掌桥专利:专业的专利平台
掌桥专利
首页

一种大温差、远距离、大高差集中供热系统

文献发布时间:2023-06-19 15:46:15



技术领域

本发明属于供暖工程技术领域,具体涉及一种大温差、远距离、大高差集中供热系统。

背景技术

随着供热技术的发展及国家3060双碳计划实施,全国能源面临新一轮的资源整合,关停区域燃煤锅炉房及耗能高的燃煤电厂,利用大型热电厂实现跨地区输送,实现充分利用热电联产余热的作用,通过长距离供热管网输送至热负荷区域解决城镇居民供热问题及工业企业用汽问题,实现汽、水同输。近年来我国的集中供热发展迅速,无论是供热能力还是热网规模都有了很大的提高,集中供热的应用范围也越来越广。但是集中供热在快速发展的过程中,供热热源能耗居高不下,其主要原因是:供热热源小型化、供热管网系统输送效率不高、输送能耗高,热用户热量不均,导致热量浪费严重;热源效率普遍偏低;围护结构保温不良。而且,在传统的集中供热系统中,将热网供热首站建设在电厂内,为克服大高差,常规供热系统采用多级泵串联技术来实现,多级泵串联管网输送能耗较大,如果将蒸汽余压及无水锤风险的优势充分利用,相当于在不增加汽轮机抽汽的情况下,增加了热源的供热能力,降低管网输送能耗,所以目前没有能够充分有效的利用起来。

发明内容

本发明提供一种大温差、远距离、大高差集中供热系统,以解决现有技术中对于小流量测量精度不高、测量跨度大、流量计可靠性不高的问题。

为了实现上述目的,本发明采用以下技术方案:

一种大温差、远距离、大高差集中供热系统,

包括依次设置的汽轮机机组1、中继混汽站2、第一级能源站3、第二级能源站4、第三级综合能源站5、第四级能源站6和热用户7;

所述汽轮机机组1和中继混汽站2之间设置有高参数蒸汽长输管网I101、低参数蒸汽长输管网102和蒸汽凝结水管道I103;

所述中继混汽站2和第一级能源站3之间设置有高参数蒸汽长输管网II201、高低压参数蒸汽混合后长输管网202和蒸汽凝结水管道II203;

所述第一级能源站3和第二级能源站4之间设置有超高温热水管网301和超低温热水管网302;

所述第二级能源站4和第三级综合能源站5之间设置有0级网供水管道401、0级网回水管道402;

所述第三级综合能源站5和第四级能源站6之间设置有I级网供水管道501、I级网回水管道502;

所述第四级能源站6和热用户7之间设置有II级网供水管道601和II级网回水管道602。

进一步的,所述中继混汽站2设在距离汽轮机机组125km的位置;所述中继混汽站2包括压力匹配器204、减压阀205、凝结水加压泵I206和调压塔207,所述高参数蒸汽长输管网I101分为两路,一路高参数蒸汽长输管网I101连接高参数蒸汽长输管网II201,另一路高参数蒸汽长输管网I101和低参数蒸汽长输管网102分别连接压力匹配器204的入口,压力匹配器204的出口连接高低压参数蒸汽混合后长输管网202,所述高参数蒸汽长输管网I101的一部分高压蒸汽和低参数蒸汽长输管网102中的低压蒸汽通过压力匹配器204混合提高低压蒸汽参数,通过高低压参数蒸汽混合后长输管网202继续输送,进一步利用汽轮机机组1内低品位蒸汽;所述蒸汽凝结水管道II203连接调压塔207的入口,且位于蒸汽凝结水管道II203上,向调压塔207的流入方向上依次设置有减压阀205和凝结水加压泵I206,所述调压塔207的出口连接蒸汽凝结水管道I103。

进一步的,所述第一级能源站3设在距离汽轮机机组150km的位置,所述第一级能源站3包括异步发电机303、汽动循环泵304、尖峰加热器305、基本加热器306和凝结水加压泵II307;所述高参数蒸汽长输管网II201连接尖峰加热器305的入口,所述高低压参数蒸汽混合后长输管网202和超低温热水管网302分别连接基本加热器306的入口,所述高参数蒸汽长输管网II201和高低压参数蒸汽混合后长输管网202之间分别通过异步发电机303和汽动循环泵304接通,所述超高温热水管网301连接尖峰加热器305的出口,两路蒸汽凝结水管道II203分别自尖峰加热器305和基本加热器306的出口流出后汇合于同一蒸汽凝结水管道II203上,且所述蒸汽凝结水管道II203上设置有凝结水加压泵II307,所述尖峰加热器305和基本加热器306之间通过超低温热水管网302连通。在第一级能源站3内可实现热、电、汽三联供,通过尖峰加热器305和基本加热器306设置汽水换热装置实现热量交换,采用部分蒸汽凝结水作为供热首站定压补水;通过设置异步发电机303发电实现厂区自用电;通过汽动循环泵304可以提高循环水循环的动能。

进一步的,所述第二级能源站4设在距离汽轮机机组175km的位置,所述第二级能源站4包括凝结水加压泵III403和管板结合换热器404,所述超高温热水管网301连接管板结合换热器404的入口,管板结合换热器404的出口连接0级网供水管道401,通过管板结合换热器404可利用0级网供水管道401中180℃高温热水制取蒸汽用于工业供汽负荷,所述0级网回水管道402连接凝结水加压泵III403的入口,凝结水加压泵III403的出口连接超低温热水管网302。

进一步的,所述第三级能源站5设在距离汽轮机机组1100km的位置,所述第三级能源站5包括发生器503、热交换器504、蒸发器505、吸收器506、冷凝器507和凝结水加压泵IV508;所述0级网供水管道401内180℃热水依次经过发生器503、热交换器504和蒸发器505放热,冷却后30℃的热水通过0级网回水管道402流出;所述I级网回水管道502内20℃的循环水经过凝结水加压泵IV508加压后,依次通过吸收器506、冷凝器507升温到170℃,再经过I级网供水管道501流出,所述I级网回水管道502、热交换器504与I级网供水管道501依次连通。

进一步的,所述第四级能源站6为小区换热站,第四级能源站6的结构与第三级能源站5相同。所述第四级能源站6包括发生器VI603、热交换器VI604、蒸发器VI605、吸收器VI606、冷凝器VI607和凝结水加压泵VI608;所述I级网供水管道501内热水依次经过发生器VI603、热交换器VI604和蒸发器VI605放热,冷却后的热水通过II级网回水管道602流出;所述II级网回水管道602内的循环水经过凝结水加压泵VI608加压后,依次通过吸收器VI606、冷凝器VI607升温,再经过II级网供水管道601流出,所述II级网回水管道602、热交换器VI604与II级网供水管道601依次连通。

进一步的,所述高参数蒸汽长输管网I101输送的蒸汽压力≥0.6MPa,低参数蒸汽长输管网102输送的蒸汽在0.2MPa~0.6MPa;

所述超高温热水管网301内温度为180℃,超低温热水管网302内温度为30℃;

所述0级网供水管道401内温度为180℃,0级网回水管道402内温度为30℃;

所述I级网供水管道501内温度为170℃,I级网回水管道502内温度为20℃;

所述II级网供水管道601内温度为75℃,II级网回水管道602内温度为50℃。

进一步的,所述高参数蒸汽长输管网I101、低参数蒸汽长输管网102、高参数蒸汽长输管网II201和高低压参数蒸汽混合后长输管网202均为预制管,所述预制管包括自内而外包裹于工作钢管1001上的内支承管1002、至少一层复合保温层1003、软质保温套管1005、聚氨酯发泡体1006和外护套管1007,所述软质保温套管1005与外护套管1008之间沿周向均匀设置若干木支架1008,所述工作钢管1001外还设置有内滑动管托1004。

进一步的,所述超高温热水管网301、0级网供水管道401和I级网供水管道501结构相同,均包括自内而外包裹于内工作管3001上的保温隔热层和外套管3005,所述保温隔热层自内而外依次为硬质多腔孔陶瓷保温层3002、反射层3003和聚氨酯硬质泡沫保温层3004。

进一步的,所述硬质多腔孔陶瓷保温层3002的容重为170±15kg/m

与现有技术相比,本发明具有以下有益效果:

本发明能有效利用蒸汽容重小和转化利用蒸汽余压中的能量,提高系统能效比,缓解超大温差、超远距离、超大高差集中供热系统多级泵串联输送能耗大及防水击的问题,实现超远距离100km,长输蒸汽50km,长输热水50km;超大温差设计供回水温度180/30℃,温差达150℃,提高供水温度,降低回水温度;大高差,地形高差在200-450m高差。

附图说明

图1是本发明的结构示意图;

图2是本发明中中继混汽站的结构示意图;

图3是本发明中第一级能源站的结构示意图;

图4是本发明中第三级能源站的结构示意图;

图5是本发明中第四级能源站的结构示意图;

图6是本发明中预制管的结构示意图;

图7是本发明中热水管网/供水管道的结构示意图。

具体实施方式

下面结合附图对本发明作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。

如图1所示,一种大温差、远距离、大高差集中供热系统,包括依次设置的汽轮机机组1、中继混汽站2、第一级能源站3、第二级能源站4、第三级综合能源站5、第四级能源站6和热用户7;所述汽轮机机组1和中继混汽站2之间设置有高参数蒸汽长输管网I101、低参数蒸汽长输管网102和蒸汽凝结水管道I103;所述中继混汽站2和第一级能源站3之间设置有高参数蒸汽长输管网II201、高低压参数蒸汽混合后长输管网202和蒸汽凝结水管道II203;所述第一级能源站3和第二级能源站4之间设置有超高温热水管网301和超低温热水管网302;所述第二级能源站4和第三级综合能源站5之间设置有0级网供水管道401、0级网回水管道402;所述第三级综合能源站5和第四级能源站6之间设置有I级网供水管道501、I级网回水管道502;所述第四级能源站6和热用户7之间设置有II级网供水管道601和II级网回水管道602。

作为一个优选方案,所述高参数蒸汽长输管网I101输送的蒸汽压力≥0.6MPa,低参数蒸汽长输管网102输送的蒸汽在0.2MPa~0.6MPa;所述超高温热水管网301内温度为180℃,超低温热水管网302内温度为30℃;所述0级网供水管道401内温度为180℃,0级网回水管道402内温度为30℃;所述I级网供水管道501内温度为170℃,I级网回水管道502内温度为20℃;所述II级网供水管道601内温度为75℃,II级网回水管道602内温度为50℃。

如图2所示,所述中继混汽站2设在距离汽轮机机组125km的位置;所述中继混汽站2包括压力匹配器204、减压阀205、凝结水加压泵I206和调压塔207,所述高参数蒸汽长输管网I101分为两路,一路高参数蒸汽长输管网I101连接高参数蒸汽长输管网II201,另一路高参数蒸汽长输管网I101和低参数蒸汽长输管网102分别连接压力匹配器204的入口,压力匹配器204的出口连接高低压参数蒸汽混合后长输管网202,所述高参数蒸汽长输管网I101的一部分高压蒸汽和低参数蒸汽长输管网102中的低压蒸汽通过压力匹配器204混合提高低压蒸汽参数,通过高低压参数蒸汽混合后长输管网202继续输送,进一步利用汽轮机机组1内低品位蒸汽;所述蒸汽凝结水管道II203连接调压塔207的入口,且位于蒸汽凝结水管道II203上,向调压塔207的流入方向上依次设置有减压阀205和凝结水加压泵I206,所述调压塔207的出口连接蒸汽凝结水管道I103。

如图3所示,所述第一级能源站3设在距离汽轮机机组150km的位置,所述第一级能源站3包括异步发电机303、汽动循环泵304、尖峰加热器305、基本加热器306和凝结水加压泵II307;所述高参数蒸汽长输管网II201连接尖峰加热器305的入口,所述高低压参数蒸汽混合后长输管网202和超低温热水管网302分别连接基本加热器306的入口,所述高参数蒸汽长输管网II201和高低压参数蒸汽混合后长输管网202之间分别通过异步发电机303和汽动循环泵304接通,所述超高温热水管网301连接尖峰加热器305的出口,两路蒸汽凝结水管道II203分别自尖峰加热器305和基本加热器306的出口流出后汇合于同一蒸汽凝结水管道II203上,且所述蒸汽凝结水管道II203上设置有凝结水加压泵II307,所述尖峰加热器305和基本加热器306之间通过超低温热水管网302连通。在第一级能源站3内可实现热、电、汽三联供,通过尖峰加热器305和基本加热器306设置汽水换热装置实现热量交换,采用部分蒸汽凝结水作为供热首站定压补水;通过设置异步发电机303发电实现厂区自用电;通过汽动循环泵304可以提高循环水循环的动能。

如图1所示,所述第二级能源站4设在距离汽轮机机组175km的位置,所述第二级能源站4包括凝结水加压泵III403和管板结合换热器404,所述超高温热水管网301连接管板结合换热器404的入口,管板结合换热器404的出口连接0级网供水管道401,通过管板结合换热器404可利用0级网供水管道401中180℃高温热水制取蒸汽用于工业供汽负荷,所述0级网回水管道402连接凝结水加压泵III403的入口,凝结水加压泵III403的出口连接超低温热水管网302。

如图4所示,所述第三级能源站5设在距离汽轮机机组1100km的位置,所述第三级能源站5包括发生器503、热交换器504、蒸发器505、吸收器506、冷凝器507和凝结水加压泵IV508;所述0级网供水管道401内180℃热水依次经过发生器503、热交换器504和蒸发器505放热,冷却后30℃的热水通过0级网回水管道402流出;所述I级网回水管道502内20℃的循环水经过凝结水加压泵IV508加压后,依次通过吸收器506、冷凝器507升温到170℃,再经过I级网供水管道501流出,所述I级网回水管道502、热交换器504与I级网供水管道501依次连通。

如图5所示,所述第四级能源站6为小区换热站,第四级能源站6的结构与第三级能源站5相同。所述第四级能源站6包括发生器VI603、热交换器VI604、蒸发器VI605、吸收器VI606、冷凝器VI607和凝结水加压泵VI608;所述I级网供水管道501内热水依次经过发生器VI603、热交换器VI604和蒸发器VI605放热,冷却后的热水通过II级网回水管道602流出;所述II级网回水管道602内的循环水经过凝结水加压泵VI608加压后,依次通过吸收器VI606、冷凝器VI607升温,再经过II级网供水管道601流出,所述II级网回水管道602、热交换器VI604与II级网供水管道601依次连通。

如图6所示,所述高参数蒸汽长输管网I101、低参数蒸汽长输管网102、高参数蒸汽长输管网II201和高低压参数蒸汽混合后长输管网202均为预制管,所述预制管包括自内而外包裹于工作钢管1001上的内支承管1002、至少一层复合保温层1003、软质保温套管1005、聚氨酯发泡体1006和外护套管1007,所述软质保温套管1005与外护套管1008之间沿周向均匀设置若干木支架1008,所述工作钢管1001外还设置有内滑动管托1004。内滑动管托1004与其他部件之间的位置连接关系属于现有技术。

如图7所示,所述超高温热水管网301、0级网供水管道401和I级网供水管道501结构相同,均包括自内而外包裹于内工作管3001上的保温隔热层和外套管3005,所述保温隔热层自内而外依次为硬质多腔孔陶瓷保温层3002、反射层3003和聚氨酯硬质泡沫保温层3004。

作为一个优选方案,所述硬质多腔孔陶瓷保温层3002的容重为170±15kg/m

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

技术分类

06120114572308