掌桥专利:专业的专利平台
掌桥专利
首页

近地铁建筑的智能施工方法及其系统

文献发布时间:2023-06-19 11:22:42


近地铁建筑的智能施工方法及其系统

技术领域

本发明涉及建筑施工领域,特指一种近地铁建筑的智能施工方法及其系统。

背景技术

随着社会发展,地下轨道交通发展迅猛,一些近地铁的深基坑工程,在已经运营的地铁线路周边建设可能会对运营地铁造成影响,危险性较大,因此这类工程对变形控制的要求极高,传统人工监测的方式对施工区域周边的监测精度较差,变形控制效果不理想,对既有地铁安全运营的影响较大,施工质量难以保证。

发明内容

本发明的目的在于克服现有技术的缺陷,提供一种近地铁建筑的智能施工方法及其系统,解决了现有近地铁建筑施工中变形控制效果差的问题,通过不断对建筑施工进行模拟和纠偏,以精准控制变形量,减少对运营地铁的影响,保证施工质量和施工安全。

实现上述目的的技术方案是:

本发明提供了一种近地铁建筑的智能施工方法,包括如下步骤:

利用BIM技术和有限元分析技术对待施工的建筑建立模型并结合设计要求的变形控制值进行模拟推演,确定各个变形量中变形最大的点位和该点位的变形趋势,并制定对应的处置方案;

按照模拟推演的工况和处置方案进行施工,并对施工现场进行监测以获得实际变形数据,根据实际变形数据分析得出施工现场对应点位的区域的变形量和该区域的变形趋势,根据变形量和变形趋势校正模型的施工工况,并进行模拟推演;

对施工现场进行全景监控,以获得施工现场的施工数据,将施工数据与校正后模拟推演的数据进行比对,以根据比对结果调整施工方案。

本发明提出了一种近地铁建筑的智能施工方法,利用BIM技术和有限元分析技术对待施工的建筑进行模拟推演,以提前发现变形量最大的点位,并提前制定对应的处置方案,在施工过程中根据该点位对应的区域实际的变形趋势不断的校正模型并再次进行模拟推演,以提升模拟推演的准确性,减小与实际施工的误差,进而在施工过程中全景监控施工现场,使得现场施工严格按照模拟和预定的方案进行,实现数据化模拟工况、远程化指导施工,提高工作效率。又通过监测数据智能整合分析和预警处置,解决了现有近地铁建筑施工中变形控制效果差的问题,通过不断对建筑施工进行模拟和纠偏,以精准控制变形量,减少对运营地铁的影响,保证施工质量和施工安全。

本发明近地铁建筑的智能施工方法的进一步改进在于,还包括:

设置变形量变化的阈值,缝隙得出区域的变形趋势后,对比变形趋势与该阈值,若变形趋势将会超过该阈值,则进行报警提醒。

本发明近地铁建筑的智能施工方法的进一步改进在于,还包括:

对施工材料和人员进行跟踪,以获取施工材料和人员的物流信息,并根据物流信息预判施工材料和人员的到场时间,以便于对施工方案进行调整。

本发明近地铁建筑的智能施工方法的进一步改进在于,实际变形数据包括施工现场附近地铁的变形数据、开挖的基坑的变形数据和地下水位变化数据。

本发明还提供了一种近地铁建筑的智能施工系统,包括:

BIM模块,以对待施工的建筑建立模型并进行模拟推演,进而确定变形量最大的点位和该点位的变形趋势;

数据监测模块,以对施工现场进行监测并获取实际变形数据;

与数据监测模块通讯连接且与BIM模型控制连接的数据处理模块,以获取实际变形数据并进行分析计算,以得出施工现场对应该点位的区域的变形量和该区域的变形趋势,并根据变形趋势控制BIM模块校正模型并进行模拟推演;以及

与BIM模块通讯连接的全景监控模块,以获取施工现场的施工数据,并传输至BIM模块,以供BIM模块对施工数据与校正后模拟推演的数据进行比对。

本发明近地铁建筑的智能施工系统的进一步改进在于,还包括与数据处理模块通讯连接的报警模块,该报警模块中设置有变形量变化的阈值;

通过报警模块获取数据处理模块得出的变形趋势,进而比对沉变形趋势和阈值,若变形趋势将会超过阈值,则进行报警提醒。

本发明近地铁建筑的智能施工系统的进一步改进在于,还包括与BIM模块通讯连接的跟踪模块,以对施工材料和人员进行跟踪,并获取施工材料和人员的物流信息,进而传输至BIM模块,以供BIM模块根据物流信息预判施工材料和人员的到场时间,从而便于调整施工方案。

本发明近地铁建筑的智能施工系统的进一步改进在于,还包括与BIM模块和报警模块通讯连接的云端模块,以获取BIM模块和报警模块中的数据,且与若干终端建立通讯连接,从而若干终端能够远程获取BIM模块和报警模块中的数据。

本发明近地铁建筑的智能施工系统的进一步改进在于,该终端包括电脑端、手机端和VR设备端。

本发明近地铁建筑的智能施工系统的进一步改进在于,实际变形数据包括施工现场附近地铁的变形数据、开挖的基坑的变形数据和地下水位变化数据。

附图说明

图1为本发明近地铁建筑的智能施工方法的流程图。

图2为本发明近地铁建筑的智能施工系统的结构示意图。

具体实施方式

下面结合附图和具体实施例对本发明作进一步说明。

参阅图1,本发明提供了一种近地铁建筑的智能施工方法及其系统,利用BIM技术和有限元分析技术对待施工的建筑进行模拟推演,以提前发现变形量最大的点位,并提前制定对应的处置方案,在施工过程中根据该点位对应的区域实际的变形趋势不断的校正模型并再次进行模拟推演,以提升模拟推演的准确性,减小与实际施工的误差,进而在施工过程中全景监控施工现场,使得现场施工严格按照模拟和预定的方案进行,实现数据化模拟工况、远程化指导施工,提高工作效率。又通过监测数据智能整合分析和预警处置,解决了现有近地铁建筑施工中变形控制效果差的问题,通过不断对建筑施工进行模拟和纠偏,以精准控制变形量,减少对运营地铁的影响,保证施工质量和施工安全。下面结合附图对本发明近地铁建筑的智能施工方法及其系统进行说明。

参阅图1为本发明近地铁建筑的智能施工方法的流程图。下面结合图1,对本发明近地铁建筑的智能施工方法及其系统进行说明。

如图1所示,本发明提供了一种近地铁建筑的智能施工方法,包括如下步骤:

利用BIM技术和有限元分析技术对待施工的建筑建立模型并结合设计要求的变形控制值进行模拟推演,确定各个变形量中变形最大的点位和该点位的变形趋势,并制定对应的处置方案;

按照模拟推演的工况和处置方案进行施工,并对施工现场进行监测以获得实际变形数据,根据实际变形数据分析得出施工现场对应点位的区域的变形量和该区域的变形趋势,根据变形量和变形趋势校正模型的施工工况,并进行模拟推演;

对施工现场进行全景监控,以获得施工现场的施工数据,将施工数据与校正后模拟推演的数据进行比对,以根据比对结果调整施工方案。

具体的,实际变形数据包括施工现场附近地铁的变形数据、开挖的基坑的变形数据和地下水位变化数据。

具体的,各个变形量包括地铁结构竖向位移、地铁结构水平位移、变形缝差异沉降、变形缝开合度、隧道水平收敛、隧道垂直收敛、轨道道床水平位移、轨道道床竖向位移、轨道横向高差、轨道纵向高差等。

作为本发明的一较佳实施方式,还包括:

设置变形量变化的阈值,缝隙得出区域的变形趋势后,对比变形趋势与该阈值,若变形趋势将会超过该阈值,则进行报警提醒。

进一步的,还包括:

对施工材料和人员进行跟踪,以获取施工材料和人员的物流信息,并根据物流信息预判施工材料和人员的到场时间,以便于对施工方案进行调整,即可根据物流信息调配人员和材料,以提升施工效率。

较佳地,可通过扫描材料上的二维码上传材料的物流信息,可通过施工人员共享位置信息获取人员的物流信息。

本发明的具体实施方式如下:

在施工前利用BIM技术和有限元分析技术对待施工的建筑建立模型并进行模拟推演,即进行施工模拟,确定变形量最大的点位及该点位的变形趋势,制定对应的处置方案,以控制该点位的沉降量;

根据模拟推演的工况和处置方案进行施工,并对施工现场进行监测以获得周围地铁的变形数据、开挖的基坑的变形数据和地下水位变化数据整合分析得出施工现场对应该点位的区域的变形量和该区域的变形趋势,根据该变形趋势校正模型的施工工况,并再次进行模拟推演,可以按一定频率获取实际变形数据并校正模型,以使得模型的模拟数据与实际差距较小,有较好的指导意义;

对现场进行全景监控,可利用视觉监控系统进行监控,以获取现场施工的施工数据及进度,并和校正后模拟推演的数据进行比对,以监控现场施工是否按照设定计划进行,可根据比对结果调整施工方案,以使得现场施工的效果与预期相同;

同时将该区域的变形趋势与阈值比对,若变形趋势将会超过阈值,即变形趋势的最大值超过阈值,则发出报警提醒,并将预先存储的应急处置方案发送给现场,并给出人员和材料需求指令,对材料和施工人员进行跟踪,以预判材料和施工人员到达现场的时间,从而测算出施工进度和施工时间,以便于根据材料和人员的物流信息对施工方案进行调整。

本发明还提供了一种近地铁建筑的智能施工系统,包括:

BIM模块,以对待施工的建筑建立模型并进行模拟推演,进而确定变形量最大的点位和该点位的变形趋势;

数据监测模块,以对施工现场进行监测并获取实际变形数据;

与数据监测模块通讯连接且与BIM模型控制连接的数据处理模块,以获取实际变形数据并进行分析计算,以得出施工现场对应该点位的区域的变形量和该区域的变形趋势,并根据变形趋势控制BIM模块校正模型并进行模拟推演;以及

与BIM模块通讯连接的全景监控模块,以获取施工现场的施工数据,并传输至BIM模块,以供BIM模块对施工数据与校正后模拟推演的数据进行比对。

具体的,实际变形数据包括施工现场附近地铁的变形数据、开挖的基坑的变形数据和地下水位变化数据。

进一步的,还包括与数据处理模块通讯连接的报警模块,该报警模块中设置有变形量变化的阈值;

通过报警模块获取数据处理模块得出的变形趋势,进而比对沉变形趋势和阈值,若变形趋势将会超过阈值,则进行报警提醒。

具体的,还包括与报警模块通讯连接的预警处理模块,该预警处理模块中预先录入有若干应急处理方案,预警处理模块接到报警提醒后将应急处理方案发送给施工现场并发出材料和人员的需求指令。

进一步的,还包括与BIM模块通讯连接的跟踪模块,以对施工材料和人员进行跟踪,并获取施工材料和人员的物流信息,进而传输至BIM模块,以供BIM模块根据物流信息预判施工材料和人员的到场时间,从而便于调整施工方案,即便于人员和材料的调配。

进一步的,还包括与BIM模块和报警模块通讯连接的云端模块,以获取BIM模块和报警模块中的数据,且与若干终端建立通讯连接,从而若干终端能够远程获取BIM模块和报警模块中的数据。

具体的,该终端包括电脑端、手机端和VR设备端。

本发明提供的系统实际实施的操作方式如下:

在施工前利用BIM模块对待施工的建筑建立模型并进行模拟推演,即进行施工模拟,以确定变形量最大的点位及其变形趋势,从而能够制定对应的处置方案,达到控制该点位的变形量的目的;

现场根据模拟推演和处置方案进行施工,数据监测模块对施工现场进行监测以获得周围地铁的变形数据、开挖的基坑的变形数据和地下水位变化数据;

数据监测模块将上述实际变形数据发送给数据处理模块,数据处理模块整合分析得出施工现场对应该点位的区域的变形量和变形趋势,并根据该变形趋势控制BIM模块校正模型,并再次进行模拟推演,数据监测模块可以按一定频率获取实际变形数据并校正模型,以使得模型的模拟数据与实际差距较小,有较好的指导意义;

利用全景监控模块对现场进行全景监控,该全景监控模块可以是摄像头等监控或传感设备,以获取现场施工的施工数据,并将数据传输给BIM模块,BIM模块将施工数据和校正后模拟推演的数据进行比对,以监控现场施工是否按照设定计划进行,施工人员可根据比对结果调整施工方案,以使得现场施工的效果与预期相同;

同时报警模块获取变形趋势,将该区域的变形趋势与阈值比对,若变形趋势将会超过阈值,即变形趋势的最大值超过阈值,则发出报警提醒;

预警处理模块收到报警提醒,将预先存储的应急处置方案发送给现场,给出人员和材料的需求指令,此时跟踪模块对材料和施工人员进行跟踪,以预判材料和施工人员到达现场的时间,从而测算出施工进度和施工时间,以便于现场根据材料和人员的物流信息对施工方案进行调整;

另外,专家等可使用终端与云端模块建立通讯连接,从而能够远程获取BIM模块和报警模块中的数据,能够帮助进行施工方案的调整和指导。

以上结合附图实施例对本发明进行了详细说明,本领域中普通技术人员可根据上述说明对本发明做出种种变化例。因而,实施例中的某些细节不应构成对本发明的限定,本发明将以所附权利要求书界定的范围作为本发明的保护范围。

相关技术
  • 近地铁建筑的智能施工方法及其系统
  • 一种基于BIM技术的建筑胶合板模板施工方法及智能系统
技术分类

06120112900484