掌桥专利:专业的专利平台
掌桥专利
首页

集水平衡控制及系统内热利用耦合的湿法碳捕集工艺

文献发布时间:2024-04-18 20:02:18


集水平衡控制及系统内热利用耦合的湿法碳捕集工艺

技术领域

本发明涉及湿法碳捕集技术领域,具体的说是集水平衡控制及系统内热利用耦合的湿法碳捕集工艺。

背景技术

众所周知,低分压气源中的碳排放量占目前工业中可捕集二氧化碳总量的70%以上,故而要实现“碳中和”目标,低分压气源中的CO2是无法绕开的捕集对象,从国内外现有的工程经验看,采用湿法工艺技术对低分压气源进行大规模的碳捕集回收将是不二选择。

吸收剂作为湿法技术的核心,除了吸收剂自身存在的降解、挥发损耗等问题,捕集装置的水平衡控制及内部热量充分利用也是难题之一。现有的工艺仅依靠烟气进出吸收塔的温度差异来实现水平衡,而烟气出吸收塔温度又受冷却水温度、吸收剂挥发等制约,故而整体系统水平衡控制的弹性较小,尤其近年来,相变吸收剂、少水吸收剂等一系列高浓度吸收剂的提出和使用,使得传统工艺的水平衡控制愈发困难,另外,碳捕集装置工程化后如何实现装置的高度自动化运行也将成为下一个亟待研究解决的问题,这其中水平衡操作弹性便是自动化过程至关重要的一环。

水平衡是指碳捕集装置在正常运行过中,含碳气源进入碳捕集系统中所携带的水量与其排除系统气体中所带走的水量保持平衡。该平衡在工程上非常中,无法保证时时的动态平衡,也应尽量控制不平衡的波动范围和频率。以电厂烟气作为捕集对象时,烟气中通常含有饱和水汽,通过水洗塔等预处理系统,进行降温、除杂后再进入吸收塔。在该降温过程中,部分水蒸汽将液化并留在水洗塔中,则导致水洗塔中碱洗液量会不断增加,进而需要持续排液以及补充碱,不仅增加废液排放,也加大了碱的消耗量。此外,烟气进出吸收塔,针对吸收-再生单元的水平衡控制,通常只能通过烟气进出温度的调节来控制水平衡,而温度的调节受牵制因素较多,无法较大范围的调节,从而其调节能力非常有限。

当前湿法装置捕集工艺的优化,主要集中在如何提高系统内部的热量利用以及如何发挥吸收剂的最大吸收效率等节能工艺上,如吸收-再生单元的温度优化分布、贫液闪蒸MVR利用二次蒸汽、再生气采用热泵原理回收热量等。这些方法在一些装置上实践后也能取得一定的效果,但是工艺的改进优化进一步的提高再生气热量的利用较为缺乏,另外对系统水平衡控制提高工艺的冗余度、减少废液的排放更加鲜有报道。

发明内容

本发明针对现有技术中的问题,提供集水平衡控制及系统内热利用耦合的湿法碳捕集工艺,具体技术方案如下:

集水平衡控制及系统内热利用耦合的湿法碳捕集工艺,包括依次连接的:

预处理单元,所述预处理单元包括预处理塔,所述预处理塔由下至上依次设置有碱洗段与冷却段,所述碱洗段喷淋有碱洗液,所述预处理塔的冷却段喷淋有洗涤水;

吸收单元,通过吸收剂吸收烟气中的二氧化碳并产出富液;

再生单元,用于解吸吸收单元的富液并产出贫液以及再生气,且使贫液回流至吸收单元以构成吸收剂循环流路;

以及分离单元,将再生单元中的再生气分解为水以及二氧化碳;

还包括设置于再生单元与分离单元之间的回收单元,所述回收单元包括再生气洗涤塔,所述再生气洗涤塔的底部进气端与所述再生单元的再生气出口相连通,所述再生气洗涤塔的顶部进液端与所述预处理塔冷却段外循环流路相连通;

所述预处理塔水洗段溢出的洗涤水可进入所述再生气洗涤塔内对再生气进行喷淋预冷却。

作为本发明进一步的技术方案,所述吸收单元包括:

吸收塔,所述吸收塔由下至上依次包括吸収段以及滞留段,所述吸收段内喷淋有吸收剂;

水洗液冷却器,所述水洗液冷却器通过一塔外单向管道与所述吸收塔的滞留段相连通,所述吸收塔的滞留段内喷淋有水洗液并配合所述水洗液冷却器形成水洗液的循环流路。

作为本发明进一步的技术方案,所述回收单元还包括:

二次洗涤塔,所述二次洗涤塔的进液端与所述再生气洗涤塔的出液端相连通,所述二次洗涤塔的进气端与所述吸收塔的出气端相连通,所述二次洗涤塔外接有一塔外单向管道,以形成洗涤水循环流通管路;

所述再生气洗涤塔底部流出的洗涤水可进入二次洗涤塔内对所述吸收塔的出塔烟气进行循环喷淋以将洗涤水蒸发释放。

作为本发明进一步的技术方案,所述再生单元包括:

再生塔,所述再生塔顶部与所述吸收塔的出液口连通,所述再生塔底部与所述吸收塔的进液口连通;

再沸器,通过一塔外单向管道与所述再生塔连通;

贫液冷却器,设置于所述再生塔的出液口与所述吸收塔进液口的连通管道上,用于冷却贫液;

贫富液换热器,所述富液进入再生塔前与贫液流出再生塔后皆流经所述贫富液换热器,用于富液与贫液之间的热交换。

本发明的有益效果如下:

(1)、本申请中,通过增设的再生气洗涤塔可利用吸收塔溢出的洗涤水对再生塔排出的再生气进行预冷却,降低再生气冷却器的工作负担,同时通过增设的二次洗涤塔可利用再生气洗涤塔排出的洗涤水对吸收塔排出的出塔烟气进行二次喷淋,一方面,使洗涤水被蒸发释放,实现水平衡,另一方面,洗涤水还能够二次对出塔烟气内逃逸的吸收剂拦截,以降低吸收剂的逃逸损耗。

(2)、本申请中,通过将传统的碱洗液的降温结构分割为碱洗段和冷却段,碱洗段只对烟气进行除杂操作,从而不再需要持续对预处理单元进行补充碱,降低了碱的消耗量。

附图说明

图1示出了集水平衡控制及系统内热利用耦合的湿法碳捕集工艺的整体结构示意图;

图2示出了预处理单元以及吸收单元的结构示意图;

图3示出了再生单元以及分离单元的结构示意图;

图4示出了回收单元以及分离单元的结构示意图。

附图说明:110、预处理塔;120、洗涤水冷却器;210、吸收塔;220、水洗液冷却器;310、再生塔;320、再沸器;330、贫液冷却器;340、贫富液换热器;410、再生气冷却器;420、气液分离器;510、再生气洗涤塔;520、二次洗涤塔。

具体实施方式

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合实施例对本发明技术方案进行清楚、完整地描述。

本申请提供集水平衡控制及系统内热利用耦合的湿法碳捕集工艺,图1示出了集水平衡控制及系统内热利用耦合的湿法碳捕集工艺的整体结构示意图;图1中,该集水平衡控制及系统内热利用耦合的湿法碳捕集工艺包括依次连接的:

预处理单元,用于去除烟气中的杂质并降低烟气温度;

吸收单元,通过吸收剂吸收烟气中的二氧化碳并产出富液;

再生单元,用于解吸吸收单元的富液并产出贫液以及再生气,且使贫液回流至吸收单元以构成吸收剂循环流路;

以及分离单元,将再生单元中的再生气分解为水以及二氧化碳。

图2示出了预处理单元以及吸收单元的结构示意图;图2中,预处理单元包括:

预处理塔110,预处理塔110由下至上依次设置有碱洗段与冷却段,碱洗段喷淋有碱洗液,预处理塔110的碱洗段外接一塔外单向管道,以形成碱洗液的循环流路。

洗涤水冷却器120,洗涤水冷却器120通过一塔外单向管道与预处理塔110的冷却段连通,预处理塔110的冷却段喷淋有洗涤水并配合洗涤水冷却器120形成洗涤水的循环流路。

需要说明的是,塔外单向管道上皆设置有泵体用于驱动液体流动,同时参见图1,本申请中还设置有一洗涤槽600,洗涤槽600与本申请中所有泵体单向连通,内储有液体,以避免泵体空吸,其属于本领域技术人员所知的常规技术手段,再此不做过多赘述。

需要说明的是,水洗段与碱洗段之间通过集液盘隔开,水洗段的液体会被集液盘截留,而碱洗段中的气体可穿过集液盘进入水洗段。

需要说明的是,本申请中,碱洗液采用氢氧化钠或氮酸氢钠以应对烟气,在一些其他实施例中,可根据处理气体的不同具体设置,这并不是对本申请的限制。

使用中,烟气由预处理塔110的进气口进入并依次经过碱洗段以及冷却段后由排气口排出,通过碱洗段对烟气除杂,通过冷却段对烟气降温,本申请中,通过将传统的碱洗液的降温结构分割为碱洗段和冷却段,碱洗段只对烟气进行除杂操作,从而不再需要持续对预处理单元进行补充碱,降低了碱的消耗量。

继续参见图2,吸收单元包括:

吸收塔210,吸收塔210由下至上依次包括吸収段以及滞留段,吸收段内喷淋有吸收剂;

水洗液冷却器220,水洗液冷却器220通过一塔外单向管道与吸收塔210的滞留段相连通,吸收塔210的滞留段内喷淋有水洗液并配合水洗液冷却器220形成水洗液的循环流路。

需要说明的是,本申请中,吸收剂可选用以一乙醇胺、二乙醇胺、氨甲基丙醇、哌嗪等为代表的传统有机胺吸收剂;也可采用甘氨酸钾等氨基酸盐类或相变类吸收剂等。

使用中,由预处理塔110排出的烟气进入吸收塔210内并依次经过吸收段与滞留段,通过吸収段的喷淋可对烟气中的二氧化碳进行吸收,而由于部分吸收剂会蒸发随着烟气逃逸,因此滞留段的循环水洗可将烟气中带出的吸收剂重新液化实现拦截,以降低吸收剂的损耗。

图3示出了再生单元以及分离单元的结构示意图;图3中,再生单元包括:

再生塔310,再生塔310顶部与吸收塔210的出液口连通,再生塔310底部与吸收塔210的进液口连通;

再沸器320,通过一塔外单向管道与再生塔310连通;

贫液冷却器330,设置于再生塔310的出液口与吸收塔210进液口的连通管道上,用于冷却贫液;

贫富液换热器340,富液进入再生塔310前与贫液流出再生塔310后皆流经贫富液换热器340,用于富液与贫液之间的热交换。

使用中,由吸收塔210流出的富液经贫富液换热器340后进入再生塔310,而后汇聚并通过塔外单向管道进入再沸器320,经再沸器320将富液中的二氧化碳以及水进行蒸发实现解吸,解吸后的高温贫液依次经过贫富液换热器340与贫液冷却器330进入吸收塔210,形成吸收剂的循环利用,本申请中,通过再生塔310、再沸器320以及贫液冷却器330来对吸收剂进行解吸从而形成吸收剂的循环利用,同时利用贫富液换热器340来使低温的富液与高温的贫液进行热交换,一方面对富液进行升温,降低再沸器320的工作负担,另一方面对贫液进行降温,降低贫液冷却器330的工作负担。

需要说明的是,富液为已经饱和的吸收剂,贫液为尚未饱和的吸收剂。

需要说明的是,再沸器320采用外接的蒸汽进行加热,优选其他燃烧单元所排放的蒸汽。

继续参见图3,分离单元包括依次连接的:

再生气冷却器410,与再生塔310的排气口相连通,用于冷却再生气中的水蒸气;

气液分离器420,用于分离二氧化碳与水。

需要说明的是,再生气为水蒸气与二氧化碳的混合气体。

使用中,再生气冷却器410可冷却水蒸气,从而将再生气中的水蒸气液化,并利用气液分离器420将气液混合物进行分离,从而排出二氧化碳和部分水蒸气混合物的低温再生气。

图4示出了回收单元以及分离单元的结构示意图;图4中,该集水平衡控制及系统内热利用耦合的湿法碳捕集工艺还包括设置于再生单元与分离单元之间的回收单元,回收单元包括:

再生气洗涤塔510,再生气洗涤塔510的进气端与再生塔310的出气端相连通,再生气洗涤塔510的进液端与预处理塔110冷却段外循环流路相连通;

二次洗涤塔520,二次洗涤塔520的进液端与再生气洗涤塔510的出液端相连通,二次洗涤塔520的进气端与吸收塔210的出气端相连通,二次洗涤塔520外接有一塔外单向管道,以形成洗涤水循环流通管路。

使用中,当预处理塔110水洗段的洗涤水溢出至再生气洗涤塔510顶部并喷洒时,再生气由再生气洗涤塔510底部进入并与洗涤水发生热量交换,再生气洗涤塔510的设计,可利用预处理塔110上多余的洗涤水对再生塔310排出的再生气进行冷却,对再生气进行预降温,降低再生气冷却器410的工作负担,同时二次洗涤塔520利用再生气洗涤塔510排出的洗涤水对吸收塔210的出塔烟气进行二次的循环喷淋,使洗涤水蒸发并由二次洗涤塔520排气口排出,实现水平衡,同时洗涤水还能够二次对出塔烟气内逃逸的吸收剂拦截,以降低吸收剂的逃逸损耗。

需要说明的是,在具体的使用时,再生气洗涤塔510出液口的设置高度可高于二次洗涤塔520进液口的设置高度,以使洗涤液利用重力作用直接流入二次洗涤塔520内。

本申请中的益处如下:

1、利用预处理塔上段洗涤水喷淋冷却再生塔出塔再生气,进行直接换热,提高换热效率,减少再生气冷却器冷却水用量;

2、预处理塔上段由于降温导致大量的冷凝水通过较高温度的二次洗涤塔以水蒸气形式排出,大大减少预处理塔的废水排放以及碱用量;

3、通过对净化气的二次洗涤,可减少净化气中吸收剂的逃逸;

4、提高吸收塔的水平衡控制操作弹性,即烟气进出捕集系统的温度调节范围大大增加,更好的保证系统吸收剂的溶度。

本申请基于上述碳捕集方法进行烟气处理并对比传统湿法工艺碳捕集方法,具体见表1。

表1

以上实施例仅用以说明本发明的技术方案,而非对其限制。

相关技术
  • 湿法脱硫烟气双碱碳捕集的水平衡调节装置及控制方法
  • 一种中低温烟气碳捕集耦合低品位热回收的热泵储电与电热综合利用系统
技术分类

06120116578774