掌桥专利:专业的专利平台
掌桥专利
首页

技术领域

本发明涉及空分储能技术领域,具体涉及一种绿电高效转化低能耗空分储能工艺。

背景技术

可再生能源如风能、太阳能等技术的推广应用迫在眉睫。但是风力发电、太阳能发电等属于间歇式能源发电,如何高效合理地储存和利用这部分能源成为限制可再生能源大规模发展的关键技术瓶颈。

同时油田开采企业在采油过程中碰到诸如稠油的开采难度大,采油率低,燃气锅炉或燃煤锅炉燃烧会产生大量的CO

空分储能技术是一种利用液态空气、液氧或液氮作为储能介质的深冷储能技术,其具有效率高、成本低、使用寿命长和不受地理条件限制等特点,同时可以生产高纯度压力氮气用于油田井下驱油,应用富氧燃烧技术结合烟气循环可以提高燃气的利用率,减少燃气用量,同时提高了烟气中的CO

发明内容

本发明的目的是提供一种绿电高效转化低能耗空分储能工艺,以解决现有技术的不足。

本发明采用以下技术方案:

一种绿电高效转化低能耗空分储能工艺,所述工艺所需装置包括过滤器、空气压缩机、空气预冷系统、交替使用的分子筛吸附器、电加热器、主换热器、精馏塔I、主冷凝蒸发器I、过冷器I、精馏塔II、主冷凝蒸发器II、过冷器II、高温膨胀机、低温膨胀机、低温冷冻机、液氮泵I、循环氮压机、循环氮压机后水冷却器、液氮储槽;

过滤器、空气压缩机、空气预冷系统、交替使用的分子筛吸附器、电加热器、高温膨胀机增压端、高温膨胀机增压端后水冷却器、低温膨胀机增压端、低温膨胀机增压端后水冷却器、低温冷冻机、循环氮压机、循环氮压机后水冷却器、液氮储槽设于冷箱外,主换热器、精馏塔I、主冷凝蒸发器I、过冷器I、精馏塔II、主冷凝蒸发器II、过冷器II、高温膨胀机、低温膨胀机、液氮泵I设于冷箱内,主冷凝蒸发器I设于精馏塔I之上,主冷凝蒸发器II设于精馏塔II之上;

过滤器、空气压缩机、空气预冷系统、交替使用的分子筛吸附器和主换热器依次连接,主换热器的第一完全冷却出口和精馏塔I底部的空气进口连接;

精馏塔I底部的液空出口和过冷器I连接,过冷器I和主冷凝蒸发器I连接,过冷器I和主冷凝蒸发器I的连接管路上设有节流阀,主冷凝蒸发器I的富氧空气出口和精馏塔II连接;主冷凝蒸发器I的液空出口和主冷凝蒸发器II连接,主冷凝蒸发器I的液空出口和主冷凝蒸发器II的连接管路上设有节流阀;

精馏塔I下部的污液氮出口和过冷器I连接,过冷器I和精馏塔II连接,过冷器I和精馏塔II的连接管路上设有节流阀;

精馏塔I顶部的压力氮气出口分别和主冷凝蒸发器I、主换热器连接,主冷凝蒸发器I的液氮出口和精馏塔I顶部连接;主换热器连至循环氮压机,循环氮压机分别和油井、循环氮压机后水冷却器连接,循环氮压机后水冷却器分别和低温冷冻机、高温膨胀机增压端连接,低温冷冻机和高温膨胀机连接,高温膨胀机和主换热器连接,主换热器连至循环氮压机;高温膨胀机增压端和高温膨胀机增压端后水冷却器连接,高温膨胀机增压端后水冷却器和低温膨胀机增压端连接,低温膨胀机增压端和低温膨胀机增压端后水冷却器连接,低温膨胀机增压端后水冷却器和主换热器连接,主换热器的部分冷却出口和低温膨胀机连接,低温膨胀机和主换热器连接,主换热器连至循环氮压机;主换热器的第二完全冷却出口和精馏塔I顶部连接,主换热器的第二完全冷却出口和精馏塔I顶部的连接管路上设有高压节流阀;

精馏塔II底部的富氧液空出口和过冷器II连接,过冷器II和主冷凝蒸发器 II连接,过冷器II和主冷凝蒸发器II的连接管路上设有节流阀;主冷凝蒸发器 II的污氮气出口和过冷器II连接,过冷器II和过冷器I连接,过冷器I和主换热器连接,主换热器分别和电加热器、外部需富氧助燃设备连接,电加热器和交替使用的分子筛吸附器连接;

精馏塔II顶部的氮气出口和主冷凝蒸发器II连接,主冷凝蒸发器II的液氮出口分别和精馏塔II顶部、液氮泵I、液氮储槽连接,液氮泵I和过冷器II连接,过冷器II和精馏塔I顶部连接;

装置所需电能由绿电提供;

所述工艺包括如下步骤:

步骤一、将原料空气经过滤器过滤掉灰尘和机械杂质后,进入空气压缩机将空气压缩到设定压力;之后经空气预冷系统预冷后进入交替使用的分子筛吸附器中纯化;

步骤二、纯化后的空气一小部分用于仪表空气,其余部分进入主换热器冷却至饱和温度并带有一定的含湿后进入精馏塔I底部参与精馏;

步骤三、空气经精馏塔I精馏后分离为液空、污液氮和压力氮气,液空经过冷器I过冷、节流阀节流后进入主冷凝蒸发器I和压力氮气换热,液空被汽化为富氧空气,富氧空气引入精馏塔II底部参与精馏,引出部分液空经节流阀节流后引入主冷凝蒸发器II;污液氮经过冷器I过冷、节流阀节流后进入精馏塔II 参与精馏;部分压力氮气引入主冷凝蒸发器I和液空换热,压力氮气被液化为液氮,液氮引入精馏塔I顶部作为回流液;其余压力氮气经主换热器复热后出冷箱作为循环氮气进入循环氮压机增压后引出部分直接或进一步增压后作为中、高压氮气去油井驱油,其余经循环氮压机后水冷却器冷却后分为两部分,一部分经低温冷冻机冷却后引入高温膨胀机膨胀,膨胀后氮气经主换热器复热后出冷箱作为循环氮气进入循环氮压机,另一部分经高温膨胀机增压端增压、高温膨胀机增压端后水冷却器冷却、低温膨胀机增压端增压、低温膨胀机增压端后水冷却器冷却后引入主换热器分成两股,一股部分冷却后引入低温膨胀机膨胀,膨胀后氮气经主换热器复热后出冷箱作为循环氮气进入循环氮压机,另一股冷却至液化经高压节流阀节流后引入精馏塔I顶部作为回流液;

步骤四、富氧空气、污液氮经精馏塔II精馏后分离为富氧液空和氮气,富氧液空经过冷器II过冷、节流阀节流后进入主冷凝蒸发器II和氮气换热,富氧液空被汽化为污氮气,污氮气依次经过冷器II、过冷器I和主换热器复热后出冷箱,部分作为再生气由电加热器加热后引入交替使用的分子筛吸附器,部分作为富氧供外部需富氧助燃设备;氮气引入主冷凝蒸发器II和富氧液空换热,氮气被液化为液氮,部分液氮引入精馏塔II顶部作为回流液,部分液氮经液氮泵I 增压后经过冷器II复热后引入精馏塔I顶部作为回流液,其余液氮引入液氮储槽进行液体储能及后备。

进一步地,液氮储槽和液氮泵II连接,液氮泵II和液氮汽化器连接,液氮汽化器连至油井和/或膨胀发电系统;具体为:液氮储槽中的液氮经液氮泵II增压、液氮汽化器汽化为中、高压氮气,中、高压氮气去油井驱油,和/或去膨胀发电系统膨胀发电。

进一步地,空气压缩机为透平空气压缩机。

进一步地,高温膨胀机为高温增压透平膨胀机,低温膨胀机为低温增压透平膨胀机。

进一步地,步骤一空气经空气压缩机压缩到0.6-1.0MPaG。

进一步地,步骤一空气经空气预冷系统预冷至10-15℃。

进一步地,步骤三中、高压氮气纯度为≤3ppmO

进一步地,液氮储槽中的液氮经液氮泵II增压、液氮汽化器汽化为中、高压氮气,中、高压氮气纯度为≤3ppmO

进一步地,所述绿电是由可再生能源发电所得,可再生能源包括太阳能、风能。

本发明的有益效果:

1、本发明利用太阳能、风能等产生的绿电同时制取中、高压氮气及液氮,中、高压氮气可以去油井驱油,提高油井采收率,避免井壁氧腐蚀,同时减少高温高压蒸汽的使用量;通过液氮将太阳能、风能等产生的绿电以液体形式储存,后续液氮经液氮泵增压液氮汽化器汽化后去油井驱油和/或膨胀发电,实现了绿电的高效转化及利用,结合空分的液态储能及发电,可以平衡区域电网的峰谷用电,提高了绿电的利用率。此外,本发明还可提供高纯度富氧,去燃气锅炉或燃煤锅炉等燃烧,提高燃气或煤粉燃烧效率,提高燃料利用率,降低燃料消耗,结合烟气循环可以实现烟气中CO

2、本发明采用双塔精馏,增加精馏塔II用于将精馏塔I分离出的富氧空气、污液氮再次精馏,有效提高了装置氮的提取率。

3、本发明设置了双过冷器,增加过冷器II,用于过冷精馏塔II底部的富氧液空,以回收返流污氮气及增压后过冷液氮的部分冷量转移至精馏塔II,减少富氧液空节流后汽化率,增大精馏塔II回流液氮量,提高精馏塔II氮组分的提取率,降低装置能耗。

4、本发明采用双主冷凝蒸发器,设置主冷凝蒸发器II,因主冷凝蒸发器I 中液空中含氧量较精馏塔II富氧液空含氧量低,在精馏塔II精馏压力不变及满足主冷凝蒸发器I换热的情况下,可以降低精馏塔I的压力,从而降低进入精馏塔I的空气压力,进而降低装置能耗。

5、本发明从精馏塔I中引一股污液氮经过冷器I过冷、节流阀节流后引入精馏塔II参与精馏,将冷量从精馏塔I转移至精馏塔II,降低了精馏塔I的负荷,同时改善了精馏塔II的回流量,提高了精馏塔II氮组分的提取率,使负荷分配更合理,也提高了装置整体氮的提取率,降低装置能耗。

6、本发明主冷凝蒸发器II中氮气冷凝后的部分液氮经液氮泵增压后再经过冷器II复热后引入精馏塔I作为回流液,一方面利用液氮泵增压提高进入精馏塔 I液氮的压力,降低了装置的能耗,另一方面利用过冷器II回收该液氮部分冷量,将冷量转移至精馏塔II,减少富氧液空节流后汽化率,增大精馏塔II回流液氮量,提高精馏塔II氮组分的提取率,从而进一步降低装置能耗。

7、本发明膨胀采用氮气循环、双增压双膨胀带低温冷冻机制冷工艺,主要用于制取装置和生产液氮所需冷量;双增压主要用于回收膨胀功,同时使膨胀介质压力升高以制取更多冷量;高低温膨胀机,使部分氮气在临界状态下膨胀制取装置及生产液氮所需冷量,膨胀效率高,装置能耗低;低温冷冻机主要是利用高能效比,降低主换热器的热负荷,可以更有效地节能降耗。

8、本发明经双增压后的氮气压力达到约6.0MpaG,经过主换热器后会被液化为液氮,液氮再经节流阀节流后引入精馏塔I作为回流液,使氮气在临界状态下液化,可以有效降低液化功,降低装置所需能耗。

附图说明

图1为本发明工艺所需装置结构示意图。

具体实施方式

下面结合实施例和附图对本发明做更进一步地解释。下列实施例仅用于说明本发明,但并不用来限定本发明的实施范围。

一种绿电高效转化低能耗空分储能工艺,所述工艺所需装置如图1所示,包括过滤器1、空气压缩机2、空气预冷系统3、交替使用的分子筛吸附器4、电加热器5、主换热器6、精馏塔I7、主冷凝蒸发器I8、过冷器I11、精馏塔II9、主冷凝蒸发器II10、过冷器II12、高温膨胀机13、低温膨胀机14、低温冷冻机15、液氮泵I16、循环氮压机18、循环氮压机后水冷却器19、液氮储槽20、液氮泵 II17、液氮汽化器21;空气预冷系统3为空气预冷机组或空冷塔/水冷塔,图1 中示意为空冷塔/水冷塔(301空冷塔、302水冷塔、303水泵、304冷水机组);优选地,空气压缩机2为透平空气压缩机,高温膨胀机13为高温增压透平膨胀机,低温膨胀机14为低温增压透平膨胀机;

过滤器1、空气压缩机2、空气预冷系统3、交替使用的分子筛吸附器4、电加热器5、高温膨胀机增压端131、高温膨胀机增压端后水冷却器132、低温膨胀机增压端141、低温膨胀机增压端后水冷却器142、低温冷冻机15、循环氮压机18、循环氮压机后水冷却器19、液氮储槽20、液氮泵II17、液氮汽化器21 设于冷箱外,主换热器6、精馏塔I7、主冷凝蒸发器I8、过冷器I11、精馏塔II9、主冷凝蒸发器II10、过冷器II12、高温膨胀机13、低温膨胀机14、液氮泵I16 设于冷箱内,主冷凝蒸发器I8设于精馏塔I7之上,主冷凝蒸发器II10设于精馏塔II9之上;

过滤器1、空气压缩机2、空气预冷系统3、交替使用的分子筛吸附器4和主换热器6依次连接,主换热器6的第一完全冷却出口和精馏塔I7底部的空气进口连接;

精馏塔I7底部的液空出口和过冷器I11连接,过冷器I11和主冷凝蒸发器I8 连接,过冷器I11和主冷凝蒸发器I8的连接管路上设有节流阀,主冷凝蒸发器 I8的富氧空气出口和精馏塔II9连接;主冷凝蒸发器I8的液空出口和主冷凝蒸发器II10连接,主冷凝蒸发器I8的液空出口和主冷凝蒸发器II10的连接管路上设有节流阀;

精馏塔I7下部的污液氮出口和过冷器I11连接,过冷器I11和精馏塔II9连接,过冷器I11和精馏塔II9的连接管路上设有节流阀;

精馏塔I7顶部的压力氮气出口分别和主冷凝蒸发器I8、主换热器6连接,主冷凝蒸发器I8的液氮出口和精馏塔I7顶部连接;主换热器6连至循环氮压机18,循环氮压机18分别和油井22、循环氮压机后水冷却器19连接,循环氮压机后水冷却器19分别和低温冷冻机15、高温膨胀机增压端连131接,低温冷冻机15和高温膨胀机13连接,高温膨胀机13和主换热器6连接,主换热器6连至循环氮压机18;高温膨胀机增压端131和高温膨胀机增压端后水冷却器132 连接,高温膨胀机增压端后水冷却器132和低温膨胀机增压端141连接,低温膨胀机增压端141和低温膨胀机增压端后水冷却器142连接,低温膨胀机增压端后水冷却器142和主换热器6连接,主换热器6的部分冷却出口和低温膨胀机14 连接,低温膨胀机14和主换热器6连接,主换热器6连至循环氮压机18;主换热器6的第二完全冷却出口和精馏塔I7顶部连接,主换热器6的第二完全冷却出口和精馏塔I7顶部的连接管路上设有高压节流阀;

精馏塔II9底部的富氧液空出口和过冷器II12连接,过冷器II12和主冷凝蒸发器II10连接,过冷器II12和主冷凝蒸发器II10的连接管路上设有节流阀;主冷凝蒸发器II10的污氮气出口和过冷器II12连接,过冷器II12和过冷器I11连接,过冷器I11和主换热器6连接,主换热器6分别和电加热器5、外部需富氧助燃设备(如燃气锅炉或燃煤锅炉)连接,电加热器5和交替使用的分子筛吸附器4连接;

精馏塔II9顶部的氮气出口和主冷凝蒸发器II10连接,主冷凝蒸发器II10 的液氮出口分别和精馏塔II9顶部、液氮泵I16、液氮储槽20连接,液氮泵I16 和过冷器II12连接,过冷器II12和精馏塔I7顶部连接;液氮储槽20和液氮泵 II17连接,液氮泵II17和液氮汽化器21连接,液氮汽化器21连至油井22和/ 或膨胀发电系统23。

上述各部件的功能如下:

过滤器1,用于过滤原料空气中的灰尘和机械杂质;

空气压缩机2,用于将过滤后的空气压缩到设定压力;

空气预冷系统3,用于将过滤、压缩后的空气预冷;

交替使用的分子筛吸附器4,用于将过滤、压缩、预冷后的空气纯化,去除水分、CO

电加热器5,用于加热污氮气以再生交替使用的分子筛吸附器4;

主换热器6,用于将纯化后的空气完全冷却,将经低温膨胀机增压端141增压并经低温膨胀机增压后水冷却器142冷却后的氮气部分冷却、完全冷却,将压力氮气、高温膨胀机13膨胀后氮气、低温膨胀机14膨胀后氮气、污氮气复热;

精馏塔I7,用于将空气精馏而分离为压力氮气和液空;

主冷凝蒸发器I8,用于液空和压力氮气换热,液空被汽化为富氧空气,压力氮气被液化为液氮;

精馏塔II9,用于将富氧空气、污液氮精馏而分离为富氧液空和氮气;

主冷凝蒸发器II10,用于富氧液空和氮气换热,富氧液空被汽化为污氮气,氮气被液化为液氮;

过冷器I11,用于将液空、污液氮过冷,用于将污氮气复热;

过冷器II12,用于将富氧液空过冷,将经液氮泵I16增压后的液氮、污氮气复热;

高温膨胀机13,用于将低温冷冻机15冷却后的氮气膨胀制冷;

低温膨胀机14,用于将主换热器6部分冷却后的氮气膨胀制冷;

低温冷冻机15,用于将经循环氮压机后水冷却器19冷却后的部分氮气冷却;

液氮泵I16,用于将主冷凝蒸发器II10引出的部分液氮增压;

液氮泵II17,用于将液氮储槽20中的液氮增压;

循环氮压机18,用于将引入的氮气增压;

循环氮压机后水冷却器19,用于将经循环氮压机18增压后的部分氮气冷却;

液氮储槽20,用于储存主冷凝蒸发器II10引出的部分液氮;

液氮汽化器21,用于将经液氮泵II17增压后的液氮汽化。

装置(除液氮储槽之后的储能利用部件)所需电能由绿电提供,所述绿电是由可再生能源发电所得,可再生能源包括太阳能、风能等。

所述工艺包括如下步骤:

步骤一、将原料空气经过滤器1过滤掉灰尘和机械杂质后,进入空气压缩机 2将空气压缩到0.6-1.0MPaG;之后经空气预冷系统3预冷至10-15℃后进入交替使用的分子筛吸附器4中纯化,去除水分、CO

步骤二、纯化后的空气一小部分用于仪表空气(图1中未示意出),其余部分进入主换热器6冷却至饱和温度并带有一定的含湿后进入精馏塔I7底部参与精馏;

步骤三、空气经精馏塔I7精馏后分离为液空、污液氮(氧组分33v%-40v%O

步骤四、富氧空气、污液氮经精馏塔II9精馏后分离为富氧液空和氮气(≤3ppmO

技术分类

06120114700688