掌桥专利:专业的专利平台
掌桥专利
首页

三维对象及其制造方法

文献发布时间:2023-06-19 12:07:15



技术领域

本发明涉及一种用于三维对象的制造方法,更具体地间接立体光刻(SLA)或动态光处理(DLP),并且涉及由此获得的对象。

背景技术

增材制造(AM)是接合材料以从三维模型(诸如计算机辅助设计(CAD)数据模型)制造对象的一种工艺,通常是逐层工艺。在过去的20年中,增材制造工艺的应用一直在迅速扩展。增材制造过程包括材料喷射、材料挤出、直接能量沉积、片材层压、粘结剂喷射、粉末床熔融和光聚合。从(亚)微米大小的陶瓷或金属颗粒(粉末)开始,这些技术全部可应用于使陶瓷或金属部件成型。

基本上存在两种不同类型的AM工艺:(i)单步工艺(也称作‘直接’工艺),其中三维对象以单个操作制作,在所述操作中同时获得预期产品的基本几何形状和基本材料性质;以及(ii)多步工艺(也称作‘间接’工艺),其中三维对象以两步或更多步制作,其中第一步通常提供基本几何形状,后续步骤按预期材料性质使产品固结。本发明涉及一种间接AM工艺,所述工艺利用牺牲粘结剂材料来使固体粉末颗粒成型。粘结剂材料使用可聚合树脂和还包含陶瓷或金属颗粒的浆料中所包含的聚合光引发剂的光聚合来获得。牺牲粘结剂材料在后续“脱粘”处理中去除。根据本发明的方法的示例是间接立体光刻(SLA)、数字光处理(DLP)和大面积无掩模光聚合(LAMP)。

增材制造方法或3D打印方法在本领域中是已知的,例如可在www.3dhubs.com/knowledge-base/additive-manufacturing-technologies-overview上找到。WO 2017/009368、US 2018/0243176和US 2012/0308837描述了可在室温以上执行的3D打印方法。常规方法有时可例如就分层问题而言降低产品质量,其中不同的层在制造过程中或制造过程之后分离,这导致产品损坏。本发明根据本领域的需要提供了一种用于生产三维对象的避免了此类分层问题的增材制造方法,并且提供了质量和强度得到改进的三维对象。另外,根据本发明的工艺在可固化浆料的可加工性方面得到改进。

发明内容

本发明发明人已开发出一种用于生产三维对象的制造方法,其中树脂是在高于聚合树脂的玻璃化温度的温度下聚合的。这样,树脂在聚合期间具有增加的流动性,这被发现具有众多优点。根据本发明所述的方法避免聚合步骤期间张力的构建,这进而导致层之间的附着得到改进并且防止制造过程的任何后续步骤(即步骤(d)及向前)时的开裂。此外,层在竖直方向上的密度增加,这提供最终产品在所有方向上密度的改进以及遭受减少的分层问题的更强化对象。同样,在高温下,浆料中的水分含量降低和/或浆料吸水的能力降低,使得浆料和最终三维对象的质量得到改进。

在本领域中已经建议在高温(即高于室温)下执行3D打印过程,但从未提出在高于聚合树脂的玻璃化温度的温度下执行打印。例如,US 2018/0243176公开了在60℃下采用UDMA的打印工艺,其聚合形式具有的T

本发明发明人发现,上述目的可通过增材制造方法来实现,其中通过根据模型用辐射扫描第一层的体素进行的树脂的聚合是在高于室温且高于树脂的玻璃化转变温度的温度下发生的。

因此,本发明提供了一种用于制造三维对象的增材制造方法,所述方法包括:

(a)提供所述对象的三维模型,所述模型以体素划分所述对象;

(b)将可辐射固化浆料的第一层施加到目标表面上,其中所述浆料包含可聚合树脂和光引发剂;

(c)通过以下方式使所述树脂聚合:在高于室温且高于聚合树脂的玻璃化转变温度的温度下根据所述模型用辐射照射所述第一层的体素,以造成所述树脂的聚合,从而形成交联聚合物基质;

(d)将所述浆料的后续层施加到所述第一层的顶部上;

(e)通过以下方式使所述树脂聚合:在高于室温且高于聚合树脂的玻璃化转变温度的温度下根据所述模型用辐射照射所述后续层的所述体素,以造成所述树脂的聚合,从而形成交联聚合物基质;

(f)重复步骤(d)和(e),其中每次将后续层施加到前一层上,以生成生坯体;

以及任选地:

(g)从步骤(f)中获得的所述生坯体去除所述交联聚合物基质,以获得褐色坯体;以及

(h)使步骤(h)中获得的所述褐色坯体烧结以获得白色坯体,其中所述生坯体或所述白色坯体是所述三维对象。

根据本发明所述的方法也可称为立体光刻方法。如本文所用的术语‘立体光刻’,缩写为‘SLA’,是指通过使用由三维模型控制的照射将包括可聚合树脂和金属前体颗粒的可辐射固化浆料进行逐层固化来构建三维金属对象的方法,所述三维模型优选地呈来自计算机的计算机辅助设计(CAD)数据的形式。尽管立体光刻通常是使用UV辐射引发可聚合树脂的固化来执行的,但本发明的上下文中‘立体光刻’的工艺也可使用其他类型的辐射来执行。

根据本发明所述的方法也可称为数字光处理方法。如本文所用,术语‘数字光处理’(缩写为‘DLP’)是指用于构建三维金属对象的立体光刻方法,其中每个层通过暴露于呈空间光调制器定义的位图图案的辐射而形成整体图案化。DLP在本领域中也称为‘大面积无掩模光聚合’,缩写为‘LAMP’。两个术语被认为是可互换的。尽管DLP和LAMP通常使用UV辐射引发可聚合树脂的固化来执行的,但本发明的上下文中‘DLP’和‘LAMP’的过程也可使用其他类型的辐射来执行。

在本发明的上下文中,术语‘聚合’和‘固化’被视为同义并且可互换地使用。同样地,术语‘可聚合’和‘可固化’被视为同义并且可互换地使用。

根据本发明的增材制造方法可用于制造任何合适的材料的对象,包括塑料、金属、金属氧化物和陶瓷,并且设想它们的混合物也在本发明的上下文内。如本领域技术人员所理解,浆料的组合物可相应地改变。对于塑料三维金属对象的制造,不需要另外的部件,并且由树脂形成的交联聚合物基质是最终产品的塑料材料。对于金属、金属氧化物和陶瓷对象,浆料还包含颗粒,所述颗粒可以是金属颗粒、金属氧化物颗粒、陶瓷颗粒、金属前体颗粒。交联聚合物基质用作颗粒的牺牲粘结剂,并且稍后从对象去除。此类浆料在本领域中是已知的。因此,在一个实施方式中,根据本发明的制造方法是用于塑料对象的制造,并且浆料并不包含金属、金属氧化物、金属前体或陶瓷颗粒。在此实施方式内,步骤(g)和(h)通常省略。因此,在替代实施方式中,根据本发明的制造方法是用于金属、金属氧化物或陶瓷对象的制造,并且浆料还包含金属、金属氧化物、金属前体或陶瓷颗粒。在此实施方式内,步骤(g)和(h)通常执行。根据此实施方式的增材制造方法是间接方法,这意指:在第一步骤中,使用牺牲有机粘结剂来使颗粒成形成三维对象,所述三维对象包括通过有机粘结剂保持在一起的颗粒,并且在后续步骤中,去除牺牲有机粘结剂,并且进一步处理三维对象,以获得预期三维对象。牺牲有机粘结剂通过接合颗粒给予生坯体足够强度,使得生坯体可进行进一步处理。

浆料包含可聚合树脂和光引发剂。任选地,浆料还包含以下中的一者或多者:金属、金属氧化物、金属前体或陶瓷颗粒。在优选实施方式中,浆料包括:(i)2重量%-45重量%的可聚合树脂;(ii)0.001重量%-10重量%的一种或多种聚合光引发剂;以及(iii)55重量%-98重量%的颗粒。浆料还可包括一种或多种添加剂,如以下进一步规定。

可聚合树脂包括单体、低聚物或它们的组合。在优选实施方式中,可聚合树脂包括选自由以下组成的组的自由基可聚合单体、低聚物或它们的组合:单-、二-、三-和更高官能丙烯酸酯单体、环氧丙烯酸酯、聚酯/聚醚丙烯酸酯、尿烷丙烯酸酯、寡胺丙烯酸酯、甲基丙烯酸酯、硫醇丙烯酸酯以及它们的混合物。在另一优选实施方式中,可聚合树脂包括选自由以下组成的组的阳离子可聚合单体、低聚物或它们的组合:环氧丙烯酸酯、乙烯基醚丙烯酸酯、烯丙基醚丙烯酸酯、氧杂环丁烷丙烯酸酯以及它们的组合。自然地,自由基可聚合树脂将与一种或多种自由基聚合光引发剂结合,并且阳离子可聚合的树脂将与一种或多种阳离子聚合光引发剂结合。在优选实施方式中,树脂包括二甲基丙烯酸酯单体,诸如尿烷-二甲基丙烯酸酯单体。在替代实施方式中,树脂不包括尿烷-二甲基丙烯酸酯单体,或不包括二甲基丙烯酸酯单体。

浆料中的可聚合树脂一旦固化成交联聚合物基体就可充当中间体三维对象中颗粒之间的牺牲有机粘结剂胶。牺牲有机粘结剂在步骤(g)中从三维对象去除,以将其进一步处理为三维对象。因此,牺牲有机粘结剂必须为中间体三维对象提供足够强度和稳定性以便进行进一步处理。在可聚合树脂聚合之后形成的牺牲有机粘结剂的稳定性和强度是通过使用交联单体和/或低聚物提供的。

用于自由基聚合和阳离子聚合的光引发剂是本领域熟知的。参考J.P.Fouassier、J.F.Rabek(编辑)的Radiation Curing in Polymer Science and Technology:Photoinitiating systems,第2卷,Elsevier Applied Science,London and New York1993以及J.V.Crivello、K.Dietliker的PhotoinitiatorsforFree Radical,Cationic&Anionic Photopolymerization第2版,在:Surface Coating Technology,编辑:G.Bradley,第III卷,Wiley&Sons,Chichester,1999中,以获得对光引发剂的全面概述。匹配可聚合树脂的类型、辐射的类型和浆料中使用的一种或多种光引发剂在本领域技术人员的技能内。

浆料还可包含一种或多种添加剂,诸如表面活性剂、分散剂、聚合抑制剂和/或稳定剂。合适的添加剂及其优选量是本领域技术人员已知的。重要的是,当在步骤(c)中浆料的特定部分暴露于辐射时,可控制浆料的聚合。此外,浆料应具有特定储存稳定性。为此,浆料还可包含基于浆料总重量的0.001重量%-1重量%、优选地0.002重量%-0.5重量%的一种或多种阻聚剂或稳定剂。聚合抑制剂或稳定剂优选地以使浆料在6个月时段内储存稳定的量添加。如果在6个月时段内粘度增加小于10%,则视为浆料储存稳定。用于自由基可聚合树脂的合适的聚合抑制剂或稳定剂的示例为苯酚、对苯二酚、吩噻嗪和TEMPO。阳离子可聚合树脂的合适的聚合抑制剂或稳定剂的示例为含有碱性杂质(诸如胺)和/或硫杂质的化合物。

在优选实施方式中,浆料还包含金属颗粒、金属氧化物颗粒、金属前体颗粒和/或陶瓷颗粒。在本文中,“金属前体”是指在过程的后期转化成金属性金属的金属前体。金属前体制备金属性对象的这种用途在本领域中例如从WO2017/081160是已知的。可在浆料中使用的金属前体的示例选自由以下组成的组:金属氧化物、金属氢氧化物、金属硫化物、金属卤化物、有机金属化合物、金属盐、金属氢化物、含金属矿物以及它们的组合。此外,在金属对象的制造中,金属前体颗粒和金属颗粒易于在浆料中结合。在使用金属前体的情况下,本领域技术人员应理解,通常需要在步骤(h)之前执行的另外的转化步骤来将金属前体转化成金属。此步骤可使用本领域已知的方法来执行,如以下进一步所述。

金属氧化物可在金属对象的制造中用作金属前体,但也可在制造金属氧化物对象的情况下用作金属氧化物颗粒。换句话说,设想未转化成其金属对应物的金属氧化物的使用也在本发明的范围内。

通常,颗粒以粉末形式添加,并且可使用本领域已知的任何合适的粉末。陶瓷颗粒优选地以陶瓷注射成型(CIM)粉末的形式添加,并且金属颗粒优选地以金属注射成型(MIM)粉末的形式添加。颗粒具有的D

浆料中的颗粒量的上限主要由浆料的粘度决定,因此,由根据本发明的制造方法中的加工性决定。为了制备高强度和高密度的三维对象,浆料中颗粒的体积分数优选地尽可能地高。浆料中颗粒的体积分数还决定了生坯体中颗粒的体积分数和烧结期间棕色体的收缩率。然而,更到的颗粒体积分数产生更高的粘度,参见例如J.Deckers等人的Additivemanufacturing of ceramics:A review,J.Ceramic Sci.Tech.,5(2014),第245-260页,以及M.L.Griffith和J.W.Halloran的Ultraviolet curing of highly loaded ceramicsuspensions for stereolithography of ceramics,Solid Freeform FabricationSymposium 1994的手稿。发现浆料中颗粒的最佳体积分数在0.10-0.74的范围内,优选地在0.15-0.65的范围内,更优选地在0.30-0.60的范围内,最优选地在0.45-0.55的范围内。基于总重量,颗粒优选地以55重量%-98重量%的量存在于浆料中。

浆料在室温下的粘度优选地介于0.01Pa·s与250Pa·s之间,更优选地在0.02Pa·s-50Pa·s的范围内,甚至更优选地介于0.05Pa·s与40Pa·s之间,最优选地介于0.1Pa·s与35Pa·s之间。在本文中,粘度是使用板式流变仪在20℃下以10s

在优选实施方式中,树脂包含选自由以下组成的组的化合物中的一种或多种:1,6-六亚甲基二丙烯酸酯(CAS:13048-33-4;T

根据本发明的过程特别适合于与小颗粒(诸如具有的粒度低于0.1μm)一起使用。通常,本领域技术人员没有选择所需粒度的选项,而是必须应对所需颗粒(金属、金属前体、金属氧化物或陶瓷)可用的粒度。某些材料(例如,氧化锆、碳化硅、氮化硅)仅可用此类小粒度,并且常规三维打印工艺存在此类小颗粒问题。鉴于在照射步骤期间光的穿透深度减小,此类小颗粒通常引起增加的光散射,这需要更大的辐射源功率。再者,当使用常规工艺时,较小颗粒导致固化层内张力增加,这进而导致层间界面处的密度变化和分层问题加重。此类小粒度通常发生在氧化锆(二氧化锆)、碳化硅和氮化硅的情况中。在不受理论约束的情况下,即使在聚合期间,浆料的流动性增加和/或粘度降低也被认为导致各个层更好地彼此附着,从而产生更均质的最终产品,其中分离的层不再是视觉上可区分的。尽管分层问题的减少使根据本发明的方法的一般有点,但此优点在应对小颗粒时特别需要。因此,在优选实施方式中,颗粒具有的D

在根据本发明的工艺的步骤(b)中,将辐射可固化浆料的第一层施加到表面上。在步骤(d)中,类似地施加浆料,但不直接施加到表面上,而是施加到前一固化层上。步骤(f)限定:步骤(d)视需要重复多次,以完成三维对象。所需的总循环数由三维模型限定。

优选地,步骤(b)和/或步骤(d)、更优选地步骤(b)和步骤(d)是在高于室温且高于聚合树脂的玻璃化转变温度的温度下执行的,所述温度优选地在40℃-100℃的范围内,更优选地在50℃-90℃的范围内,更优选地55℃-80℃,甚至更优选地60℃-75℃,最优选地60℃-70℃。在优选实施方式中,步骤(b)和步骤(d)是在与执行步骤(c)和(e)相同的高温下执行的。优选地,根据本发明的工艺还包括以下步骤:将浆料在步骤(b)之前加热到所需温度,然后在步骤(b)和(d)期间施加加热的浆料,并且在步骤(c)和(e)中使所施加浆料同样在所需温度下聚合。在本文中,温度优选地贯穿一系列步骤保持恒定,但本领域技术人员应了解,在不妨碍本发明工艺的情况下可发生浆料的边际冷却。

用预加热的浆料来执行根据本发明的工艺使得浆料不易吸引水分。通常,辐射可固化浆料吸引水分,所述水分在高温下减少。减少的水含量导致浆料质量得到改进、絮凝的发生减少并且最终产品的性质得到改进。最终产品在密度方面更加均质,在层间具有改进的粘附力,因此减少了分层问题。

在优选实施方式中,浆料的第一层和后续层的厚度介于5μm与300μm之间,更优选地介于7μm与200μm之间,仍然更优选地介于9μm与100μm之间。设想具有的厚度介于8μm与50μm之间、优选地介于9μm与30μm之间的层也在本发明的上下文中。

在步骤(c)中,树脂是通过以下方式聚合的:在高于室温且高于树脂的玻璃化转变温度的温度下根据3D模型用辐射照射第一层的体素,以造成树脂的聚合,从而形成交联聚合物基质。在步骤(e)中,后续层发生相同的情况。步骤(f)限定:步骤(e)视需要重复多次,以完成三维对象。所需的总循环数由三维模型限定。优选地,3D模型是CAD模型。

交联聚合物基质是通过浆料中反应性单体、低聚物或它们的组合的聚合获得的。包括交联聚合物基质的三维对象的结构在本领域中称为‘生坯体’或‘生压坯’。在根据本发明的工艺用于制备塑料三维对象的情况下,生坯体是通过工艺获得的最终三维对象。替代地,交联聚合物基质充当包含颗粒的牺牲粘结剂,并且粘结剂在步骤(g)和(h)中从生坯体去除,而颗粒形成最终三维对象的材料。

在优选实施方式中,步骤(c)和(e)中所用的辐射是光化辐射。优选光化辐射类型是UV辐射、可见光和IR辐射。优选UV辐射具有的波长介于10nm与380nm之间,更优选地介于250nm与350nm之间。可见光具有的波长介于380nm与780nm之间。如本领域技术人员应了解,浆料中的一种或多种聚合光引发剂必须对所施加的辐射类型敏感。使光引发剂与辐射源的光谱输出匹配在本领域技术人员的技能内。

步骤(c)和(e)中按照3D模型照射浆料层体素可用一个或多个激光器来逐体素(扫描)执行。因此,在实施方式中,如本文前面所定义的增材制造方法是用于生产三维金属对象的立体光刻(SLA)方法,其中在步骤(c)和(e)中根据模型扫描浆料层的体素是逐体素执行的。还可通过同时将层中的所有体素暴露于穿过掩模的辐射来在步骤(c)和(e)中根据3D模型执行对浆料层的体素的照射。此掩模根据模型限定将固化的特定层的图案。因此,在本发明的实施方式中,在步骤(c)和(e)中根据模型扫描浆料层的体素是通过同时将层中的所有体素暴露于穿过掩模的辐射执行的。在步骤(c)和(d)中对浆料层的体素的照射还可通过使用诸如射束器或投影仪的空间光调制器来同时将层中的所有体素暴露于辐射。这种空间光调制器将辐射图案投射到层上,使得体素根据模型固化。因此,在优选实施方式中,如本文前面所定义的增材制造方法是用于生产三维金属对象的动态光处理(DLP)方法,其中在步骤(c)和(e)中扫描浆料层的体素是通过同时将层中的所有体素暴露于辐射执行的。

步骤(c)和(e)是在高温下(即,高于室温)执行的。在本文中,室温通常是指20℃的温度。因此,执行步骤(c)和(e)的温度至少高于20℃,优选地至少高于25℃。同样,温度应高于施加在浆料中的聚合树脂的玻璃化温度。本领域技术人员能够确定聚合树脂的玻璃化温度,因此知晓步骤(c)和(e)应施加的温度。优选地,执行步骤(c)和(e)并且优选地还有步骤(b)和(d)的温度是至少5℃,更优选地至少10℃,甚至更优选地至少20℃或甚至至少30℃,这高于树脂的玻璃化温度。更优选地,执行这些步骤期间的温度尽可能高于聚合树脂的玻璃化温度但足够低以避免浆料的热降解(聚合)。在实践中,温度上限由树脂和光引发剂的类型确定,因为应避免不存在辐射情况下的聚合。这易于由本领域技术人员确定。在优选实施方式中,步骤(c)和(e)中所施加的温度在40℃-100℃的范围内,优选地在50℃-90℃的范围内,更优选地55℃-80℃,甚至更优选地60℃-75℃,最优选地60℃-70℃。优选地,步骤(b)和(c)在同一温度范围内执行。已发现此类温度提供避免光引发剂在不存在光的情况下的聚合(这种情况有时发生在较高温下)的理想平衡,并且提供了如本文进一步论述的最佳结果。在尤其优选的实施方式中,执行步骤(c)的温度是恒定的,这意指浆料沉积的温度基本上等于浆料沉积到其上的工作台(stage)的温度。通常,聚合发生在浆料沉积器在上部并且工作台在下部的腔室中,并且腔室设置在发生步骤(b)-(e)的基本上恒定温度下。

在浆料包含颗粒并且三维对象是金属、金属氧化物或陶瓷对象的情况下,生坯体随后在步骤(g)中进行脱粘,以去除有机粘结剂。在脱粘之后主要由颗粒组成的所得三维对象在本领域中称为“褐色坯体”。牺牲粘结剂可通过通常将生坯体加热到一定温度来移除,所述温度在100℃-600℃的范围内,更优选地在150℃-500℃的范围内,在200℃-450℃的范围内。可施加减压或(部分)真空,以便促进牺牲粘结剂的组分的蒸发。在脱粘中,可发生纯热过程以及热化学过程。脱粘步骤可在含氧气氛中通过氧化或燃烧执行,特别是在制造陶瓷对象的情况下。脱粘步骤还可在保护性或含氢环境中执行,特别是在制造金属或金属氧化物对象的情况下。优选地,脱粘步骤在不存在氧气的情况下作为热解步骤执行。在使用了金属前体颗粒的情况下,步骤(g)中的脱粘也可去除有机金属性金属前体的有机部分的至少一部分。

在步骤(g)中加热生坯体之前,生坯体可任选地用溶剂处理以将生坯体与未固化浆料分离和/或从生坯体提取可洗脱有机组分。根据可洗脱组分的溶解度,此溶剂在本质上可以是水性或有机的。可使用的有机溶剂的示例是异丙醇、丙酮、三氯乙烷、庚烷和乙醇。通常,使用异丙醇。

在方法的步骤(h)中,使褐色坯体烧结以形成预期三维对象。烧结导致褐色坯体的多孔结构致密化和固化,由此坯体变得更小并获得强度。通常,烧结确保最终产品的密度增大,使得单个层不再是可区分的。在已使用金属颗粒的情况下,如本领域已知的,此步骤可发生在还原条件下,使得存在于褐色坯体中的任何氧化的金属被还原成其金属状态并且防止金属的氧化。烧结还可发生在氧化条件下,诸如空气,特别是不需要还原金属的情况。这例如适合于制造二氧化锆对象的情况。

烧结体在本领域中也称为‘白色坯体’。烧结通常在低于材料(例如,金属、合金、金属氧化物、陶瓷)的熔融温度的温度下进行。本领域技术人员能够根据所用的金属或合金来选择所需烧结温度。生坯体的烧结通常在烧结炉中进行,优选地在500℃-2500℃的范围内、更优选地在1000℃-2500℃的范围内的温度下进行。烧结步骤可涵盖多于一个温度循环,以避免可能导致三维金属对象破裂的热冲击。此步骤在本领域中称为烧结,并且可使用本领域已知的方法执行。

任选地,在已在浆料中使用金属前体颗粒的情况下,金属前体应在步骤(h)之前转换成其金属对应物。因此,工艺可包含其中将金属前体褐色坯体转换成金属褐色坯体的步骤。此类工艺在本领域中是已知的。例如,参考如WO99/64638中所述的电分解或电脱氧工艺。在本领域中称作‘FFC工艺’的此工艺中,诸如例如金属氧化物的固体化合物在包括熔盐的电解槽中布置成与阴极接触。在电解槽的阴极与阳极之间施加电势,使得化合物被还原。发明人出乎意料地发现,此工艺也可用于将根据本发明的方法生产的金属前体褐色坯体转化成三维金属对象。进一步参考如WO 01/62996、WO 02/40748、WO 03/048399、WO 03/076690、WO 2006/027612、WO 2006/037999、WO 2006/092615、WO 2012/066299和WO 2014/102223中所述的‘FFC工艺’的修改形式。‘FFC工艺’的原理可用于将褐色坯体还原为对应金属,所述褐色坯体包括以下的氧化物:Ti、Ta、铍、硼、镁、铝、硅、钪、钛、钒、铬、锰、铁、钴、镍、铜、锌、锗、钇、锆、铌、钼、铪、钽、钨和包括镧、铈、镨、钕、钐的镧系元素以及包括锕、钍、镤、铀、镎和钚的锕系元素。纯金属可通过还原包括一种类型的金属氧化物颗粒的褐色坯体形成,并且合金可通过还原包括由包含不同金属原子的金属氧化物混合物组成的颗粒的褐色坯体形成。

本发明的另一方面涉及一种可通过如上文所定义的方法获得的三维对象。根据本发明的三维金属对象与使用现有技术制造的那些对象的不同之处在于对象的更佳性能,这归因于通过在高于室温且高于聚合树脂的玻璃化温度的温度下固化浆料而获得的无应力且非常均质的微观结构。此类三维对象在本领域中是前所未有的。根据本发明的三维对象可称为3D打印对象。

根据本发明的三维对象可由塑料、金属、金属氧化物和/或陶瓷制成。在特别优选实施方式中,其由金属或金属氧化物、最优选地由二氧化锆制成。

本发明还涉及一种增材制造系统,其也可称为3D打印机。根据本发明的系统是如本领域已知的3D打印机,其包括:(i)用于沉积辐射可固化浆料的层的衬底或表面;(ii)用于容纳浆料并且被配置用于将浆料沉积到衬底上的浆料沉积器;(ii)被配置来固持被制造的三维对象(换句话说,可固化和/或固化浆料的层布置)的台;(iv)被配置来照射沉积到表面上的浆料层的辐射源;(v)被配置来相对于将根据通常为CAD模型的3D模型固化的浆料调整辐射源的定位系统。根据本发明的系统还包含用于在将浆料沉积到表面上之前加热浆料的装置。此类加热装置优选地实施到浆料沉积器中,所述浆料沉积器被配置来容纳正在或已经被加热到高于室温且高于包含在浆料中的聚合树脂的玻璃化温度的所需温度的浆料。加热装置优选地能够将浆料加热到40℃-100℃的范围内的温度,优选地在50℃-90℃的范围内,更优选地55℃-80℃,甚至更优选地60℃-75℃,最优选地60℃-70℃。加热装置可以是适合于将浆料加热到所需温度的任何装置。此类加热装置在本领域中是已知的。

辐射源通常定位在衬底的与浆料层沉积到其上的表面相反的相反侧上。在本文中,表面对从辐射源发射的辐射是透明的。定位系统可包括连接到计算机的扫描激光器,所述计算机可读取3D模型并且根据模型控制扫描激光器的定位。替代地,定位系统可包括基本上平行于树脂层定位的掩模屏,以用于根据如由3D模型限定的三维对象的剖面切片来阻挡来自辐射源的入射辐射的至少一部分。这种增材制造系统在本领域中例如从WO 2015/107066是已知的。替代地,辐射源和定位系统是由数字光处理(DLP)芯片形成的,所述芯片根据3D模型发射二维图案。这样,不需要用于相对于将固化的体素定位辐射源的其他装置。

已参考以上论述的特定实施方式描述本公开。应认识到,这些实施方式易于进行本领域技术人员熟知的各种修改和替代形式。为了适当地理解本发明,应理解,动词“包括”及其词形变化是在其非限制性意义上使用以意指包括紧跟所述词语后面的项,但并不排除未明确提及的项。此外,通过不定冠词“一个”或“一种”引用的要素并不排除存在多于一个所述要素的可能性,除非上下文清楚地要求存在一个且唯一一个所述要素。因此,不定冠词“一个”或“一种”通常意指“至少一个”。

本发明说明书中引用的所有专利和参考文献特此以引用方式整体并入本文。以下实施例仅出于说明目的而提供,并且不意图以任何方式限制本发明的范围。

附图说明

图1和图2描绘实施例1中获得的三维对象的SEM图像。常规对象(室温下的浆料)的图像在图1中描绘,并且根据本发明的对象(60℃下的浆料)的图像在图2中描绘。在常规对象中清晰可见的是单独层之间的通过保持多孔性的水平线(用箭头指示)反映的边界。对于根据本发明的对象,这些边界是不可见的。此外,常规对象包含大腔,对于根据本发明的对象,这些腔是不可见的。

具体实施方式

用于增材制造的辐射可固化浆料是由28重量%的可聚合树脂A制成的(T

所得坯体通过裸眼和使用扫描电子显微镜(SEM)(参见图1和图2)进行研究。裸眼检查表明,根据本发明的产品具有光滑表面,而常规对象显示由分层裂缝和月牙形裂隙。SEM图像产生类似结论,其中常规对象在层之间的边界处以剩余孔隙水平线的形式显示分层(图1中的箭头所示),而对于根据本发明的对象则不存在这种分层。再者,常规对象包含大腔,对于根据本发明的对象,这些腔是不可见的。显然,与常规对象相比,本发明对象更均质并且具有减少的分层问题。在本发明目的中,单独层不再可见,这指示层之间改进的粘附力和对象的增加的密度。

相关技术
  • 用于制造三维对象的积层制造方法和三维对象
  • 用于制造三维对象的积层制造方法以及三维对象
技术分类

06120113172041