案而没有特定细节中的一个或更多,或者可以采用其它的方法、组元、装置、步骤等。在其它情况下,不详细示出或描述公知方法、装置、实现或者操作以避免模糊本申请的各方面。

附图中所示的方框图仅仅是功能实体,不一定必须与物理上独立的实体相对应。即,可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。

附图中所示的流程图仅是示例性说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解,而有的操作/步骤可以合并或部分合并,因此实际执行的顺序有可能根据实际情况改变。

在本领域的相关技术中,为了降低定位功耗,采用低功耗的移动基站GSM(GlobalSystem for Mobile Communication,全球移动通信系统)结合蓝牙传感器的方式来定位。具体地,通过移动基站GSM查询附近的基站,计算出用户的当前位置,接着移动终端周期性打开蓝牙传感器,对周边设备进行扫描,检测周边是否有其它蓝牙设备,若有则启动配对机制,自动连接到可用的蓝牙设备,并通过蓝牙分别传输各自上次的定位信息,以根据定位信息比较移动终端和蓝牙设备的定位准确性,若蓝牙设备的定位准确性高于移动终端,则移动终端更新定位信息,否则移动终端的定位信息维持不变。

虽然相关技术中通过基于蜂窝网络+蓝牙的方式实现了一种低功耗的定位方法,但是该方法一般适用于室内场景,对于室外的交通场景,部署蓝牙设备成本高,会带来额外的维护问题。并且蜂窝网络定位存在定位精度低、信号不稳定或者蜂窝网络覆盖不完全导致无法接收定位信息的问题。

目前常用的高精度的定位模式有GNSS(Global Navigation Satellite System,全球导航卫星定位系统)定位模式和基于GNSS的增强定位模式等。

其中,GNSS包括GPS(Global Positioning System,全球定位系统)、GLONASS(格洛纳斯)、Galileo(伽利略)、北斗,一般民用设备GNSS定位精度约10米左右,相比于蜂窝定位模式,定位精度大大提高,但是GNSS定位模式的功耗较大,例如GPS模块和北斗模块的功耗大约为160mW,在智能终端中仅次于屏幕和蜂窝通信模块,据研究,智能手机仅能提供连续5-6小时的GPS定位服务,智能手表只能提供2-3小时的GPS定位服务,很难满足使用者长时间的定位需求。基于GNSS的增强定位模式具体可以是基于RTK(Real-time Kinematic,实时动态)差分系统的GNSS增强定位模式,其定位精度可以达到分米级甚至厘米级,但是RTK定位模块的功耗更大,典型的RTK商用模块功耗可达1W,号称“低功耗”的RTK模块功耗也达到500mW,如果持续开启RTK定位功能,智能终端持续使用时间将难以支撑正常使用。并且,一般的RTK定位需要使用蜂窝通信获取差分修正信号,对于车联网系统中中小型化的行人终端,引入蜂窝通信模块会带来额外的功耗,并且即使在具备蜂窝通信能力的终端上,也可能存在蜂窝通信不稳定或是覆盖不完全导致无法可靠接收差分修正数的情况,导致RTK定位能力降低或无法使用。

针对相关技术中存在的问题,本申请实施例中提供了一种终端定位方法,基于该终端定位方法可以实现车联网行人保护场景、车联网非机动车驾驶员保护场景、车联网特殊交通工具使用者保护场景等场景中的高精度低功耗的碰撞预警。

在对本申请实施例中的技术方案进行详细说明之前,首先对本申请实施例中可能涉及到的技术名词进行解释和说明。

1)车联网:车联网的概念源于物联网,即车辆物联网,是以行驶中的车辆为信息感知对象,借助新一代信息通信技术,实现车与X(即车与车、人、路、服务平台)之间的网络连接,提升车辆整体的智能驾驶水平,为用户提供安全、舒适、智能、高效的驾驶感受与交通服务,同时提高交通运行效率,提升社会交通服务的智能化水平。

2)C-V2X:Cellular Vehicle-to-Everything,蜂窝车联网,由3GPP(3rdGeneration Partnership Project,第三代合作伙伴计划)组织定义,基于蜂窝调制解调器技术,它是基于3G(3rd-Generation Mobile Communication Technology,第三代移动通信技术)/4G(4rd-Generation Mobile Communication Technology,第四代移动通信技术)/5G(5rd-Generation Mobile Communication Technology,第五代移动通信技术)等蜂窝网通信技术演进形成的车用无线通信技术,C-V2X是基于3GPP全球统一标准的通信技术,包含LTE-V2X和5G-V2X,从技术演进角度讲,LTE-V2X支持向5G-V2X平滑演进。V2X包括V2I(Vehicle to Infrastructure,车到基础设施),V2N(Vehicle to Network,车到网络),V2P(Vehicle to Pedestrian,车到行人),V2V(Vehicle to Vehicle,车到车),本申请关注V2P场景中行人定位机制与终端。

3)PC5:C-V2X的一种通信接口,是车、人、路之间的短距离直接通信接口。

4)路侧单元:Road Side Unit,简称RSU,是车联网系统中部署在道路侧的设备,属于V2I中I的类型之一。RSU通过蜂窝网络或是有线的方式,与路侧设备(路侧感知设备、交通信号灯、电子标牌等)及MEC(Multi-access/Mobile Edge Computing,多接入移动边缘计算)平台或云端平台连接,获取交通、车路协同、管理等各类数据,同时RSU通过PC5直连通信方式将获取的信息广播至周围。一般在无遮挡情况下RSU通信覆盖范围为300-500米。

在介绍完本申请实施例中可能涉及到的技术名词后,以下结合图1对应用本申请技术方案的示例性系统架构进行说明:

图1示意性示出了应用本申请技术方案的碰撞预警系统的架构框图。

如图1所示,碰撞预警系统100可以包括车联网终端101、路侧单元102、车辆103和网络。

其中,车联网终端101是与路侧单元102和车辆103通过直连通信PC5接口连接的终端设备,该终端设备可以是行人、非机动车驾驶员、特殊交通工具(轮椅)使用者所携带的终端设备,具体为智能手机、平板电脑、便携式电脑、智能手环、智能手表、智能眼镜等等;车联网终端101在启动后,可以接收路侧单元102、车辆103以及车联网系统中其它终端设备通过PC5通信接口发送的PC5消息,并根据接收到的PC5消息进行定位。在根据接收到的PC5消息进行定位时,车联网终端101对PC5消息进行解析,判断其是否为目标路侧单元发送的PC5消息,如果判定是的话,则激活定位模块进行定位,并根据当前终端位置采用不同的定位模式进行定位,以获取定位信息;最后车联网终端101可以将该定位信息通过PC5通信接口发送至车辆103,以便车辆103根据定位信息和车辆的当前车辆位置进行碰撞预警。

路侧单元102能够接收信号覆盖范围内的车联网终端101和车辆103所广播的信息,并将接收到的信息广播至其信号覆盖范围内的其它车联网终端101和车辆103,例如路侧单元102可以通过PC5通信接口向信号覆盖范围内的车联网终端101和车辆103广播PC5消息,并接收车联网终端101和车辆103通过PC5通信接口广播的PC5消息。

车辆103可以是道路上行驶的各类车辆,其可以接收车联网终端101通过PC5通信接口广播的定位信息,根据该定位信息和车辆的当前车辆位置确定二者之间的相对位置,并判断二者之间是否可能出现碰撞,当判定可能出现碰撞时,生成预警信息,以便车辆根据该预警信息对该车联网终端101的使用者进行避让。

在本申请实施例所提供的碰撞预警系统中,网络可以是能够在车联网终端101和路侧单元102、车联网终端101和车辆103、路侧单元102和车辆103之间提供通信链路的各种连接类型的通信介质,例如可以是有线通信链路或者无线通信链路。

根据实现需要,本申请实施例中的系统架构可以具有任意数目的车联网终端101、路侧单元102、车辆103和网络。

本申请的技术方案涉及车联网技术领域,具体而言,涉及智能交通系统以及智能车路协同系统。

智能交通系统(Intelligent Traffic System,ITS)又称智能运输系统(Intelligent Transportation System),是将先进的科学技术(信息技术、计算机技术、数据通信技术、传感器技术、电子控制技术、自动控制理论、运筹学、人工智能等)有效地综合运用于交通运输、服务控制和车辆制造,加强车辆、道路、使用者三者之间的联系,从而形成一种保障安全、提高效率、改善环境、节约能源的综合运输系统。

智能车路协同系统(Intelligent Vehicle Infrastructure CooperativeSystems,IVICS),简称车路协同系统,是智能交通系统(ITS)的一个发展方向。车路协同系统是采用先进的无线通信和新一代互联网等技术,全方位实施车车、车路动态实时信息交互,并在全时空动态交通信息采集与融合的基础上开展车辆主动安全控制和道路协同管理,充分实现人车路的有效协同,保证交通安全,提高通行效率,从而形成的安全、高效和环保的道路交通系统。

进一步地,当采用云服务器进行终端定位系统中的数据处理时,本申请还涉及云技术及云应用,就云应用而言,具体涉及物联网及云物联。

云技术(Cloud technology)是指在广域网或局域网内将硬件、软件、网络等系列资源统一起来,实现数据的计算、储存、处理和共享的一种托管技术。

云技术(Cloud technology)基于云计算商业模式应用的网络技术、信息技术、整合技术、管理平台技术、应用技术等的总称,可以组成资源池,按需所用,灵活便利。云计算技术将变成重要支撑。技术网络系统的后台服务需要大量的计算、存储资源,如视频网站、图片类网站和更多的门户网站。伴随着互联网行业的高度发展和应用,将来每个物品都有可能存在自己的识别标志,都需要传输到后台系统进行逻辑处理,不同程度级别的数据将会分开处理,各类行业数据皆需要强大的系统后盾支撑,只能通过云计算来实现。

物联网(The Internet of Things,简称IOT)是指通过各种信息传感器、射频识别技术、全球定位系统、红外感应器、激光扫描器等各种装置与技术,实时采集任何需要连接、互动的物体或过程,采集其声、光、热、电、力学、化学、生物、位置等各种需要的信息,通过各类可能的网络接入,实现物与物、物与人的泛在连接,实现对物品和过程的智能化感知、识别和管理。物联网是一个基于互联网、传统电信网等的信息承载体,它让所有能够被独立寻址的普通物理对象形成互联互通的网络。

云物联(Cloud IOT)旨在将传统物联网中传感设备感知的信息和接受的指令连入互联网中,真正实现网络化,并通过云计算技术实现海量数据存储和运算,由于物联网的特性是物与物相连接,实时感知各个“物体”当前的运行状态,在这个过程中会产生大量的数据信息,如何将这些信息汇总,如何在海量信息中筛取有用信息为后续发展做决策支持,这些已成为影响物联网发展的关键问题,而基于云计算和云存储技术的物联云也因此成为物联网技术和应用的有力支持。

针对相关技术中存在的问题,下面结合具体实施方式对本申请提供的终端定位方法、终端定位装置、计算机可读介质以及电子设备等技术方案做出详细说明。

图2示意性地示出了本申请一个实施例中的终端定位方法的步骤流程示意图,该终端定位方法可以由车联网终端执行,如图1中的车联网终端101。如图2所示,本申请实施例中的终端定位方法可以包括:

S210:接收直连通信PC5消息;

S220:当确定所述PC5消息为目标路侧单元发送的消息时,激活定位模块进行定位,并在移动过程中根据当前终端位置采用不同的定位模式进行定位;

其中,所述定位模式的定位精度随所述当前终端位置和碰撞易发区域之间的距离减小而增大,并随所述距离增大而减小。

在本申请实施例提供的终端定位方法中,车联网终端在运行过程中,接收车联网系统中各类终端发送的PC5消息,通过对PC5消息进行解析,判断其是否为目标路侧单元发送的消息,在判定PC5消息是由目标路侧单元发送的时,激活定位模块进行定位,同时在移动过程中根据当前终端位置采用不同的定位模式进行定位,以获取定位信息。本申请一方面能够基于接收到目标路侧单元发送的PC5消息触发定位,这样就可以在目标路侧单元信号覆盖范围之外不用开启定位模块,只需检测PC5消息即可,减少了车联网终端的电量损耗;另一方面,在进行定位时,根据车联网终端所处位置的不同采用不同的定位模式进行定位,并且定位模式的定位精度随着车联网终端与碰撞易发区域之间的距离缩小而增大,随着距离的增大而缩小,有效平衡了定位精度和功耗之间的关系,也就是说,既保证了高精度定位又减少了功耗,延长了车联网终端的续航时间。

下面以车联网行人保护场景为例,对本申请实施例中终端定位方法的各个方法步骤的具体实现方式进行详细说明。

在S210中,接收直连通信PC5消息。

在本申请的一个实施例中,在车联网行人碰撞保护场景中,行人、汽车的准确位置的确定是非常重要的,在车联网行业标准中,行人碰撞保护场景需要满足的定位精度小于1m,定位精度越高,越有助于准确发现危险状态,实现碰撞预警。通常十字路口、丁字路口、停车场等人车混行的区域是发生碰撞几率较高的区域,为了保证该区域内行人的生命安全,基于车联网系统进行碰撞预警是很有必要的。

为了实现碰撞预警,行人需要随身携带可用于构建碰撞预警系统并进行定位的车联网终端,由于在本申请的实施例中,需要基于PC5通信接口实现定位和碰撞预警,因此构成碰撞预警系统的车联网终端、路侧单元和车辆均需具备PC5通信模块,本申请实施例中的PC5通信模块具体为C-V2X PC5通信模块。

图3示意性示出了一种车联网专用行人终端的结构示意图,如图3所示,车联网专用行人终端300包括中央处理器301、C-V2X PC5通信模块302、定位模块303、电池及电源管理模块304、其它辅助模块305、PC5天线306和定位模块天线307,其中PC5天线306与C-V2XPC5通信模块302连接,定位模块天线307与定位模块303连接。

图3所示的车联网专用行人终端可以在接收到目标路侧单元发送的PC5消息后,激活定位模块303进行定位,并在获取定位信息后将定位信息通过C-V2X PC5通信模块302发送至车辆,以实现碰撞预警。

当然,对于智能手机、笔记本电脑、智能手环等具备蜂窝通信模块的终端,只要其中设置有C-V2X PC5通信模块和可用于高精度定位的定位模块,也可以实现本申请实施例中的终端定位方法,但是在实现本申请实施例中的终端定位方法时,需要禁用蜂窝通信模块的功能,仅激活C-V2XPC5通信模块和定位模块,这样才可以进一步降低功耗并提高定位精度。

在本申请的一个实施例中,C-V2X PC5通信模块具有PC5通信接收功能和PC5通信发送功能,为了降低车联网终端的功耗,在车联网终端的运行过程中,PC5通信接收功能一直处于激活状态,以保证车联网终端能够接收来自路侧单元及车辆发送的PC5消息,而PC5通信发送功能只有在需要向车辆发送定位信息时才激活。

在本申请的一个实施例中,车联网终端在行人移动过程中,会接收到路侧单元、车辆等车联网系统中的终端通过PC5通信接口发送的PC5消息,而车联网终端开始进行定位的触发条件是接收到目标路侧单元发送的PC5消息,因此车联网终端需要对接收到的PC5消息进行解析,判断其是否为目标路侧单元发送的消息,如果是,则启动定位模块进行定位,如果不是,则继续检测PC5消息,直至获取目标路侧单元发送的PC5消息。

图4示出了确定接收到的PC5消息为目标路侧单元发送的消息的流程示意图,如图4所示,在S401中,获取所述PC5消息的所述消息头中的标识信息;在S402中,当所述标识信息为路侧单元标识信息时,获取所述消息头中的第一位置信息,并将所述第一位置信息与所述目标路侧单元对应的第二位置信息进行比对;在S403中,当所述第一位置信息与所述第二位置信息相同时,则确定所述PC5消息为所述目标路侧单元发送的消息。

其中,在S401中,PC5消息包含消息头,该消息头中包含标识信息和设备位置信息,具体地,标识信息是与路侧单元对应的标识信息或者与车辆对应的标识信息,设备位置是与路侧单元对应的位置信息或者与车辆对应的位置信息,由于路侧单元通常设置在路口处,因此与路侧单元对应的位置信息具体为路口定位信息。在通过对路侧单元发送的PC5消息进行解析,得到路侧单元对应的第一位置信息后,可以将第一位置信息与目标路侧单元对应的第二位置信息进行比对,如果相同,说明该PC5消息为目标路侧单元发送的消息。

进一步地,车联网终端中存储有标记目标路侧单元的地图,车联网终端可以从地图中获取目标路侧单元对应的第二位置信息,用于判断接收到的PC5消息是否为目标路侧单元发送的PC5消息。该标记有目标路侧单元的地图可以是在车联网终端出厂时就已经配置好的,后续当地图存在更新时,可以通过终端生产商进行系统更新以完成地图的更新,也可以是车联网服务器发送至车联网终端的,车联网终端在接收到车联网服务器发送的地图后,可以对本地存储的地图进行更新,以便车联网终端根据更新后的地图进行定位。

在S220中,当确定所述PC5消息是所述目标路侧单元发送的消息时,激活定位模块进行定位,并在移动过程中根据当前终端位置采用不同的定位模式进行定位;其中,所述定位模式的定位精度随所述当前终端位置和碰撞易发区域之间的距离减小而增大,并随所述距离增大而减小。

在本申请的一个实施例中,在确定PC5消息是目标路侧单元发送的消息时,说明车联网终端进入了目标路侧单元的信号覆盖区域,因此车联网终端可以启动定位模块进行定位,以获取定位信息。在采用定位模块进行定位时,一方面需要减小功耗,一方面需要提高定位精度,因此在本申请实施例中,采用根据当前终端位置逐级启动不同定位模式的方式,以平衡功耗和定位精度。在根据当前终端位置逐级启动不同定位模式时,需要根据当前终端位置与碰撞易发区域之间的距离确定不同的定位模式,具体而言,定位模式的定位精度随当前终端位置与碰撞易发区域之间的距离减小而增大,随距离增大而减小,也就是说,越靠近碰撞易发区域,定位模式的定位精度越高。其中,碰撞易发区域为人车交汇区域,例如十字路口的交叉口区域、丁字路口的交叉口区域、停车场的人车混行通道等等。

在本申请的一个实施例中,在车联网终端的移动过程中,可以将目标路侧单元的信号覆盖范围划分为多个区域,并且每个区域对应不同定位精度的定位模式,只要各个区域对应的定位模式的定位精度满足越靠近碰撞易发区域越高、越远离碰撞易发区域越低的规则即可。但是考虑到碰撞预警系统的搭建成本,以及路侧单元的信号覆盖半径通常为300~500m,在本申请的实施例中,可以将目标路侧单元的信号覆盖区域划分为两个区域,在该两个区域中采用不同的定位模式进行定位。具体而言,目标路侧单元的信号覆盖区域包括以碰撞易发区域为中心由外向内依次设置的第一区域和第二区域,第二区域包括碰撞易发区域,当车联网终端位于第一区域中时,采用第一定位模式进行定位,当车联网终端位于第二区域中时,采用第二定位模式进行定位,由于第一区域距离碰撞易发区域的距离大于第二区域距离碰撞易发区域的距离,因此第一定位模式的定位精度小于第二定位模式的定位精度。值得说明的是,车联网终端能够接收到目标路侧单元发送的PC5消息时,说明车联网终端进入了目标路侧的信号覆盖区域的最外侧,也就是说,车联网终端进入第一区域,因此在接收到目标路侧单元发送的PC5消息时,激活定位模块,并采用与第一区域对应的第一定位模式进行定位,以获取定位信息。

在本申请的一个实施例中,在对目标路侧单元的信号覆盖区域进行划分时,可以根据校正道路宽度、预警提前量等因素确定边界距离,并根据该边界距离和碰撞易发区域确定边界,进而根据该边界将目标路侧单元信号覆盖区域划分为套叠设置的第一区域和第二区域,该第二区域包含碰撞易发区域。

图5示意性示出了位于十字路口的目标路侧单元信号覆盖区域划分为多个区域的界面示意图,如图5所示,目标路侧单元信号覆盖区域500被边界501划分为第一区域502和第二区域503,并且第二区域503包含碰撞易发区域504。

其中,边界501是根据十字路口处的校正道路宽度以及预警提前量等因素生成的,在本申请的实施例中,校正道路宽度是根据城镇道路路面设计规范中的道路宽度生成的,例如,可以对所设计的道路宽度的最大值和最小值取平均得到校正道路宽度,等等;预警提前量可以根据实际需要设置,考虑到城市道路中车辆的限速和制动距离,可以将预警提前量设置为10~20s,当然也可以设置为其它值;在获取校正道路宽度和预警提前量等因素后即可确定边界距离,该边界距离例如可以是距离碰撞易发区域中心点50m,当然还可以是其它数值,但可以明确的是,边界距离必然小于目标路侧单元的信号覆盖半径,并且边界的形状也不限于图4所示的圆形,例如还可以以道路边缘为基准,根据边界距离设置的诸如矩形、方形的边界,本申请实施例对此不作具体限定。

在本申请一个实施例中,第一区域和第二区域可以是预先设置好的,也可以是车联网终端在接收到标记有目标路侧单元的地图后,根据区域划分逻辑对目标路侧单元信号覆盖区域划分形成的。但是考虑到车联网终端的计算能力和定位效率,在本申请的实施例中,第一区域和第二区域的设置以预先设置好并标注在地图中的为主,无需车联网终端进行过多计算。

在本申请的一个实施例中,由于定位精度无法达到零,因此当行人在边界附近徘徊时,容易导致车联网终端所确定的定位模式出现偏差,例如当前终端位置位于第一区域内且靠近边界,但是由于定位偏差,可能判定当前终端位置位于第二区域内,进而导致定位模式选择错误。为了避免这个问题,在本申请实施例中,以形成边界的边界距离为基础可以构建带宽区域,也就是说,边界距离不是固定值,而是一个范围值,这样经过区域划分后在第一区域和第二区域之间便存在有一个带宽区域,使得可以在较低精度定位情况下进行区域判断时,减少在边界附近定位模式的不断跳变。例如,边界距离为50m,那么可以设定带宽范围为±10m,那么带宽区域对应的边界值就是40m和60m,同时第一区域和第二区域的范围也相应缩小了。值得说明的是,该带宽范围可以根据实际需要调整,包括但不限于上述带宽范围。

基于图5所示的位于十字路口的目标路侧单元信号覆盖区域划分为多个区域的界面示意图,图6示出了包含带宽区域的区域划分界面示意图,如图6所示,在第一区域502和第二区域503之间形成有带宽区域601。

在本申请的一个实施例中,当车联网终端进入带宽区域时,所采用的定位模式与终端的移动方向相关,以图6所示的区域划分的界面示意图为例,如果车联网终端处于带宽区域,且移动方向朝向碰撞易发区域时,也就是说车联网终端即将进入第二区域时,可以采用第二定位模式进行定位,以获取定位信息,如果车联网终端处于带宽区域,且移动方向远离碰撞易发区域时,也就是说车联网终端即将进入第一区域时,可以采用第一定位模式进行定位,以获取定位信息。

在本申请的一个实施例中,第一定位模式的定位精度低于第二定位模式的定位精度,并且定位模块是在目标路侧单元信号覆盖区域内进行定位,而目标路侧单元信号覆盖半径为300~500m,因此为了提高定位精度,第一定位模式的定位精度应当低于百米级,例如可以为十米级或者米级,第二定位模式的定位精度相对较高,例如可以为亚米级。在本申请实施例中,所采用的第一定位模式具体为普通GNSS定位模式,定位精度达到10m,所采用的第二定位模式具体为基于C-V2X PC5的GNSS-RTK定位模式,定位精度达到≤1m。

其中,普通GNSS定位是指仅通过全球卫星导航系统进行的定位,卫星分布在立体空间的不同位置,通过接收机(车联网终端)接收到每个卫星发射出的信号的时间差,就能计算出接收机(车联网终端)与每个卫星的距离,知道接收机(车联网终端)与至少三颗卫星的距离后,通过三角定位测量法,就可以计算出接收机(车联网终端)的三维位置。

在采用基于C-V2X PC5的GNSS-RTK定位模式进行定位时,目标路侧单元通过PC5通信接口接收高精度定位基准站发送的RTK差分修正信号,然后通过PC5通信接口将RTK差分修正信号发送至车联网终端,车联网终端接收到RTK差分修正信号后,可以根据该RTK差分修正信号对车联网终端的GNSS定位模块所测定的初始GNSS定位信息进行修正,以获取定位信息。

基于C-V2X PC5的GNSS-RTK定位模式不同于基于蜂窝网络的GNSS-RTK定位模式,通常GNSS-RTK定位模式是通过蜂窝网络传输RTK差分修正信号,但是由于蜂窝网络接收RTK差分修正信号时受蜂窝网络信号影响大,会出现RTK差分修正信号接收不稳定的情况,因此在本申请实施例中采用基于C-V2X PC5的GNSS-RTK定位模式进行定位,一方面碰撞预警系统中就有目标路侧单元,通过目标路侧单元播发RTK差分修正信号是在原有系统基础上做的软件功能增加,在不增加硬件系统复杂程度和额外部署投入基础上,提高了RTK定位支持能力,也提高了车联网终端RTK定位的可靠性,同时还避免了布设蜂窝通信模块,降低了系统搭建成本。

在本申请的一个实施例中,车联网终端在根据当前终端位置所处的区域不同而采用不同定位精度的定位模式进行定位时,还可以采用不同的定位频率进行定位,并且该定位频率也随当前终端位置和碰撞易发区域之间的距离减小而增大,随该距离的增大而减小。具体而言,车联网终端可以在获取标记有目标路侧单元的地图的同时,获取定位模式映射表,该定位模式映射表包括多个区域和与各个区域对应的定位模式和定位频率,并且各区域对应的定位模式的定位精度和定位频率随各区域和碰撞易发区域之间的距离减小而增大,并随该距离增大而减小,这样可以进一步平衡定位精度和终端的功耗,提高定位精度和碰撞预警的精准度,并减少终端的功耗,延长终端的续航时间。

在本申请的一个实施例中,在确定当前终端位置所处的区域后,可以将所确定的区域与定位模式映射表中的区域进行比对,当定位模式映射表中存在该区域时,获取对应的定位模式和定位频率作为目标定位模式和目标定位频率即可。

以图5所示的位于十字路口的目标路侧单元信号覆盖区域划分为多个区域的界面示意图为例,对应的定位模式映射表中包括第一区域、第二区域、与第一区域对应的第一定位模式和第一定位频率、以及与第二区域对应的第二定位频率和第二定位频率,在确定当前终端位置位于第一区域时,将第一定位模式作为目标定位模式,并将第一定位频率作为目标定位频率;在确定当前终端位置位于第二区域时,将第二定位模式作为目标定位模式,并将第二定位频率作为目标定位频率。

在本申请的一个实施例中,虽然越靠近碰撞易发区域,定位频率越高,可以保证合适的预警提前量,进而避免碰撞的发生,但是定位频率并不是随意设置的,在本申请的实施例中,设计定位频率的前提是在两次定位的时间间隔内,行人移动位置小于所处区域的定位精度,因此在本申请的实施例中,需要根据定位精度的需求、行人的移动速率、安全系数等因素进行定位频率,其中,安全系数是为了防止定位频率过低,导致信号丢失后长时间无法获取更新的定位信息所设置的,当当前终端位置所在区域距离碰撞易发区域越近,安全系数设置的越高。

在本申请的一个实施例中,对于每个区域,定位频率可以从一个对应的频率范围中获取,该频率范围包括最小频率参考值和最大频率参考值,其中,最小频率参考值可以根据当前终端位置所在区域的定位精度的需求、行人的移动速率、安全系数计算得出,而最大频率参考值则为相邻且靠近碰撞易发区域的感知区域所对应的最小频率参考值。最小频率参考值的计算公式如公式(1)所示:

F

其中,F

以图5所示的区域划分界面示意图为例,第二感知区域对应的定位模式的定位精度和定位频率最高,第一感知区域对应的定位模式的定位精度和定位频率最低。在普通GNSS定位模式和基于C-V2X PC5的GNSS-RTK定位模式中,普通GNSS定位模式的定位精度较低,约10m,而基于C-V2X PC5的GNSS-RTK定位模式的定位精度最高,达到亚米级,因此在本申请实施例中,可以设定第一区域对应的定位模式为普通GNSS定位模式、安全系数为2.5,第二区域对应的定位模式为基于C-V2X PC5的GNSS-RTK定位模式、安全系数为5。

同时考虑到行人的移动速度不大于2m/s,那么根据公式(1)可以得到第一感知区域、第二感知区域对应的最小频率参考值分别为0.5Hz、10Hz;相应地,第一区域对应的定位频率位于频率范围[0.5,10)中,第二区域对应的定位频率位于频率范围[10,∞)中。在得到各个区域对应的频率范围后,可以从对应的频率范围中确定该区域对应的定位频率,例如根据实际应用,并且兼顾功耗节约与定位数据可靠性,可以将将第一区域对应的定位频率设置为1Hz,将第二区域对应的定位频率设置为10Hz。也就是说,当行人进入目标路侧单元信号覆盖范围内的第一区域时,当前终端位置处于第一区域,对应的定位模式为普通GNSS定位模型,定位频率为1HZ,这时便触发GNSS定位模块每1s进行一次普通GNSS定位,以获取定位信息;当行人进入第二区域时,对应的定位模式为基于C-V2X PC5的GNSS-RTK定位模式,定位频率为10Hz,这时便触发GNSS定位模块每0.1s进行一次基于C-V2X PC5的GNSS-RTK定位,以获取定位信息。

对于图6所示的区域划分的界面示意图,若当前终端位置处于带宽区域601中时,根据行人的移动方向同样可以确定车联网终端在带宽区域中进行定位时所采用的定位频率,即,当移动方向朝向碰撞易发区域时,也就是说车联网终端即将进入第二区域时,可以采用第二定位模式和第二定位频率进行定位,以获取定位信息,当移动方向远离碰撞易发区域时,也就是说车联网终端即将进入第一区域时,可以采用第一定位模式和第一定位频率进行定位,以获取定位信息。

在本申请的一个实施例中,在采用第一定位模式进行定位时,车联网终端关闭C-V2X PC5通信模块的PC5消息发送功能,仅激活PC5消息接收功能,同时激活定位模块进行定位;在采用第二定位模式进行定位时,车联网终端在激活PC5消息接收功能和定位模块的基础上,激活C-V2XPC5通信模块的PC5消息发送功能,通过PC5通信接口将定位信息发送至车辆,以便车辆根据定位信息和车辆的实时位置进行碰撞预警。这样可以减少消息发送频率,进一步降低车联网终端的功耗,提高续航时间。

在本申请的一个实施例中,由于在采用基于C-V2X PC5的GNSS-RTK定位模式进行定位时,激活了C-V2X PC5通信模块的PC5消息发送功能,因此在获取定位信息后,可以基于PC5消息发送功能将定位信息发送至与车联网终端可通过PC5通信接口实现通信的车辆,以便车辆根据定位信息和车辆的实时位置判断车辆和行人是否存在发生碰撞的可能,如果存在碰撞的可能则进行碰撞预警。

基于图5所示的区域划分界面示意图,图7示出了切换定位模式的流程示意图,如图7所示,在S701中,车联网终端激活PC5通信接收功能,检测PC5消息;在S702中,判断是否接收到PC5消息;在S703中,当判定未接收到PC5消息时,继续执行S701;在S704中,当判定接收到PC5消息时,对接收到的PC5消息进行解析,判断是否为目标路侧单元发送的PC5消息;在S705中,当判定PC5消息不是目标路侧单元发送的时,继续S701~S702;在S706中,当判定PC5消息是目标路侧单元发送的,激活GNSS定位模块,采用普通GNSS定位模式进行定位;在S707中,获取当前终端位置,判断当前终端位置所在区域;在S708中,当判定当前终端位置位于第一区域时,继续采用普通GNSS定位模式进行定位;在S709中,当判定当前终端位置位于第二区域时,采用基于C-V2X PC5的GNSS-RTK定位模式进行定位,以获取定位信息,并激活PC5消息发送功能,通过PC5通信接口发送定位信息;在S710中,判断当前终端位置是否仍位于第二区域;在S711中,当判定当前终端位置仍位于第二区域时,继续采用基于C-V2XPC5的GNSS-RTK定位模式进行定位以及通过PC5通信接口发送定位信息;在S712中,当判定当前终端位置不在第二区域,判断是否接收到目标路侧单元发送的PC5消息;在S713中,当判定接收到目标路侧单元发送的PC5消息时,继续采用普通GNSS定位模式进行定位;在S714中,当判定未接收到目标路侧单元发送的PC5消息时,关闭GNSS定位模块,仅检测PC5消息。

基于图6所示的区域划分界面示意图,图8示出了切换定位模式的流程示意图,如图8所示,在S801中,车联网终端激活PC5通信接收功能,检测PC5消息;在S802中,判断是否接收到PC5消息;在S803中,当判定未接收到PC5消息时,继续执行S801;在S804中,当判定接收到PC5消息时,对接收到的PC5消息进行解析,判断是否为目标路侧单元发送的PC5消息;在S805中,当判定PC5消息不是目标路侧单元发送的,继续执行S801~S802;在S806中,当判定PC5消息是目标路侧单元发送的,激活GNSS定位模块,采用普通GNSS定位模式进行定位;在S807中,获取当前终端位置,判断当前终端位置是否位于带宽区域;在S808中,当判定当前终端位置位于第一区域时,继续采用普通GNSS定位模式进行定位;在S809中,当判定当前终端位置位于带宽区域,且移动方向朝向碰撞易发区域时,采用基于C-V2X PC5的GNSS-RTK定位模式进行定位,以获取定位信息;在S810中,判断当前终端位置是否位于第二区域;在S811中,当判定当前终端位置位于带宽区域时,采用基于C-V2X PC5的GNSS-RTK定位模式进行定位,以获取定位信息;在S812中,当判定当前终端位置位于第二区域时,采用基于C-V2XPC5的GNSS-RTK定位模式进行定位,以获取定位信息,并激活PC5消息发送功能,通过PC5通信接口发送定位信息;在S813中,判断当前终端位置是否仍位于第二区域;在S814中,当判定当前终端位置仍位于第二区域时,继续采用基于C-V2X PC5的GNSS-RTK定位模式进行定位以及通过PC5通信接口发送定位信息;在S815中,当判定当前终端位置不在第二区域时,判断是否接收到目标路侧单元发送的PC5消息;在S816中,当判定接收到目标路侧单元发送的PC5消息时,继续采用普通GNSS定位模式进行定位;在S817中,当判定未接收到目标路侧单元发送的PC5消息时,关闭GNSS定位模块,仅检测PC5消息。

对于图7和图8所示的切换定位模式的流程示意图,还可以在切换定位模式的同时切换定位频率,例如,在步骤S706、S708、S713中,在采用普通GNSS定位模式进行定位的同时,采用对应的定位频率(例如:1Hz)进行定位;在步骤S709、S711中,在采用基于C-V2X PC5的GNSS-RTK定位模式进行定位的同时,采用对应的定位频率(例如:10Hz)进行定位;同样地,在步骤S806、S808、S816中,在采用普通GNSS定位模式进行定位的同时,采用对应的定位频率(例如:1Hz)进行定位;在步骤S809、S811、S812、S814中,在采用基于C-V2X PC5的GNSS-RTK定位模式进行定位的同时,采用对应的定位频率(例如:10Hz)进行定位。

本申请实施例中的终端定位方法可以应用于车联网系统中行人、非机动车驾驶者、特殊交通工具(轮椅)使用者的保护,接下来以在布设有路侧单元的十字路口区域进行车联网行人保护为例,对本申请实施例中的终端定位方法进行说明。

基于图5所示的区域划分的界面示意图,图9A-9F示出了车联网终端在移动过程中所处区域以及采用的定位模式的变化界面示意图,如图9A所示,行人携带车联网终端A向十字路口移动,此时仅激活C-V2X PC5通信模块的PC5消息接收功能,关闭PC5消息发送功能和定位模块的定位功能,以使车联网终端A处于低功耗检测模式;如图9B所示,当车联网终端A接收到十字路口布设的路侧单元B发送的PC5消息时,激活定位模块,采用普通GNSS定位模式进行定位,以获取定位信息;如图9C所示,在车联网终端A移动过程中,获取当前终端位置,在当前终端位置位于第一区域D1时,继续采用普通GNSS定位模式进行定位,以获取定位信息;如图9D所示,在当前终端位置位于第二区域D2时,采用基于C-V2X PC5的GNSS-RTK定位模式进行定位,以获取定位信息,并激活PC5消息发送功能,通过PC5通新接口将定位信息发送至十字路口周围的车辆,以便车辆根据定位信息进行碰撞预警;如图9E所示,当车联网终端A离开包含十字路口的第二区域D2时,判断是否接收到路侧单元B发送的PC5消息;当判定接收到PC5消息时,关闭PC5消息发送功能,采用普通GNSS定位模式进行定位;如图9F所示,当判定未接收到PC5消息时,关闭定位模块和PC5消息发送功能,仅基于PC5消息接收功能进行PC5消息检测。

当车联网终端A走出第二区域时,之所以不根据当前终端位置判断是否采用定位模式进行定位,而根据是否接收到PC5消息判断是否采用定位模式进行定位,这是因为检测PC5消息的功耗相对于获取当前终端位置的功耗低,这样可以进一步降低车联网终端的功耗,提高续航时间。

在本申请的一个实施例中,在当前终端位置位于第二区域时,除了可以采用基于C-V2X PC5的GNSS-RTK定位模式进行定位之外,还可以采用基于C-V2X PC5的GNSS-RTD(Real Time Differential,实时动态码相位差分技术)定位模式进行定位,只是精度稍有降低,但是在车联网终端低速移动的场景中同样可以满足碰撞预警需求。

在本申请的一个实施例中,终端定位方法可以由车联网终端主动触发,例如当检测到车联网终端处于移动状态时,即触发C-V2X PC5通信模块进行PC5消息检测,并在检测到目标路侧单元发送的PC5消息后激活定位模块进行定位,还可以通过触发与车联网行人保护场景等场景相关的APP或者小程序实现,终端使用者可以在车联网终端中下载可用于车联网行人保护场景等场景的应用程序,当终端使用者计划外出时,可以提前触发该应用程序或者小程序,以使应用程序或者小程序在后台运行。在终端使用者移动的过程中,车联网终端持续检测接收到的PC5消息,当接收到目标路侧单元发送的PC5消息时,激活定位模块进行定位,若判定当前终端位置位于第一区域时,采用普通GNSS定位模式进行定位,若判定当前终端位置位于第二区域时,采用基于C-V2X PC5的GNSS-RTK定位模式进行定位,并激活PC5消息发送功能,通过PC5通信接口将定位信息发送给车辆,以便车辆根据定位信息和车辆的实时位置判断是否会发生碰撞,当判定可能出现碰撞时,生成预警信息,以便车辆驾驶员或者车辆避让系统进行避让。

本申请实施例中的终端定位方法,车联网终端在运行过程中,接收路侧单元以及车辆发送的PC5消息,通过对PC5消息进行解析,判断其是否为目标路侧单元发送的消息,并在判定PC5消息是由目标路侧单元发送的时,激活定位模块进行定位,并在移动过程中根据当前终端位置采用不同的定位模式进行定位,以获取定位信息。本申请实施例中的终端定位方法具有以下几点有益效果:

(1)能够基于接收到目标路侧单元发送的PC5消息触发定位,这样就可以在目标路侧单元信号覆盖范围之外不用开启定位模式,只需检测PC5消息信号即可,减少了终端的电量损耗;

(2)在进行定位时,根据车联网终端所处位置的不同采用不同的定位模式进行定位,并且定位模式的定位精度随着车联网终端与碰撞易发区域之间的距离缩小而增大,随着距离的增大而缩小,这样通过逐级启用定位模式可以提高定位精度、进而提高碰撞预警的精准度,同时采用不同的定位模式进行定位,还可以降低定位功耗,增加车联网终端的续航时间;

(3)在进行定位时,根据车联网终端所处位置的不同采用不同的定位模式和不同的定位频率进行定位,并且定位模式的定位精度和定位频率随着车联网终端与碰撞易发区域之间的距离缩小而增大,随着距离的增大而缩小,这样可以在保证定位精度和碰撞预警的精准度的同时,进一步降低定位功耗,增加车联网终端的续航时间;

(4)RTK差分修正信号是由路侧单元通过PC5通信接口进行广播的,而不是通过蜂窝网络进行传输的,因此提高了RTK定位支持能力和RTK定位的可靠性,还避免了蜂窝通信模块的设置,降低了制造成本;

(5)车联网终端基于C-V2X PC5通信模块即可实现本申请实施例中的终端定位方法,不需要蜂窝通信模块,因此减少了不必要的硬件模块,降低了电量消耗和硬件成本,同时PC5通信为非授权频段,无需支付通信费用,相比于蜂窝通信降低了使用成本;

(6)在定位状态切换时,考虑到定位精度设置了带宽区域,避免了在边界处定位状态的跳变;

(7)本申请实施例中的终端定位方法是在成熟定位模式的基础上通过调整定位方式、定位频率切换定位模式,降低了实现难度和系统复杂性。

可以理解的是,在本申请的具体实施方式中,涉及到定位信息、当前终端位置、当前车辆位置等相关数据,当本申请以上实施例运用到具体产品或技术中时,需要获取终端使用者、车辆驾驶者的许可或者同意,且相关数据的收集、使用和处理需要遵守相关国家和地区的相关法律法规和标准。

应当注意,尽管在附图中以特定顺序描述了本申请中方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等。

以下介绍本申请的装置实施例,可以用于执行本申请上述实施例中的终端定位方法。图10示意性地示出了本申请实施例提供的终端定位装置的结构框图。如图10所示,终端定位装置1000包括:接收模块1010和定位模块1020,具体地:

接收模块1010,用于接收直连通信PC5消息;定位模块1020,用于当确定所述PC5消息为目标路侧单元发送的消息时,激活定位模块进行定位,并在移动过程中根据当前终端位置采用不同的定位模式进行定位;其中,所述定位模式的定位精度随所述当前终端位置和碰撞易发区域之间的距离减小而增大,并随所述距离增大而减小。

在本申请的一些实施例中,所述PC5消息的消息头中包括标识信息;基于以上技术方案,所述接收模块1010配置为:获取所述PC5消息的所述消息头中的标识信息;当所述标识信息为路侧单元标识信息时,获取所述消息头中的第一位置信息,并将所述第一位置信息与所述目标路侧单元对应的第二位置信息进行比对;当所述第一位置信息与所述第二位置信息相同时,则确定所述PC5消息为所述目标路侧单元发送的消息。

在本申请的一些实施例中,所述目标路侧单元的信号覆盖区域包括以所述碰撞易发区域为中心由外向内设置的第一区域和第二区域;基于以上技术方案,所述定位模块1020包括:第一定位单元,用于当所述当前终端位置位于所述第一区域中时,采用第一定位模式进行定位;第二定位单元,用于当所述当前终端位置位于所述第二区域中时,采用第二定位模式进行定位;其中,所述第一定位模式的定位精度低于所述第二定位模式的定位精度。

在本申请的一些实施例中,基于以上技术方案,所述定位模块1020还包括:第一功能单元,用于在采用所述第一定位模式进行定位时,关闭PC5消息发送功能;第二功能单元,用于在采用所述第二定位模式进行定位时,激活PC5消息发送功能,并基于所述PC5消息发送功能进行碰撞预警。

在本申请的一些实施例中,所述第二定位模式为基于蜂窝车联网PC5的GNSS-RTK定位模式;基于以上技术方案,所述第二功能单元配置为:接收所述目标路侧单元通过PC5通信接口发送的RTK差分修正信号;获取初始定位信息,并根据所述RTK差分修正信号对所述初始定位信息进行修正,以获取所述定位信息;将所述定位信息通过PC5通信接口发送至车辆,以使所述车辆根据所述定位信息进行碰撞预警。

在本申请的一些实施例中,基于以上技术方案,所述终端定位装置1000包括:确定模块,用于在移动方向远离所述碰撞易发区域时,根据所述当前终端位置与所述第二区域之间的位置关系确定目标定位模式,并采用所述目标定位模式进行定位。

在本申请的一些实施例中,基于以上技术方案,所述确定模块包括:第一确定单元,用于当所述当前终端位置位于所述第二区域中时,将所述第二定位模式作为所述目标定位模式;第二确定单元,用于当所述当前终端位置位于所述第二区域之外时,判断是否接收到所述目标路侧单元发送的PC5消息,并根据判断结果执行目标操作。

在本申请的一些实施例中,基于以上技术方案,所述第二确定单元配置为:当接收到所述目标路侧单元发送的PC5消息时,将所述第一定位模式作为所述目标定位模式;当未接收到所述目标路侧单元发送的PC5消息时,停止定位。

在本申请的一些实施例中,基于以上技术方案,所述第一区域和所述第二区域之间设置有带宽区域;所述终端定位装置1000还配置为:当所述当前终端位置位于所述带宽区域,且移动方向朝向所述碰撞易发区域时,采用第二定位模式进行定位,以获取所述定位信息;当所述当前终端位置位于所述带宽区域,且移动方向远离所述碰撞易发区域时,采用所述第一定位模式进行定位,以获取所述定位信息。

在本申请的一些实施例中,基于以上技术方案,所述终端定位装置1000还配置为:在采用不同的定位模式进行定位的同时,采用不同的定位频率进行所述定位;其中,所述定位频率也随所述当前终端位置和碰撞易发区域之间的距离减小而增大,并随所述距离增大而减小。

在本申请的一些实施例中,基于以上技术方案,所述第一定位模式为普通GNSS定位模式,所述第二定位模式为基于蜂窝车联网PC5的GNSS-RTK定位模式。

在本申请的一些实施例中,基于以上技术方案,所述终端定位装置1000还配置为:在接收PC5消息之前,激活PC5消息接收功能,关闭定位功能和PC5消息发送功能,并基于所述PC5消息接收功能获取所述PC5消息。

本申请各实施例中提供的终端定位装置的具体细节已经在对应的方法实施例中进行了详细的描述,此处不再赘述。

图11示意性地示出了用于实现本申请实施例的电子设备的计算机系统结构框图,该电子设备可以是如图1中所示的设置于车联网终端101、路侧单元102或者车辆103。

需要说明的是,图11示出的电子设备的计算机系统1100仅是一个示例,不应对本申请实施例的功能和使用范围带来任何限制。

如图11所示,计算机系统1100包括中央处理器1101(Central Processing Unit,CPU),其可以根据存储在只读存储器1102(Read-Only Memory,ROM)中的程序或者从存储部分1108加载到随机访问存储器1103(Random Access Memory,RAM)中的程序而执行各种适当的动作和处理。在随机访问存储器1103中,还存储有系统操作所需的各种程序和数据。中央处理器1101、在只读存储器1102以及随机访问存储器1103通过总线1104彼此相连。输入/输出接口1105(Input/Output接口,即I/O接口)也连接至总线1104。

在一些实施例中,以下部件连接至输入/输出接口1105:包括键盘、鼠标等的输入部分1106;包括诸如阴极射线管(Cathode Ray Tube,CRT)、液晶显示器(Liquid CrystalDisplay,LCD)等以及扬声器等的输出部分1107;包括硬盘等的存储部分1108;以及包括诸如局域网卡、调制解调器等的网络接口卡的通信部分1109。通信部分1109经由诸如因特网的网络执行通信处理。驱动器1110也根据需要连接至输入/输出接口1105。可拆卸介质1111,诸如磁盘、光盘、磁光盘、半导体存储器等等,根据需要安装在驱动器1110上,以便于从其上读出的计算机程序根据需要被安装入存储部分1108。

特别地,根据本申请的实施例,各个方法流程图中所描述的过程可以被实现为计算机软件程序。例如,本申请的实施例包括一种计算机程序产品,其包括承载在计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信部分1109从网络上被下载和安装,和/或从可拆卸介质1111被安装。在该计算机程序被中央处理器1101执行时,执行本申请的系统中限定的各种功能。

需要说明的是,本申请实施例所示的计算机可读介质可以是计算机可读信号介质或者计算机可读介质或者是上述两者的任意组合。计算机可读介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、闪存、光纤、便携式紧凑磁盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本申请中,计算机可读介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本申请中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:无线、有线等等,或者上述的任意合适的组合。

附图中的流程图和框图,图示了按照本申请各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,上述模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图或流程图中的每个方框、以及框图或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

应当注意,尽管在上文详细描述中提及了用于动作执行的设备的若干模块或者单元,但是这种划分并非强制性的。实际上,根据本申请的实施方式,上文描述的两个或更多模块或者单元的特征和功能可以在一个模块或者单元中具体化。反之,上文描述的一个模块或者单元的特征和功能可以进一步划分为由多个模块或者单元来具体化。

通过以上的实施方式的描述,本领域的技术人员易于理解,这里描述的示例实施方式可以通过软件实现,也可以通过软件结合必要的硬件的方式来实现。因此,根据本申请实施方式的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中或网络上,包括若干指令以使得一台电子设备执行根据本申请实施方式的方法。

应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

技术分类

06120116561590