掌桥专利:专业的专利平台
掌桥专利
首页

一种工业尾气联产氢气、液氢和液化天然气的装置及方法

文献发布时间:2023-06-19 16:04:54



技术领域

本发明涉及一种工业尾气联产氢气、液氢和液化天然气的装置及方法,属于低温气体分离领域。

背景技术

混合气体制氢联产液氢和液化天然气主要是将焦炉煤气或其它含有氢和甲烷的混合气中的甲烷和氢气分离提纯并液化,作为储能物质,其应用比较广泛。液化天然气除了用作发电厂、工厂、家庭用户的燃料外,其中所含的甲烷可用作制造肥料、甲醇溶剂及合成醋酸等化工原料。氢气是一种清洁且无污染的新型能源,其燃烧过程只产生水蒸气并且可释放大量热量,且液氢的密度大,储运成本低,可长距离运输,主要应用于航空领域、燃料电池汽车、能源等领域,并且全球一致认为氢能在解决能源危机、全球变暖及环境污染等方面可发挥重要作用,未来国家也对氢能发展上升到国家战略。同时,我国是世界焦炭产量最大的国家,年焦炭产量约 3.8 亿t或更高,约占世界焦炭总产量的 60%,产生的焦炉煤气量巨大,价格低廉,如何高效、合理地利用是关系环保、资源综合利用、节能减排的重大课题。本专利是将这些价格低廉的焦炉煤气、粗煤气或荒煤气等生产尾气用于生产储能物质氢气、液化天然气和液氢,具有很大的成本优势,能够发挥其应用价值,具有重要的意义。

目前,焦炉煤气、粗煤气或荒煤气等工业尾气生产氢气或液化天然气的单套装置具有应用业绩,但是利用这些工业尾气生产氢气联产液氢和液化天然气还没有类似装置,如将两个产品整合到一套装置中,能够实现能量的耦合使用,起到节能降耗的目的,极大提高焦炉煤气的使用价值,同时结合碳处理技术,达到整个生产过程中低碳排放或者零碳排放,是一种经济、环保的节能装置。

发明内容

本发明的目的在于:提供了一种工业尾气联产氢气、液氢和液化天然气的装置及方法,主要处理来自以氢、甲烷、氮气、CO等气体为原料的混合气体(如焦炉煤气、粗煤气、荒煤气等工厂尾气),通过该装置可以得到纯度达到99.999%的高纯氢气或纯度达到99.9999%的超高纯氢气并副产液化天然气产品,氢气产品经氢液化装置后可得到液氢产品,回收率比较高,解决了氢气和甲烷能源物质的储能、运输问题,具有能耗低、投资小、易于调节等特点。

为实现上述目的,本发明可采取下述技术方案:

一种工业尾气联产氢气、液氢和液化天然气的装置及方法,包括分子筛的第一常温吸附净化单元,低温分离冷箱单元,低温吸附净化冷箱单元,氢气压缩机单元,循环氮气压缩机单元,混合冷剂压缩机单元, 液化天然气储罐, 氢液化装置,液氢储罐。来自以氢、甲烷、氮气、CO等气体为原料的混合气体(如焦炉煤气、转炉煤气、高炉煤气等工厂尾气),作为原料气首先通过管道送至分子筛的第一常温吸附净化单元,分子筛吸附器装填分子筛,吸附混合气中的二氧化碳、甲醇或水等低温下易凝固组分,防止这些物质冻结管道及设备。第一常温吸附净化单元配备多个程控切换阀门,实现吸附和再生的自动切换,做到无人值守,智能运行。当需要再生时,通过电加热器或蒸汽加热器将低压氮气加热后,然后通过管道将高温再生气送至分子筛吸附器,进行分子筛的再生,同时第一常温吸附净化单元的驰放气通过管道与驰放至尾气收集装置,净化后的气体引入低温分离冷箱单元。

作为优选:所述的低温分离冷箱单元总集成包括:第一主板翅式换热器中设置了共14个通道,第二主板翅式换热器中设置了共17个通道、氢气分离罐、脱氢塔、甲烷提纯塔,还包括设备连接所需要的管道、节流阀门,这些设备、管道、阀门全部放置于钢结构中,间隙内填充保温材料进行保冷。

作为优选:所述的低温分离冷箱单元的入口管道与第一主板翅式换热器的通道相连通,并在通道中冷却后通过管道与脱氢塔底部内腔的脱氢塔再沸器相连通,为精馏塔提供热量,然后通过管道与第二主板翅式换热器的通道相联通,继续冷却至-180℃后与氢气分离罐的入口管道相联通,在氢气分离罐中进行气液分离,进行氢气产品的粗分离。

作为优选:所述氢气分离罐顶部气体中的氢气含量约85%,通过管道与第二主板翅式换热器的通道的下端相连接,上端通过管道与第一主板翅式换热器的通道的下端相连通,经第二主板翅式换热器,第一主板翅式换热器回收冷量后通过管道与第二常温变压吸附单元相连接,用于提纯获得高纯氢气;氢气分离罐底部通过管道引出来的液体分为两个支路,一条支路通过管道、节流阀节流至一定压力后与第二主板翅式换热器的通道的下端相连通,对工艺液体复热,上端出口通过管道与脱氢塔的中部入口相连接,作为塔进料,另一条支路通过管道、节流阀节流至一定压力后与脱氢塔的上部入口相连接,通过调节两个支路的流量,调节精馏塔的气液比,在脱氢塔中将工艺气中的氢气组分进行脱除。

所述的脱氢塔下部内腔设置脱氢塔再沸器,用于塔底液体的加热,设备热流与工艺气管道相连通,用于工艺气为脱氢塔提供再沸热量,进一步调节精馏塔气液比,达到高效分离;该塔顶部通过管道与第二主板翅式换热器的通道的下端相连通,上端通过管道与第一主板翅式换热器的通道的下端相连通,经第二主板翅式换热器,第一主板翅式换热器回收冷量后通过管道与闪蒸气收集装置相连接;该脱氢塔底部通过管道引出来的液体经节流阀与第二主板翅式换热器的通道的下端相连通,经过换热器复热后的工艺气通过管道与甲烷提纯塔的中部入口相连接,然后在甲烷提纯塔中将工艺气中的甲烷组分进行提纯富集。

作为优选:所述的甲烷提纯塔上部内腔设置甲烷提纯塔冷凝器,用于塔顶气体的冷凝,设备冷流与氮气循环制冷管道相连通,用于氮气循环液为甲烷提纯塔提供冷量;甲烷提纯塔下部内腔设置甲烷提纯塔再沸器,用于塔底液体的加热,设备热流与氮气循环制冷管道相连通,用于氮气循环气体为甲烷提纯塔提供再沸热量,调节该塔气液比,达到高效分离;该塔底部通过管道、阀门节流后与第二主板翅式换热器的通道的上端相连通,经过换热器冷却后的液化天然气通过管道、阀门节流至0.1~0.3MPa送至液化天然气储罐贮存。该塔顶部通过管道与第二主板翅式换热器的通道的下端相连通,上端通过管道与第一主板翅式换热器的通道的下端相连通,经第二主板翅式换热器,第一主板翅式换热器回收冷量后通过管道与粗氮废气收集装置相连接。

作为优选:所述第二常温变压吸附单元的解析气经管道与解析气收集装置相连接,此部分解析气可以经压缩后重新循环至冷箱,提高产品的回收率。一部分氢气产品经管道与高纯氢气收集装置相连接,另一部分高纯氢气产品经过管道与第一主板翅式换热器的通道的上端相连通,下端通过管道与第二主板翅式换热器的通道的下端相连通,高纯氢气经冷却后通过管道与低温吸附净化冷箱单元相联通,对高纯氢气进一步纯化。

作为优选:所述低温吸附净化器内装填活性炭,吸附高纯氢气中的氮气、氧气等在80K以下温度易凝固组分,防止这些物质冻结管道及设备。吸附实现自动再生切换,配备多个程控切换阀门,实现吸附和再生通过程序自动切换,做到无人值守,智能运行。再生过程为:通过电加热器或蒸汽加热器将低压氮气加热后,然后通过管道将高温再生气送至低温吸附净化器,进行活性炭的再生,通过管道与低压氮气(热)收集装置相连通,同时低温吸附净化器的驰放气通过管道与驰放尾气收集装置相连通。

作为优选:所述的低温吸附净化冷箱单元净化后的气体的特征还包括:净化后的超高纯氢气与液氮浴冷却器的入口管道相连接,液氮浴冷却器中装填正仲氢催化剂,内部填装正仲氢转化催化剂,防止氢液化贮存后过量气化,并通过管道与氢液化装置相连通,超高纯氢气在氢液化装置中经液化后通过管道、节流阀节流至0.1~0.3MPa后送至液氢储罐贮存。

作为优选:所述来自循环氮气压缩机单元高压出口管道的高压氮气,与第一主板翅式换热器的通道上端相连通,下端通过管道与甲烷提纯塔再沸器设备相连接,为精馏塔提供再沸,甲烷提纯塔再沸器设备出口通过管道与第二主板翅式换热器的通道上端相连通,下端通过管道分为三条支路:第一条支路去低温吸附净化冷箱单元,通过管道、节流阀门节流至低低压与液氮浴冷却器的入口相连通,其出口通过管道返回低温分离冷箱,并与第二主板翅式换热器的通道下端相连通,其上端出口通过管道与第一主板翅式换热器的通道下端入口相连通,经回收冷量后的低压等级的氮气循环气体通过管道与氮气循环压缩机一级入口相连接,低低压循环回路为液氮浴冷却器提供冷量;第二条支路通过管道、节流阀门节流至低压与第二主板翅式换热器的通道下端入口相连通,其上端出口通过管道与第一主板翅式换热器的通道下端入口相连通,经回收冷量后的低压等级的氮气循环气体通过管道与氮气循环压缩机二级入口相连接,低压循环回路为主板翅式换热器提供冷量;第三条支路通过管道、节流阀门节流至中压压力与甲烷提纯塔冷凝器的入口相连通,其出口通过管道与第二主板翅式换热器的通道下端相连通,其上端出口通过管道与第一主板翅式换热器的通道下端入口相连通,经回收冷量后的中压等级的氮气循环气体通过管道与氮气循环压缩机三级入口相连接,中压循环回路为甲烷提纯塔冷凝器提供冷量。

作为优选:所述低温分离冷箱单元内部设置混合冷剂制冷循环回路,为主板翅式换热器提供冷量,来自混合冷剂压缩机单元的高压出口管道的高压混合冷剂,与第一主板翅式换热器的通道上端相连通,下端通过管道与第二主板翅式换热器的通道上端相连通,下端通过管道、节流阀门与第二主板翅式换热器的通道2o下端入口相连通,其上端出口通过管道与第一主板翅式换热器的通道下端入口相连通,经回收冷量后的低压混合冷剂气体通过管道与混合冷剂压缩机单元入口相连接,形成循环回路。

作为优选:所述低温分离冷箱单元和氢液化装置通过能量耦合设置循环氢气制冷回路,主要为氢液化装置提供80K~20K的冷量,来自氢气压缩机单元的高压出口管道的高压氢气,与第一主板翅式换热器的通道上端相连通,下端通过管道与第二主板翅式换热器的通道上端相连通,下端通过管道与氢液化装置相连通,在氢液化装置中分为两个支路,经节流或膨胀为其提供冷量后,其中第一条支路通过管道,节流阀节流至0.1MPaG与第二主板翅式换热器的通道下端入口相连通,其上端出口通过管道与第一主板翅式换热器的通道下端入口相连通,经回收冷量后的低压等级的氢气循环气体通过管道与氢气压缩机单元一级入口相连接;第二条支路通过管道、膨胀机膨胀至0.35MPaG与第二主板翅式换热器的通道2h下端入口相连通,其上端出口通过管道与第一主板翅式换热器的通道下端入口相连通,经回收冷量后的低压等级的氢气循环气体通过管道与氢气压缩机单元二级入口相连接,形成闭式循环。

作为优选:所述低温分离冷箱单元和低温吸附净化冷箱单元可以采用两个钢结构冷箱或合并成一个钢结构冷箱,冷箱内填充保温材料保冷。保温材料可以采用珠光砂、矿渣棉、泡沫玻璃、聚氨酯等。

作为优选:所述低温吸附净化冷箱单元所述的第二主板翅式换热器,第一主板翅式换热器、脱氢塔再沸器、甲烷提纯塔再沸器、甲烷提纯塔冷凝器均采用板翅式换热器,其中脱氢塔再沸器、甲烷提纯塔再沸器、甲烷提纯塔冷凝器采用内部热虹吸进行热量和冷量的交换,其变形后可放置于精馏塔塔外部采用外部热虹吸蒸发器为精馏塔提供热量,甲烷提纯塔采用规整填料或散堆填料,所述脱氢塔采用筛板、规整填料或散堆填料,精馏塔的操作弹性好,分离效率高。

本发明能从工业尾气中分离提纯高纯氢气、液氢和液化天然气产品,具有能耗低、回收率高、占地小等特点,实现了低价值尾气中高附加值组分的高效回收,同时液氢和液化天然气更加方便运输和存储。

附图说明

图1为本发明实施例一中的常温吸附净化单元结构示意图;

图2为本发明实施例一中低温分离冷箱单元结构示意图;

图3为本发明实施例一中低温吸附及氢液化部分结构示意图;

图4为本发明实施例二中低温分离冷箱单元结构示意图;

图5为本发明实施例二中低温吸附及氢液化部分结构示意图。

具体实施方式

下面结合附图,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明,以下为本发明的实施例一。

如图1-5所示,本发明所述的一种工业尾气联产氢气、液氢和液化天然气的装置,包括第一常温吸附净化单元A01,第二常温变压吸附单元A03,低温分离冷箱单元CB01,低温吸附净化冷箱单元CB02,氢气压缩机单元C01,循环氮气压缩机单元C02,混合冷剂压缩机单元C03, 液化天然气储罐V01, 氢液化装置CB03,液氢储罐V02,其中:来自以氢、甲烷、氮气、CO等气体为原料的混合气体(如焦炉煤气、粗煤气、荒煤气等工厂尾气),作为原料气首先通过管道01送至第一常温吸附净化单元A01。

如图1所示,第一常温吸附净化单元A01的分子筛吸附器A01装填分子筛,吸附混合气中的二氧化碳、甲醇或水等低温下易凝固组分,防止这些物质冻结管道及设备,净化后的气体与低温分离冷箱单元CB01的入口管道02相连接,引入低温分离冷箱单元CB01,分子筛实现自动再生切换,通过电加热器或蒸汽加热器E07将低压氮气加热后,然后通过管道03将高温再生气送至分子筛吸附器A01,进行分子筛的再生,通过管道04送出界区进行回收,同时分子筛吸附器A01的驰放气通过管道05与驰放尾气收集装置相连通。第一常温吸附净化单元A01配备程控切换阀门V01~V11,实现吸附和再生通过程序自动切换,做到无人值守,智能运行。

如图2所示,低温分离冷箱单元CB01的总集成包括:第一主板翅式换热器E01中设置了通道1a~1n共14个通道,第二主板翅式换热器E02中设置了通道2a~2q共17个通道、氢气分离罐S01、脱氢塔T01、甲烷提纯塔T02,还包括设备连接所需要的管道、节流阀门,这些设备、管道、阀门全部放置于钢结构中,间隙内填充保温材料进行保冷。

如图2的具体实施方式为:低温分离冷箱单元CB01的入口管道02与第一主板翅式换热器E01的通道1a相连通,并在通道1a中冷却后通过管道06与脱氢塔T01底部内腔的脱氢塔再沸器E03相连通,为精馏塔提供热量,通过管道07与第二主板翅式换热器E02的通道2a相联通,继续冷却后与氢气分离罐S01的入口管道08相联通。

所述的氢气分离罐S01通过管道09与第二主板翅式换热器E02的通道2c的下端相连接,上端通过管道10与第一主板翅式换热器E01的通道1c的下端相连通,经第二主板翅式换热器E02,第一主板翅式换热器E01回收冷量后通过管道11与第二常温变压吸附单元A03相连接,用于提纯高纯氢气;氢气分离罐S01底部通过管道引出来的液体分为两个支路,一条支路通过管道24、节流阀V14与第二主板翅式换热器E02的通道2d的下端相连通,对工艺液体复热,上端出口通过管道25与脱氢塔T01的中部入口相连接,另一条支路通过管道23、节流阀V13与脱氢塔T01的上部入口相连接,然后在脱氢塔T01中将工艺气中的氢气组分进行脱除。

所述的脱氢塔T01下部内腔设置脱氢塔再沸器E03,用于塔底液体的加热,设备分别与工艺气管道06、07相连通,用于工艺气为脱氢塔T01提供再沸热量;该塔顶部通过管道26与第二主板翅式换热器E02的通道2b的下端相连通,上端通过管道27与第一主板翅式换热器E01的通道1b的下端相连通,经第二主板翅式换热器E02,第一主板翅式换热器E01回收冷量后通过管道28与闪蒸气收集装置相连接;该脱氢塔T01底部通过管道29引出来的液体经节流阀V15与第二主板翅式换热器E02的通道2e的下端相连通,经过换热器E02复热后的工艺气通过管道30与甲烷提纯塔T02的中部入口相连接,然后在甲烷提纯塔T02中将工艺气中的甲烷组分进行提纯富集。

所述的甲烷提纯塔T02上部内腔设置甲烷提纯塔冷凝器E05,用于塔顶气体的冷凝,设备分别与氮气循环制冷管道44、45相连通,用于氮气循环液为甲烷提纯塔T02提供冷量;甲烷提纯塔T02下部内腔设置甲烷提纯塔再沸器E04,用于塔底液体的加热,设备分别与氮气循环制冷管道38、39相连通,用于氮气循环气体为甲烷提纯塔T02提供再沸热量;该塔底部通过管道34、阀门V16与第二主板翅式换热器E02的通道2q的上端相连通,经过换热器E02冷却后的液化天然气通过管道35、阀门V17和阀门V18与液化天然气储罐V01相连接,获得液化天然气产品并贮存;该塔顶部通过管道31与第二主板翅式换热器E02的通道2p的下端相连通,上端通过管道32与第一主板翅式换热器E01的通道1n的下端相连通,经第二主板翅式换热器E02,第一主板翅式换热器E01回收冷量后通过管道33与粗氮废气收集装置相连接。

图2所示中的第二常温变压吸附单元A03的解析气经管道3与解析气收集装置相连接,一部分产品经管道12与高纯氢气收集装置相连接,另一部分高纯氢气产品经过管道14与第一主板翅式换热器E01的通道1d的上端相连通,下端通过管道15与第二主板翅式换热器E02的通道1f的下端相连通,高纯氢气经冷却后通过管道与低温吸附净化冷箱单元CB02相联通。

如图3所示,低温吸附净化冷箱单元CB02中的低温吸附净化器A02内装填活性炭,吸附高纯氢气中的氮气、氧气等深冷温度下易凝固组分,防止这些物质冻结管道及设备。吸附实现自动再生切换,配备多个程控切换阀门V23~V33,实现吸附和再生通过程序自动切换,做到无人值守,智能运行。再生过程为:通过电加热器或蒸汽加热器E08将低压氮气加热后,然后通过管道20将高温再生气送至低温吸附净化器A02,进行活性炭的再生,通过管道21与低压氮气(热)收集装置相连通,同时低温吸附净化器A02的驰放气通过管道22与驰放尾气收集装置相连通。

经低温吸附净化器A02净化后的气体与液氮浴冷却器E06的入口管道17相连接,液氮浴冷却器E06内部填装正仲氢转化催化剂,防止氢液化贮存后过量气化,然后通过管道18与氢液化装置CB03相连通,超高纯氢气在氢液化装置CB03中经液化后通过管道19、节流阀V12与液氢储罐V02相连通,获得液氢产品并贮存。

如图2和图3所示的低温分离冷箱单元CB01和低温吸附净化冷箱单元CB02的冷量由氮气压缩循环回路、混合冷剂压缩循环回路、氢气压缩循环回路提供。

氮气压缩机循环回路具体实施如下:来自循环氮气压缩机单元C02的高压出口管道37的高压氮气,与第一主板翅式换热器E01的通道1h上端相连通,下端通过管道38与甲烷提纯塔再沸器E04设备相连接,甲烷提纯塔再沸器E04设备出口通过管道39与第二主板翅式换热器E02的通道2j上端相连通,下端通过管道40分为三条支路:第一条支路引入低温吸附净化冷箱单元CB02,通过管道48、节流阀门V22与液氮浴冷却器E06的入口相连通,其出口通过管道49返回低温分离冷箱CB01,并与第二主板翅式换热器E02的通道2m下端相连通,其上端出口通过管道50与第一主板翅式换热器E01的通道1k下端入口相连通,经回收冷量后的低压等级的氮气循环气体通过管道51与氮气循环压缩机C02一级入口相连接,低低压循环回路为液氮浴冷却器E06提供冷量;第二条支路通过管道41、节流阀门V20与第二主板翅式换热器E02的通道2l下端入口相连通,其上端出口通过管道42与第一主板翅式换热器E01的通道1j下端入口相连通,经回收冷量后的低压等级的氮气循环气体通过管道43与氮气循环压缩机C02二级入口相连接,低压循环回路为第二主板翅式换热器E02,第一主板翅式换热器E01提供冷量;第三条支路通过管道44、节流阀门V21与甲烷提纯塔冷凝器E05的入口相连通,其出口通过管道45与第二主板翅式换热器E02的通道2k下端相连通,其上端出口通过管道46与第一主板翅式换热器E01的通道1i下端入口相连通,经回收冷量后的中压等级的氮气循环气体通过管道47与氮气循环压缩机C02三级入口相连接,中压循环回路为甲烷提纯塔冷凝器E05提供冷量,形成闭式循环。

混合冷剂压缩机循环回路具体实施如下:来自混合冷剂压缩机单元C03的高压出口管道52的高压混合冷剂,与第一主板翅式换热器E01的通道1l上端相连通,下端通过管道53与第二主板翅式换热器E02的通道2n上端相连通,下端通过管道54、节流阀门V19、管道55与第二主板翅式换热器E02的通道2o下端入口相连通,其上端出口通过管道56与第一主板翅式换热器E01的通道1m下端入口相连通,经回收冷量后的低压混合冷剂气体通过管道57与合冷剂压缩机单元C03入口相连接,形成闭式循环为第二主板翅式换热器E02,第一主板翅式换热器E01提供冷量。

氢气压缩机循环回路具体实施如下:来自氢气压缩机单元C01的高压出口管道58的高压氢气,与第一主板翅式换热器E01的通道1e上端相连通,下端通过管道59与第二主板翅式换热器E02的通道2g上端相连通,下端通过管道60与氢液化装置CB03相连通,在氢液化装置CB03中分为两个支路,经节流或膨胀为其提供冷量后,其中第一条支路通过管道64与第二主板翅式换热器E02的通道2i下端入口相连通,其上端出口通过管道65与第一主板翅式换热器E01的通道1g下端入口相连通,经回收冷量后的低压等级的氢气循环气体通过管道66与氢气压缩机单元C01一级入口相连接;第二条支路通过管道61与第二主板翅式换热器E02的通道2h下端入口相连通,其上端出口通过管道62与第一主板翅式换热器E01的通道1f下端入口相连通,经回收冷量后的低压等级的氢气循环气体通过管道63与氢气压缩机单元C01二级入口相连接,形成闭式循环。

所述的低温分离冷箱单元CB01和低温吸附净化冷箱单元CB02可以采用两个钢结构冷箱或合并成一个钢结构冷箱,冷箱内填充保温材料保冷。保温材料可以采用珠光砂、矿渣棉、泡沫玻璃、聚氨酯等。

低温吸附净化冷箱单元CB02所述的第二主板翅式换热器E02,第一主板翅式换热器E01、脱氢塔再沸器E03、甲烷提纯塔再沸器E04、甲烷提纯塔冷凝器E05均采用板翅式换热器,其中脱氢塔再沸器E03、甲烷提纯塔再沸器E04、甲烷提纯塔冷凝器E05采用内部热虹吸进行热量和冷量的交换,其变形后可放置于精馏塔塔外部采用外部热虹吸蒸发器为精馏塔提供热量。

甲烷提纯塔T02采用规整填料或散堆填料,所述脱氢塔T01采用筛板、规整填料或散堆填料,精馏塔的操作弹性好,分离效率高。

实施例二

在实施例一中图1的基础上,低温分离冷箱单元CB01的变形为低温分离冷箱单元CB04,低温吸附净化冷箱单元CB02的变形为低温吸附净化冷箱CB05。

如图4所示,低温分离冷箱单元CB04是实施例一中低温分离冷箱单元CB01的变形,与实施例一不同之处在于:氢气分离罐S01顶部气体通过管道67与低温吸附净化冷箱单元CB05内的低温变压吸附单元A04相连接。

如图5所示,低温吸附净化冷箱CB05是实施一中低温吸附净化冷箱单元CB02的变形,与实施例一不同之处在于:采用低温变压吸附单元A04代替第二常温变压吸附单元A03和低温吸附净化器A02的功能特征。

如图4和图5所示,进一步具体实施方式为:来自低温变压吸附单元A04的解析气经管道72与低温分离冷箱单元CB04内的第二主板翅式换热器E02的通道2c的下端相连通,上端通过管道73与第一主板翅式换热器E01的通道1c的下端相连通,经主板翅式第二主板翅式换热器E02,第一主板翅式换热器E01回收冷量后通过管道与解析气收集装置相连接,可经压缩机压缩后返回冷箱入口提高产品回收率;低温变压吸附单元A04的一部分超高纯氢气产品经管道68与液氮浴冷却器E06的入口相连通,去氢液化装置CB03生产液氢产品,另一部分超高纯氢气产品通过管道69与低温分离冷箱单元CB04内的第二主板翅式换热器E02的通道2f的下端相连通,上端通过管道70与第一主板翅式换热器E01的通道1d的下端相连通,经第二主板翅式换热器E02,第一主板翅式换热器E01回收冷量后通过管道71与超高纯氢气产品收集装置相连接。

其中每个单元具体功能和结构如下:

常温吸附的分子筛是13X分子筛,比较常规的一种分子筛。

常温吸附净化单元(A01):主要脱除原料气中微量的二氧化碳、水、甲醇等低温下易凝固的组分,二氧化碳<1ppm、水<0.1ppm、甲醇<1ppm,分子筛型号:13X。

常温变压吸附单元(A03):在常温条件下,将氢气(大约80%-85%)、一氧化碳(大约20%)、甲烷(少量)、氮气(少量)的混合物经过此装置,得到99.99~99.999%的高纯氢气产品,并副产解析气。

低温分离冷箱单元(CB01/CB04):低温条件下,将含有氢气、一氧化碳、甲烷、氮气的混合物经过脱氢塔脱除氢气,经过甲烷提纯塔提纯得到LNG产品,并副产富氢气、闪蒸气和含氮废气。

低温吸附净化冷箱单元(CB02):将经常温变压吸附单元(A03)提纯后的高纯氢气冷却后去此装置,进一步在80K温度下经活性碳吸附,脱除其中的微量的氧气、氮气、甲烷等易在<80K易凝固的组分。

低温吸附净化冷箱单元(CB05):将经富氢气通过此装置,在80K温度下经变压吸附提纯得到超高纯氢气(99.9999%),并脱除其中的微量的氧气、氮气、甲烷等易在<80K易凝固的组分。

氢气压缩机单元(C01):循环氢气制冷压缩机,主要提供<80K的冷量。

循环氮气压缩机单元(C02):循环氮气制冷压缩机,主要提供≥80K的冷量。

混合冷剂压缩机单元(C03):为低温分离冷箱单元(CB01/CB04)提供冷量。

液化天然气储罐(V01):液化天然气(LNG)储存装置。

氢液化装置(CB03):将大约80K温度的气态氢气液化为大约20K的液氢。

液氢储罐(V02):液氢储存装置。

低温变压吸附单元(A04): 在低温(大约80K)条件下,将氢气(大约80%-85%)、一氧化碳(大约20%)、甲烷(少量)、氮气(少量)的混合物经过此装置,得到99.9999%的高纯氢气产品,同时脱除其中的微量的氧气、氮气、甲烷等易在<80K易凝固的组分,最终副产解析气。

技术分类

06120114696292