掌桥专利:专业的专利平台
掌桥专利
首页

一种模块化空气阻尼结构重力储能系统

文献发布时间:2023-06-19 18:34:06


一种模块化空气阻尼结构重力储能系统

技术领域

本发明涉及固体重力储能技术领域,尤其涉及一种模块化空气阻尼结构重力储能系统。

背景技术

近年来,新能源发展如火如荼。新能源发电普遍存在随机性、间歇性、波动性问题,需要依靠储能技术进行调节,而且电网也急需大规模削峰填谷,提升电力系统效率,发展储能因此成为能源转型的重要一环。目前常用的储能方式有抽水蓄能、化学电池蓄能、飞轮储能、电容储能、超导储能等,目前的储能方式各自都存在一定痛点,或投资太大,或建造周期太长,或资源太稀缺,或技术要求太高,或规模无法做大,或损耗太大,或风险太高.总之就是技术上有欠缺,经济上不划算,规模上难扩增,安全上难保障。

近年来重力储能逐步在储能技术领域中受到关注并已得到一定程度的应用。现有重力储能技术可分为悬挂式、新型抽水储能和斜体式,如一种利用起重机将混凝土块堆叠成塔的方案,其利用块体的吊起下落进行储能和释能。然而起重机吊装块体需高载重、高精度抓放的机械抓手,制造难度较大,且存在缆绳晃动难以定位、塔楼稳定性低等问题,并且该方案利用吊塔起放块体时所需的作业空间大,对地形、占地面积、天气状况等要求高,不容易扩展规模,也不容易全域推广;另外,重力储能的能量密度低,约3.7吨的重物提升100米才可储电1度,若要加大储能的规模,要么加大重量要么增加高度,但数十吨乃至数千数万吨的重块因人为或自然因素意外从百米高空掉落下来所造成的灾难非常大,上述种种原因限制了固体重力储能的推广应用。

发明内容

有鉴于此,本发明提出一种模块化空气阻尼结构重力储能系统,可以至少在一定程度上解决上述问题之一。

本发明的技术方案是这样实现的:

一种模块化空气阻尼结构重力储能系统,包括若干个重力储能模块,所述重力储能模块包括筒状构筑体、重块和提升发电装置,所述筒状构筑体内部设有竖向设置的升降通道,所述提升发电装置设置在所述升降通道的上方,且所述提升发电装置通过缆绳和滑轮组件驱动所述重块在所述升降通道内升降;所述重块与所述升降通道的内壁之间形成有狭小间隙,所述重块上形成有上下贯通的通气道,所述通气道内设有用于开或闭所述通气道的通气活门;当所述重块加速下降且速度大于设定值时,所述通气道封闭,所述重块下方空气被压缩,上方空气被抽吸,产生气压差,在升降通道内对重块形成空气阻尼。

作为所述模块化空气阻尼结构重力储能系统的进一步可选方案,所述提升发电装置设有多组,多组提升发电装置沿周向等距地分布在所述升降通道上方;所述提升发电装置包括提升机和发电机,所述提升机和所述发电机为一体式或分体式。

作为所述模块化空气阻尼结构重力储能系统的进一步可选方案,所述通气活门包括设置在所述通气道内的安装支架,所述安装支架上滑动连接滑杆,所述滑杆的一端连接有用于开或闭所述通气道下端的挡板,所述挡板和所述安装支架之间设置有拉簧;在常规状态下,所述挡板和所述滑杆在重力作用下抵抗所述拉簧的拉力,使得所述通气道的下端打开;在所述重块加速下降且速度大于设定值时,所述挡板在所述拉簧和所述通气道上下方空气压差的共同驱动下封堵所述通气道的下端。

作为所述模块化空气阻尼结构重力储能系统的进一步可选方案,所述拉簧套接在所述滑杆上,所述拉簧的一端连接所述安装支架,另一端连接所述挡板。

作为所述模块化空气阻尼结构重力储能系统的进一步可选方案,所述升降通道的底部设置有隔水隔气层。

作为所述模块化空气阻尼结构重力储能系统的进一步可选方案,所述升降通道内还设有位于所述隔水隔气层上方的冲击耗散层,所述冲击耗散层由液体或固体颗粒形成;所述重块的底部设置有网格状冲击部。

作为所述模块化空气阻尼结构重力储能系统的进一步可选方案,所述冲击耗散层采用沙子或/和碎石。

作为所述模块化空气阻尼结构重力储能系统的进一步可选方案,所述重块外周设有多组沿周向等距分布的导轮,所述导轮滚动抵接于所述升降通道的内壁。

作为所述模块化空气阻尼结构重力储能系统的进一步可选方案,所述筒状构筑体为钢筋混凝土结构,所述重块为钢筋混凝土结构或钢结构。

作为所述模块化空气阻尼结构重力储能系统的进一步可选方案,所述升降通道的上端设有封顶,封顶上设有供所述缆绳进出的通孔,在所述重块意外掉落时增大所述重块上下方的气压差,进一步减低所述重块的掉落速度。

作为所述模块化空气阻尼结构重力储能系统的进一步可选方案,所述重力储能模块可设有多个,多个重力储能模块的筒状构筑体相互紧靠形成多模块阵列分布。

相对于现有技术,本发明的有益效果有:

1、各重力储能模块都可形成一个空气阻尼结构,即使遇上最坏情况(因强地震等而导致缆绳全部断开),重块意外掉落,重块加速下降且速度大于设定值时,所述通气道封闭,所述重块下方空气被压缩,上方空气被抽吸,产生气压差,在升降通道内对重块形成空气阻尼,而阻止重块下降过快,缓解其所形成的过大冲击力,避免对系统主体结构造成破坏性冲击,从根本上消除固体重力储能的安全隐患;

2、所述重力储能模块结构简单,可仅由简单且成熟的钢筋混凝土结构以及简单且成熟的机械设备构成,在所述升降通道为相对密封、所述重块缓慢、无冲击的运行状况下,系统整体寿命或可达100年;多个重力储能模块构成该重力储能系统,规模容易扩展,系统也容易推广;对重力储能系统进行模块化建造,投入远低于其它方式的储能系统;本重力储能系统的建造运行不依赖水,不依靠地形,没有太高的技术壁垒,不消耗任何稀缺资源,不怕风吹日晒雨淋,无惧酷署严寒,且不排碳,不产生任何污染,因而本重力储能系统有无与仑比的可获得性、可持续性和安全性,对环境和资源都非常友好。

附图说明

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为本发明的一种模块化空气阻尼结构重力储能系统的结构示意图;

图2为所述提升发电装置牵引所述重块的结构示意图;

图3为所述重块底部的结构示意图;

图4为所述通气活门的结构示意图;

图5为多个重力储能模块的分布示意图。

图中:100、重力储能模块;1、筒状构筑体;11、升降通道;12、隔水隔气层;13、冲击耗散层;14、支撑基础;2、重块;21、通气道;22、通气活门;221、安装支架;222、滑杆;223、挡板;224、拉簧;23、网格状冲击部;24、导轮;3、提升发电装置;31、缆绳。

具体实施方式

下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。

在本发明的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。

在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。

参考图1-5,示出了一种模块化空气阻尼结构重力储能系统,包括若干个重力储能模块100,所述重力储能模块100包括筒状构筑体1、重块2和提升发电装置3,所述筒状构筑体1内部设有竖向设置的升降通道11,所述提升发电装置3设置在所述升降通道11的上方,且所述提升发电装置3通过缆绳31和滑轮组件驱动所述重块2在所述升降通道11内升降;所述重块2与所述升降通道11的内壁之间形成有狭小间隙,所述重块2上形成有上下贯通的通气道21,所述通气道21内设有用于开或闭所述通气道21的通气活门22;当所述重块2加速下降且速度大于设定值时,所述通气道21封闭,所述重块2下方空气被压缩,上方空气被抽吸,产生气压差,在升降通道11内对重块2形成空气阻尼。

换而言之,通过所述提升发电装置3提升所述重块2可实现储能,而当所述重块2在重力的作用下下降驱动发电机可实现释能;在正常状态下,所述重块2升降时的速度在一定范围内,所述通气活门22保持打开状态,所述重块2上方和下方的空气可通过所述通气道21流通;而当缆绳31因意外原因而断开时,所述重块2掉落,当所述重块2加速下降且速度大于设定范围后,所述通气活门22使通气道21封闭,而当所述重块2与所述升降通道11之间的狭小间隙足够小时,所述重块2下方空气被压缩,上方空气被抽吸,产生气压差,在升降通道内对所述重块2形成空气阻尼,从而产生对所述重块2的托举作用,阻止所述重块2下降过快,缓解其所形成的过大冲击力,从根本上消除所述模块化空气阻尼结构重力储能系统的安全隐患。

上述方案优选的,所述提升发电装置3设有多组,多组提升发电装置3沿周向等距地分布在所述升降通道11上方;所述提升发电装置3包括提升机和发电机,所述提升机和所述发电机为一体式或分体式,其中所述提升发电装置3自带锁定机构,从而实现无损耗地将重块2锁定在某一高度。另外优选的,所述筒状构筑体1为钢筋混凝土结构。如此,所述重力储能模块100结构简单,仅由简单且成熟的钢筋混凝土结构以及简单且成熟的机械设备构成;所述升降通道11的上端封闭,使得所述提升发电装置3和重块2在相对密封、缓慢、无冲击的运行状况下工作,系统整体寿命或可达100年;同时,系统的运维工作简单、工作量少,所以系统的运维成本极低。本重力储能系统的能量转换效率基本取决于提升机和发电机的效率,而提升机和发电机在动力机械中效率是最高的,可达97%以上,因此该重力储能系统的能量综合转换效率或可达90%至95%。

优选的,所述提升发电装置3的数量和功率都应该为冗余配置,例如一个重块2为一万吨,则配置12台各1200吨的提升机,可加强系统的可靠性,确保重块2不会因一两台提升机故障导致断缆而掉落。

优选的,所述提升发电装置3的数量和功率都应该为冗余配置,当一两台提升发电机或缆绳出现故障甚至断缆时,其余提升发电装置3可以快速转换至发电模式,为重块2提供电磁刹车力矩,防止重块2失控掉落。

在一个重力储能模块100中,按照约3.7吨的重块2提升100米可储电1Kwh来计算,若所述重块2为混凝土填充沙石泥土等的圆柱体,每立方约2.5吨,取其外径为12米,高为30米,则重块2的重量约为8480吨,若重块2被提升100米,约可储电2300Kwh;若所述重块2的外径为20米,高为30米,则重块2的重量约为23560吨,若重块2被提升200米,约可储电12700Kwh;可见,调节重块2的直径、厚度,或增加重块2的提升高度就可大幅提高重块2的储电量;以现有成熟的材料和技术,筒状构筑体1可轻松做到内径20米,高300米,重块2也可轻松做到两三万吨,以此推算单个模块就可实现储能15Mwh以上的储电规模。该重力储能系统可由多个重力储能模块100相互紧靠组成多模块阵列,系统不仅因此更加稳固,还能轻松地将储电规模扩增至100Mwh级乃至Gwh级。所述重力储能模块100的占地面积小,方便将多个重力储能模块100组成多模块阵列,而多个阵列则可构成储能规模远超抽水蓄能的储能电站。

本实施例中,参考图5,多个重力储能模块100相互紧靠形成多模块阵列分布,不仅面积集约,结构更加合理坚固,储能规模还能实现无限扩增。

上述方案优选的,参考图2,所述重块2为钢筋混凝土结构或钢结构。其中更优的,所述重块2内部设有空腔,可以在空腔内填充任意重物,例如废矿渣等废弃物,不仅保护环境还能降低建造成本。本实施例的筒状构筑体1、重块2和提升发电装置3可模块化建造,便于该重力储能系统的扩增和推广。

上述方案中,多个重力储能模块100构成该重力储能系统,规模容易扩展;对重力储能模块100进行大数量模块化建造,投入远低于其它方式的储能系统;本重力储能系统的建造运行不依赖水,不依靠地形,也不消耗任何稀缺资源,不怕风吹日晒雨淋,也无惧酷署严寒,且不排碳也不产生任何污染,有无与仑比的可获得性、可持续性和安全性,对环境和资源都非常友好。

上述方案中,参考图1和图2,所述升降通道的上端设有封顶(图未标记),封顶上设有供所述缆绳进出的通孔(图未标记),在所述重块意外掉落时增大所述重块上下方的气压差,进一步减低所述重块的掉落速度。

上述方案优选的,参考图3,所述重块2外周设有多组沿周向等距分布的导轮24,所述导轮24滚动抵接于所述升降通道11的内壁。如此,通过所述导轮24导向,避免所述重块2与所述升降通道11的内壁接触摩擦。

在一些具体的实施方式中,为简单地实现所述通气活门22的功能,参考图3和图4,所述通气活门22包括设置在所述通气道21内的安装支架221,所述安装支架221上滑动连接滑杆222,所述滑杆222的一端连接有用于开或闭所述通气道21下端的挡板223,所述挡板223和所述安装支架221之间设置有拉簧224;在常规状态下,即重块2升降时的速度在一定范围内,所述挡板223和所述滑杆222在重力作用下抵抗所述拉簧224的拉力,使得所述通气道21的下端打开;在重块2意外掉落,加速下降且速度大于设定值时,所述拉簧224的拉力大于所述挡板223和滑杆222在加速下降时的动态重量,所述挡板223在拉簧224及所述通气道21上下方空气压差的共同驱动下封堵所述通气道21的下端。本实施例中的通气活门22结构简单,工作过程可靠稳定;进一步优选的,所述拉簧224套接在所述滑杆222上,所述拉簧224的一端连接所述安装支架221,另一端连接所述挡板223;如此所述拉簧224的结构稳定,防止拉簧224容易弯折变形。

上述方案优选的,参考图1和图3,所述升降通道11的底部设置有隔水隔气层12,利用所述隔水隔气层12隔绝空气,防止当重块2在快速下降时,重块2下方的空气被压入大地而泄气;所述隔水隔气层12例如可为混凝土垫层,或其他能够隔绝空气和水的材料。

在一些具体的实施方式中,为进一步消除所述重块2从意外下降至停止运动时的冲击力,参考图1和图3,所述升降通道11内还设有位于所述隔水隔气层12上方的冲击耗散层13,所述冲击耗散层13由液体或固体颗粒形成;所述重块2的底部设置有网格状冲击部23。如此,即使万一重块2在大地震中掉落,重块2与筒状构筑体1构成的空气阻尼结构和重块2上下所形成的空气压差将极大减慢重块2的最后下降速度,而重块2底部的网格状冲击部23会插入所述冲击耗散层13中,避免直接强碰撞,通过所述冲击耗散层13将最后的冲击力耗散掉,确保安全。本实施例中,所述冲击耗散层13优选采用沙子或/和碎石,成本低并且基本无使用寿命的限制,有利于提高系统的可获得性和可靠性。

上述方案优选的,参考图1和图5,本实施例中,所述筒状构筑体1的支撑基础14(例如桩)分布在所述升降通道11的外侧,同时重块2底部的网格状冲击部23位于重块2底部的内侧且与所述支撑基础14竖向错开,避免重块2意外下降带来的冲击力直接作用于支撑基础14,使得支撑基础14更稳定,确保所述筒状构筑体1竖直设置及结构不被破坏。

另外,所述筒状构筑体1上设置有供工作人员进出的维修门等常规配置,在此不作赘述。

以上所述仅为本发明的较佳实施方式而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

相关技术
  • 一种方便检修重力压缩空气储能系统储气室的竖井结构
  • 一种密封膜的锚固结构及重力压缩空气储能系统
技术分类

06120115614929