掌桥专利:专业的专利平台
掌桥专利
首页

化石能源转化利用碳中和系统及方法

文献发布时间:2023-06-19 19:20:08


化石能源转化利用碳中和系统及方法

技术领域

本公开涉及碳中和技术领域,尤其涉及一种化石能源转化利用碳中和系统及方法。

背景技术

目前,在我国的能源结构中,产生碳排放的化石能源占比84%,非化石能源占比16%。实现碳达峰和碳中和的关键是实现能源结构的清洁化,提高可再生能源比例。为了实现降低碳排放,必须减少化石能源的使用,而化石能源对保障能源系统安全、稳定长期具有不可取代的作用。

因此,如何将化石能源使用过程中排放的二氧化碳转化为可使用的碳基化学品,达到零碳排放的同时实现电能到化学能的转换与存储,实现化石能源利用的碳中和,是本申请主要要解决的问题。

发明内容

为了解决上述技术问题或者至少部分地解决上述技术问题,本公开提供了一种化石能源转化利用碳中和系统及方法。

第一方面,本公开提供一种化石能源转化利用碳中和系统,包括化石能源利用装置以及二氧化碳捕获装置;所述化石能源利用装置用于对化石能源进行转化利用以生成含二氧化碳烟气;

所述二氧化碳捕获装置的捕获入口与所述化石能源利用装置的二氧化碳烟气出口连通,所述二氧化碳捕获装置用于对所述含二氧化碳烟气进行捕获分离,以获得二氧化碳,所述二氧化碳捕获装置具有可供所述二氧化碳排出的二氧化碳出口;

所述化石能源转化利用碳中和系统还包括热催化转化装置和/或二氧化碳电催化转化装置;

所述热催化转化装置具有可供氢气进入的第一进口以及与所述二氧化碳出口连通的第二进口,所述热催化转化装置用于对所述二氧化碳与氢气进行催化转化以生成碳基化学品;

所述二氧化碳电催化转化装置具有可供水进入的第三进口和与所述二氧化碳出口连通的第四进口;所述二氧化碳电催化转化装置用于对所述二氧化碳和水进行催化转化以生成碳基化学品。

根据本公开的一种实施例,所述热催化转化装置包括热催化转化单元和一氧化碳催化转化单元;所述热催化转化单元具有所述第一进口以及所述第二进口,所述热催化转化单元用于对所述二氧化碳与所述氢气进行催化转化以生成所述碳基化学品和一氧化碳;所述热催化转化单元具有可供所述一氧化碳排出的一氧化碳出口;

所述一氧化碳催化转化单元具有可供氢气或水进入的第五进口以及与所述一氧化碳出口连通的第六进口;所述一氧化碳催化转化单元用于对所述一氧化碳与水进行电催化转化以生成碳基化学品,或,所述一氧化碳催化转化单元用于对所述一氧化碳与氢气进行热催化转化以生成碳基化学品。

根据本公开的一种实施例,还包括产物分离循环装置,所述产物分离循环装置的产物进口与所述热催化转化单元连通,所述产物分离循环装置用于对所述热催化转化单元产生的碳基化学品、一氧化碳以及未转化的二氧化碳进行分离,以获取所述碳基化学品、一氧化碳和二氧化碳;

所述产物分离循环装置的二氧化碳排放口与所述热催化转化单元连通,以向所述热催化转化单元内返送所述二氧化碳;

所述产物分离循环装置的一氧化碳排放口与所述一氧化碳催化转化的单元连通,以向所述一氧化碳催化转化单元提供一氧化碳。

根据本公开的一种实施例,所述二氧化碳电催化转化装置还包括二氧化碳电催化转化制一氧化碳单元和一氧化碳催化转化单元;所述二氧化碳电催化转化制一氧化碳单元具有所述第三进口和与所述第四进口;

所述二氧化碳电催化转化制一氧化碳单元用于对所述二氧化碳与所述水进行电催化转化,以生成一氧化碳;所述二氧化碳电催化转化制一氧化碳单元具有可供所述一氧化碳排出的一氧化碳排出口;

所述一氧化碳催化转化单元具有可供氢气或水进入的第五进口以及与所述一氧化碳排出口连通的第六进口;所述一氧化碳催化转化单元用于对所述一氧化碳与水进行电催化转化以生成碳基化学品,或,所述一氧化碳催化转化单元用于对所述一氧化碳与氢气进行热催化转化以生成碳基化学品。

根据本公开的一种实施例,所述二氧化碳催化转化装置还包括二氧化碳一步电催化转化单元,所述二氧化碳一步电催化转化单元具有所述第三进口以及所述第四进口;

所述二氧化碳一步电催化转化单元用于对所述二氧化碳与所述水进行电催化转化,以生成碳基化学品。

根据本公开的一种实施例,还包括碳基化学品利用装置;

所述碳基化学品利用装置的碳基化学品进口与所述热催化转化装置、所述二氧化碳电催化转化装置连通,以使所述碳基化学品进入至所述碳基化学品利用装置中进行存储或者利用以生成转化物、氢气和二氧化碳;

所述碳基化学品利用装置的二氧化碳排气口与所述二氧化碳捕获装置连通,以向所述二氧化碳捕获装置提供二氧化碳。

根据本公开的一种实施例,还包括可再生能源发电装置,所述可再生能源发电装置用于向所述化石能源利用装置、所述二氧化碳电催化转化装置供电。

根据本公开的一种实施例,还包括配套公用工程装置,所述碳基化学品利用装置的氢气出口与所述配套公用工程装置连通,以向所述配套公用工程装置提供氢气。

根据本公开的一种实施例,所述配套公用工程装置包括电解水装置、绿氧集中分配装置以及绿氢集中分配装置;

所述可再生能源发电装置用于向所述电解水装置供电,所述电解水装置分别与所述绿氧集中分配装置以及绿氢集中分配装置连通,以向所述绿氧集中分配装置提供氧气,并向绿氢集中分配装置提供氢气。

根据本公开的一种实施例,所述绿氧集中分配装置与所述化石能源利用装置连通,以向所述化石能源利用装置提供氧气;

所述绿氢集中分配装置分别与所述化石能源利用装置、所述热催化转化装置连通,以分别向所述化石能源利用装置及所述热催化转化装置提供氢气。

第二方面,本公开还提供一种利用上述的化石能源转化利用碳中和系统进行碳中和的方法,所述方法包括:

向所述化石能源利用装置中通入化石能源,使所述化石能源在所述化石能源转化利用装置中进行转化利用以生成含二氧化碳烟气;

将所述二氧化碳烟气送至所述二氧化碳捕获装置中进行捕集,以分离出二氧化碳;

向热催化转化装置中通入氢气,且将分离出的所述二氧化碳送至所述热催化转化装置中与所述氢气进行催化转化以生成碳基化学品,和/或,向二氧化碳电催化转化装置内通入水,且将分离出的所述二氧化碳送至所述二氧化碳电催化转化装置内进行催化转化以生成所述碳基化学品。

根据本公开的一种实施例,所述向热催化转化装置中通入氢气,且将分离出的所述二氧化碳送至所述热催化转化装置中与所述氢气进行催化转化以生成碳基化学品的步骤包括:

向热催化转化单元内通入氢气,且将分离出的二氧化碳送至所述热催化转化单元内与所述氢气进行催化转化以生成一氧化碳和碳基化学品;

将生成的所述一氧化碳送至一氧化碳催化转化单元内,向所述一氧化碳催化转化单元内通入水或氢气,以使所述一氧化碳和水在所述一氧化碳催化转化单元内进行电催化转化生成碳基化学品,或所述一氧化碳与氢气在所述一氧化碳催化转化单元内进行热催化转化以生成碳基化学品。

根据本公开的一种实施例,所述向二氧化碳电催化转化装置内通入水,且将分离出的所述二氧化碳送至所述二氧化碳电催化转化装置内进行催化转化以生成所述碳基化学品的步骤包括:

将分离出的二氧化碳通至二氧化碳电催化转化制一氧化碳单元内,并向所述二氧化碳电催化转化制一氧化碳单元内通入水,以使所述二氧化碳和水在所述二氧化碳电催化转化制一氧化碳单元内进行电催化转化以生成一氧化碳;

将生成的所述一氧化碳送至一氧化碳催化转化单元内,向所述一氧化碳催化转化单元内通入水或氢气,以使所述一氧化碳和水在所述一氧化碳催化转化单元内进行电催化转化生成碳基化学品,或所述一氧化碳与氢气在所述一氧化碳催化转化单元内进行热催化转化以生成碳基化学品。

根据本公开的一种实施例,所述向二氧化碳电催化转化装置内通入水,且将分离出的所述二氧化碳送至所述二氧化碳电催化转化装置内进行催化转化以生成所述碳基化学品的步骤包括:

将分离出的二氧化碳通至二氧化碳一步电催化转化单元内,并向所述二氧化碳一步电催化转化单元内通入水,以使所述一氧化碳和水在所述二氧化碳一步电催化转化单元内进行电催化转化生成碳基化学品。

本公开实施例提供的技术方案与现有技术相比具有如下优点:

本公开提供了一种化石能源转化利用碳中和系统及方法,该化石能源转化利用碳中和系统通过设置化石能源利用装置、二氧化碳捕获装置,还设置有热催化转化装置和/或二氧化碳电催化转化装置。其中,二氧化碳捕获装置用于对化石能源利用装置产生的含二氧化碳烟气进行捕集以获得二氧化碳。热催化转化装置用于对二氧化碳捕获装置捕获的二氧化碳与氢气进行催化转化以生成碳基化学品。二氧化碳电催化转化装置对二氧化碳与水进行催化转化,以生成碳基化学品。也就是说,本公开的化石能源转化利用碳中和系统,既可以通过热催化转化装置对二氧化碳进行转化以生成碳基化学品,也可以通过二氧化碳电催化转化装置对二氧化碳进行转化以生成碳基化学品,以此实现将二氧化碳彻底转化为可使用的碳基化学品,达到零碳排放的同时实现电能到化学能的转换与存储。

附图说明

此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。

为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。

图1为本公开实施例所述化石能源转化利用碳中和系统的流程图;

图2为本公开实施例所述一种化石能源转化利用碳中和系统的结构示意图;

图3为本公开实施例所述另一种化石能源转化利用碳中和系统的结构示意图;

图4为本公开实施例利用所述化石能源转化利用碳中和系统进行碳中和的方法流程示意图。

其中,1、化石能源利用装置;11、二氧化碳烟气出口;2、二氧化碳捕获装置;21、捕获入口;22、二氧化碳出口;3、热催化转化装置;31、第一进口;32、第二进口;33、热催化转化单元;34、一氧化碳催化转化单元;341、第六进口;342、第五进口;35、一氧化碳出口;4、二氧化碳电催化转化装置;41、第四进口;42、二氧化碳电催化转化制一氧化碳单元;421、一氧化碳排出口;43、二氧化碳一步电催化转化单元;5、产物分离循环装置;51、产物进口;52、一氧化碳排放口;6、碳基化学品利用装置;61、碳基化学品进口;62、二氧化碳排气口;63、氢气出口;7、可再生能源发电装置;81、电解水装置;82、绿氧集中分配装置;83、绿氢集中分配装置。

具体实施方式

为了能够更清楚地理解本公开的上述目的、特征和优点,下面将对本公开的方案进行进一步描述。需要说明的是,在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合。

在下面的描述中阐述了很多具体细节以便于充分理解本公开,但本公开还可以采用其他不同于在此描述的方式来实施;显然,说明书中的实施例只是本公开的一部分实施例,而不是全部的实施例。

实施例一

参照图1至图3所示,本实施例提供一种化石能源转化利用碳中和系统,包括化石能源利用装置1、二氧化碳捕获装置2、热催化转化装置3和/或二氧化碳电催化转化装置4。

其中,化石能源利用装置1用于对化石能源进行转化利用以生成含二氧化碳烟气。具体实现时,该化石能源利用装置1包括燃煤发电单元、钢铁冶炼炉及炼焦化工单元、水泥煅烧炉、建材冶炼炉、煤化工、石油化工、天然气化工转化炉等,这些装置会产生含二氧化碳热烟气,经净化降温后得到低温含二氧化碳烟气,送入后续二氧化碳捕获装置2中进行二氧化碳分离与捕获。

其中,二氧化碳捕获装置2的捕获入口21与化石能源利用装置1的二氧化碳烟气出口11连通,二氧化碳捕获装置2用于对含二氧化碳烟气进行捕获分离,以获得二氧化碳,二氧化碳捕获装置2具有可供二氧化碳排出的二氧化碳出口22。

具体实现时,可以根据含二氧化碳烟气中的二氧化碳浓度的不同,采用不同的二氧化碳捕获装置2及工艺进行捕集。示例性的,可以采用吸收法、吸附法、膜分离法等进行捕集。

示例性的,采用吸收法的二氧化碳捕获装置2包括烟气预处理单元、吸收塔、再生塔、排气洗涤系统、溶液再沸器、产品气冷凝器、气液分离器、压缩机等。示例性的,采用吸收法的二氧化碳捕获装置2包括烟气除尘单元、吸附塔、压缩机等。示例性的,采用膜分离法的二氧化碳捕获装置2包括气体净化单元、膜分离组件等。捕集后的二氧化碳经压缩机送至下游进行二氧化碳转化利用。

其中,热催化转化装置3具有可供氢气进入的第一进口31以及与二氧化碳出口22连通的第二进口32,热催化转化装置3用于对二氧化碳与氢气进行催化转化以生成碳基化学品。和/或,二氧化碳电催化转化装置4具有可供水进入的第三进口和与二氧化碳出口22连通的第四进口41,二氧化碳电催化转化装置4用于对二氧化碳和水进行催化转化以生成碳基化学品。

综上,本实施例提供的一种化石能源转化利用碳中和系统,该化石能源转化利用碳中和系统通过设置化石能源利用装置1、二氧化碳捕获装置2,还设置有热催化转化装置3和/或二氧化碳电催化转化装置4。其中,二氧化碳捕获装置2用于对化石能源利用装置1产生的含二氧化碳烟气进行捕集以获得二氧化碳。热催化转化装置3用于对二氧化碳捕获装置2捕获的二氧化碳与氢气进行催化转化以生成碳基化学品。二氧化碳电催化转化装置4用于对二氧化碳捕获装置2捕获的二氧化碳与水进行催化转化,以生成碳基化学品。也就是说,本实施例的化石能源转化利用碳中和系统,既可以通过热催化转化装置3对二氧化碳进行转化以生成碳基化学品,也可以通过二氧化碳电催化转化装置4对二氧化碳进行转化以生成碳基化学品,以此实现将二氧化碳彻底转化为可使用的碳基化学品,达到零碳排放的同时实现电能到化学能的转换与存储。

参照图2、图3所示,本实施例的一种实现方式中,热催化转化装置3包括热催化转化单元33和一氧化碳催化转化单元34。

其中,热催化转化单元33具有可供氢气进入的第一进口31以及与二氧化碳出口22连通的第二进口32,热催化转化单元33用于对二氧化碳与氢气进行催化转化以生成碳基化学品和一氧化碳,热催化转化单元33具有可供一氧化碳排出的一氧化碳出口35。

具体实现时,热催化转化单元33用于对二氧化碳与由第一进口31进入的氢气在催化剂的催化作用进行热催化转化,以生成碳基化学品、二氧化碳及一氧化碳混合物。具体的,热催化转化单元33内的二氧化碳和氢气在不同的催化剂、不同的控制温度、压力、碳氢比的条件下可以得到含乙烯、芳烃、甲醇、乙醇等不同的碳基化学品,并且还包含一定量CO2和CO。混合物经降温净化单元进行净化降温后可以送至后续装置中进行分离。具体的,热催化转化单元33内进行热催化转化时的温度可以处于150摄氏度至350摄氏度之间,反应压力为常压-5Mpa。

其中,一氧化碳催化转化单元34具有可供氢气或水进入的第五进口以及与一氧化碳出口35连通的第六进口341,一氧化碳催化转化单元34用于对一氧化碳与水或氢气进行催化转化以生成碳基化学品。

一种实现方式中,参照图2所示,一氧化碳催化转化单元34为一氧化碳电催化转化单元。一氧化碳电催化转化单元用于对热催化转化单元33产生的一氧化碳和经第五进口进入的水进行电催化转化,以生成碳基化学品,实现零碳排放。

另一种实现方式中,参照图3所示,一氧化碳催化转化单元34为一氧化碳加氢催化转化单元。一氧化碳加氢催化转化单元用于对热催化转化单元33产生的一氧化碳与由第五进口342进入的氢气进行热催化转化,以生成碳基化学品,实现零碳排放。

参照图2所示,还包括产物分离循环装置5,产物分离循环装置5的产物进口51与热催化转化单元33连通,产物分离循环装置5用于对热催化转化单元33转化生成的碳基化学品、一氧化碳以及热催化转化单元33内未转化的二氧化碳进行分离,以获取碳基化学品、一氧化碳和二氧化碳。

具体实现时,产物分离循环装置5的二氧化碳排放口与热催化转化单元33连通,以向热催化转化单元33内返送二氧化碳。产物分离循环装置5的一氧化碳排放口52与一氧化碳催化转化单元34连通,以向一氧化碳催化转化单元34提供一氧化碳。

示例性的,产物分离循环装置5具体可以包括二氧化碳分离单元、一氧化碳分离单元、产物分离单元以及气体增压循环单元。二氧化碳分离单元将热催化转化单元33转化后生成的混合物中的二氧化碳分离出来并在气体增压单元的作用下返回至热催化转化单元33中进行催化转化,以生成碳基化学品,从而实现零碳排放。一氧化碳分离单元将混合物中的一氧化碳分离出来并输送至一氧化碳催化转化单元34内进行后续转化并生成碳基化学品。产物分离装置5将混合物中的碳基化学品分离出来可以进行后续利用。

本实施例的另一种实现方式中,二氧化碳电催化转化装置4还包括二氧化碳电催化转化制一氧化碳单元42和一氧化碳催化转化单元。

其中,二氧化碳电催化转化制一氧化碳单元42具有第三进口和第四进口41。二氧化碳电催化转化制一氧化碳单元42用于对二氧化碳与水进行电催化转化,以生成一氧化碳。二氧化碳电催化转化制一氧化碳单元42具有可供一氧化碳排出的一氧化碳排出口421。

其中,一氧化碳催化转化单元具有可供氢气或水进入的第五进口以及与一氧化碳排出口421连通的第六进口。一氧化碳催化转化单元用于对一氧化碳与水进行电催化转化以生成碳基化学品,或,一氧化碳催化转化单元用于对一氧化碳与氢气进行热催化转化以生成碳基化学品。

具体实现时,参照图2所示,与热催化转化单元33连通的一氧化碳催化转化单元34和与二氧化碳电催化转化制一氧化碳单元42连通的一氧化碳催化转化单元可以为同一个,即同一个一氧化碳催化转化单元用于对二氧化碳电催化转化制一氧化碳单元42产生的一氧化碳混合二氧化碳、以及来自热催化转化单元33转化生成的一氧化碳混合后与水进行电催化转化以生成以乙烯、乙醇为主的碳基化学品,后续可以通过产物分离循环装置5得到碳基化学品以及一氧化碳,一氧化碳可以提压后继续在一氧化碳催化转化装置34内进行催化转化,实现零碳排放。

本实施例的再一种实现方式中,二氧化碳电催化转化装置4可以设置为二氧化碳一步电催化转化单元43,二氧化碳一步电催化转化单元43具有第三进口和第四进口41。第三进口用于通入水,第四进口41与二氧化碳捕获装置2的二氧化碳出口22连通。二氧化碳一步电催化转化单元43用于对二氧化碳与由第三进口进入的水进行电催化转化,以生成以乙烯和乙醇为主的碳基化学品,后续经净化分离得到碳基化学品和未转化的二氧化碳,未转化的二氧化碳可以送至二氧化碳捕获装置2内进行后续捕集,从而实现零碳排放。

具体实现时,化石能源转化利用碳中和系统还包括碳基化学品利用装置6和配套公用工程装置。碳基化学品利用装置6的碳基化学品进口61与热催化转化装置3、二氧化碳电催化转化装置4连通,以使碳基化学品进入至碳基化学品利用装置6中进行存储或者利用以生成转化物、氢气和二氧化碳。具体的,碳基化学品利用装置6的碳基化学品进口61可以与热催化转化单元33、一氧化碳催化转化单元34和二氧化碳一步电催化转化单元43连通。

其中,碳基化学品利用装置6的二氧化碳排气口62与二氧化碳捕获装置2连通,以向二氧化碳捕获装置2提供二氧化碳,也就是说,将碳基化学品利用装置6转化利用后产生的二氧化碳继续回送至二氧化碳捕获装置2中进行捕获以便后续进行转化,从而实现零碳排放。

转化物可以直接利用,比如转化物为甲醇等,可以直接用于汽车等交通工具、甲醇制下游化学品利用系统等;转化过程中产生的CO2可以送入二氧化碳捕获装置2进行捕集后循环送入热催化转化装置3、二氧化碳电催化转化装置4内再次转化利用。转化物也可以间接利用,比如将甲醇等转化物通过重整反应得到氢气和CO2,CO2送至二氧化碳捕获装置2内循环利用,将氢气作为能源或原料,送到下游生产耗能区域进行转化、获取和利用。

其中,碳基化学品利用装置6的氢气出口63与配套公用工程装置连通,以向配套公用工程装置提供氢气。也就是说,碳基化学品利用装置6转化后生成的氢气则可以回送至配套公用工程装置内进行存储使用。需要说明的是,此处的配套公用工程装置可以向热催化转化单元33提供氢气,以使得进入至热催化转化单元33内的二氧化碳与氢气进行热催化转化以生成碳基化学品或者一氧化碳。此外,配套公用工程装置可以向一氧化碳催化转化单元34提供氢气,此处的一氧化碳催化转化单元34为一氧化碳加氢催化装置,以使得进入至一氧化碳催化转化单元内的一氧化碳与氢气进行热催化转化以生成碳基化学品。

具体实现时,还可以设置可再生能源发电装置7,可再生能源发电装置7用于向化石能源利用装置1、二氧化碳电催化转换装置4供电,以进行相应的转化。

示例性的,可再生能源发电装置7用于向二氧化碳电催化转化制一氧化碳单元42进行供电,以使得二氧化碳电催化转化制一氧化碳单元42内的二氧化碳与水进行电催化转化。或者,可再生能源发电装置7用于向一氧化碳催化转化单元34供电,以使得一氧化碳催化转化单元34内的一氧化碳与水进行电催化转化以生成碳基化学品,此处的一氧化碳催化转化装置34为一氧化碳电催化转化装置。

可再生能源发电装置7具体可以包括太阳能、水力能、风能、地热能、潮汐能等不产生碳排放的可再生能源发电装置,可为单一能源或组合形式。如光伏发电装置具体包括:光伏方阵、蓄电池组及控制器、配电柜和太阳跟踪控制系统等,因光伏发电直接为直流电,可直接用于后续电解池系统,无需在中间环节设置整流器;风力发电装置具体包括:塔架、发电机、齿轮增速器、变桨偏航系统、桨叶、联轴器、电控系统等,风力发电为交流电,后续通过整流器将交流电转化为直流电,再用于后续电解池使用。这些可再生能源发电装置不产生碳排放,产生的绿电包括直流电和交流电,具体使用时可以根据实际需要对直流电、交流电进行转化利用。示例性的,当需要直流电时,可以通过整流器将可再生能源发电装置产生的交流电转化为直流电。

参照图2、图3所示,配套公用工程装置可以设置为包括电解水装置81、绿氧集中分配装置82以及绿氢集中分配装置83。

具体实现时,可再生能源发电装置7可以用于向电解水装置81供电,电解水装置81在电流作用下将水分解为氢气和氧气。电解水装置81分别与绿氧集中分配装置82以及绿氢集中分配装置连通83,以向绿氧集中分配装置82提供氧气,并向绿氢集中分配装置83提供氢气。其中,绿氧集中分配装置82与化石能源利用装置1连通,以向化石能源利用装置1提供氧气。

其中,绿氢集中分配装置83分别与化石能源利用装置1、热催化转化单元33及一氧化碳催化转化单元34连通,以分别向化石能源利用装置1、热催化转化单元33以及一氧化碳催化转化单元34提供氢气。也就是说,本实施例中,化石能源利用装置1所用的水、电、气均来自于可再生能源发电装置7及配套公用工程装置产生的绿电、绿氢、绿氧。化石能源利用装置1中的二氧化碳排放主要来自于化石原料中的碳。

示例性的,可以采用来自可再生能源发电装置7产生的绿色电力对来自水预处理装置的水在电解水装置进行电解处理,得到氢气和氧气,分别送入绿氧集中分配装置82以及绿氢集中分配装置83,绿氢根据下游需要及比例,稳定输送至化石能源利用装置1及热催化转化利用装置3,然后热催化转化装置3可以采用催化转化技术,将二氧化碳、氢气等直接转化为烯烃、烷烃、甲醇乙醇等醇类、甲酸等含氧化合物等碳基化工产品。电解水装置81得到的富裕氢气也可以通过绿氢集中分配装置83进行定量分配,直接进行下游利用,如作为能源和原料用于交通、化工生产、钢铁冶炼等行业,还可以经燃料电池转化为电力使用。

另外,该水预处理装置可以对矿井废水、工业生活污水、海水等进行预处理得到所需的水,水预处理装置可以设置为包括预处理单元(去除大颗粒杂质等)、沉淀池、生化处理池、反渗透单元等。经水预处理装置处理后得到满足下游需求的水。

需要说明的是,本实施例中,二氧化碳一步电催化转化单元33、二氧化碳电催化转化制一氧化碳单元42、一氧化碳催化转化单元34具体可采用电解池进行转化。该电解池可为液体流动电解反应器或膜电极组件反应器形式。液体流动电解反应器包括碱性气体扩散电极、交换膜、阳极电极系统,其中碱性气体扩散电极为核心组件,包括碳纤维骨架、碳纸、催化剂、电极板等。膜电极组件反应器包括气体扩散层、阴极催化剂+膜组件层、阳极催化剂层等。电解池具体形式不限,阴极发生二氧化碳、CO的还原反应,阳极发生析氧反应产生氧气即绿氧,将二氧化碳一步电催化转化单元43、二氧化碳电催化转化制一氧化碳单元42、一氧化碳催化转化单元34产生的绿氧输送至绿氧集中分配装置82中集中处理利用。

另外,二氧化碳电催化转化制一氧化碳单元42对二氧化碳和水进行电催化转化生成一氧化碳以外,还会生成氧气,氧气可以输送至绿氧集中分配装置82中进行存储利用。二氧化碳一步电催化转化单元43对二氧化碳和水进行电催化转化生成碳基化学品以外,还会生成氧气,氧气可以输送至绿氧集中分配装置82中进行存储利用。一氧化碳电催化转化装置对二氧化碳和水进行催化转化生成碳基化学品外,还会生成氧气,氧气可以输送至绿氧集中分配装置82中进行存储利用。

实施例二

如图4所示,本实施例提供一种利用化石能源转化利用碳中和系统进行碳中和的方法,该方法通过实施例一的化石能源转化利用碳中和系统的全部或者部分执行,以实现零碳排放以及化学能源的转化和存储。

该碳中和的方法具体包括如下步骤:

S101:向化石能源利用装置中通入化石能源,使化石能源在化石能源转化利用装置中进行转化利用以生成含二氧化碳烟气;

S102:将二氧化碳烟气送至二氧化碳捕获装置中进行捕集,以分离出二氧化碳;

S103:向热催化转化装置中通入氢气,且将分离出的二氧化碳送至热催化转化装置中与氢气进行催化转化以生成碳基化学品,和/或,向二氧化碳电催化转化装置内通入水,且将分离出的二氧化碳送至二氧化碳电催化转化装置内进行催化转化以生成碳基化学品。

具体的,化石能源利用装置采用以煤为主的化石能源,直接用于能源生产和消费使用,如燃煤发电、燃煤供热、钢铁冶炼、水泥煅烧生产、建材生产、化工生产及使用过程中。化石能源利用过程中需要配套一定规模的公用工程,如水、蒸汽、电力、氧气、氢气等,现有工艺蒸汽燃用燃煤锅炉产生、电力来自燃煤发电、氧气和氢气来自化石能源过程制备的氧气和氢气,整体公用工程原料获取过程产生大量的碳排放。

其中,向热催化转化装置中通入氢气,且将分离出的二氧化碳送至热催化转化装置中与氢气进行催化转化以生成碳基化学品的步骤包括:首先,向热催化转化单元内通入氢气,且将分离出的二氧化碳送至热催化转化单元内与氢气进行催化转化以生成一氧化碳和碳基化学品。然后,将生成的一氧化碳送至一氧化碳催化转化单元内,向一氧化碳催化转化单元内通入水或氢气,以使一氧化碳和水在一氧化碳催化转化单元内进行电催化转化生成碳基化学品,或一氧化碳与氢气在一氧化碳催化转化单元内进行热催化转化以生成碳基化学品。具体可以参照实施例一中的相关描述。

其中,向二氧化碳电催化转化装置内通入水,且将分离出的二氧化碳送至二氧化碳电催化转化装置内进行催化转化以生成碳基化学品的步骤包括:首先,将分离出的二氧化碳通至二氧化碳电催化转化制一氧化碳单元内,并向二氧化碳电催化转化制一氧化碳单元内通入水,以使二氧化碳和水在二氧化碳电催化转化制一氧化碳单元内进行电催化转化以生成一氧化碳。然后,将生成的一氧化碳送至一氧化碳催化转化单元内,向一氧化碳催化转化单元内通入水或氢气,以使一氧化碳和水在一氧化碳催化转化单元内进行电催化转化生成碳基化学品,或一氧化碳与氢气在一氧化碳催化转化单元内进行热催化转化以生成碳基化学品。具体的可再生能源发电装置可以参照实施例一的相关描述,此处不予赘述。

进一步的,在转化生成碳基化学品后,将生成的碳基化学品送至碳基化学品利用装置中进行存储或者利用以生成转化物、氢气和二氧化碳。将二氧化碳送至二氧化碳捕获装置内。将氢气送至配套公用工程装置内。

需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

以上所述仅是本公开的具体实施方式,使本领域技术人员能够理解或实现本公开。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本公开的精神或范围的情况下,在其它实施例中实现。因此,本公开将不会被限制于本文所述的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

技术分类

06120115869871