掌桥专利:专业的专利平台
掌桥专利
首页

基底发热-溶剂蒸发的纳米材料宏观复合体的制备方法

文献发布时间:2023-06-19 16:06:26



技术领域

本发明涉及了一种新型制备纳米材料宏观复合体的方法,具体涉及了一类利用基底发热产生的局域高温和溶剂蒸发浓缩效应,协同加速宏观组装体上纳米材料成核及生长的技术方法,属于无机、无机-有机杂化物的制备技术领域。

背景技术

因具有大比表面积、高表面能、丰富的光、电、磁、热等物理和化学性质等特点,纳米材料在能源储存与转化、气体分离、催化、传感等诸多领域展现了良好的应用前景和·潜能。但多数纳米材料呈细小粉末状存在,不仅不便于实际操作(难称取、分散、回收等),也限制了其优异性能在应用领域的充分发挥,因此,将纳米材料集成至各类基底表面/内部制作成易于宏观操作的复合体器件(定义为纳米材料宏观复合体,简称复合体,如纤维、薄膜、气凝胶等),具有深远的学术意义和广泛的应用价值。

纳米材料的集成策略可分为混合-包埋和原位生长两大类,其中,得益于方法简单直接、产物活性高等优势,原位生长法得到了大量研究与广泛应用。为了提高制备效率,并提高纳米材料在器件中的负载量及稳定性,有大量研究通过基底的前处理/修饰和外源供能两类途径促进基底上纳米材料的成核与生长。目前,基底前处理方法主要包括活化(如酸化、煅烧、电化学)、负载连接剂(如多巴胺、蛋白质、纤维素)及沉积金属源(如电子束蒸发、化学生长)等,这些方法通过丰富基底上纳米材料的结合位点以促进其成核和生长,显著地提升了纳米材料的负载量,但多数步骤繁琐且复杂,增加了复合体的制备耗时与耗能。另一方面,由于一些纳米材料合成条件严苛、反应能垒高难成核生长等特点,诸多技术如水热/溶剂热、微波、超声、蒸发等被引入供能,以促进纳米材料的成核与生长。

这些技术从不同方面提高了复合体的制备效率,但多数需借助大型仪器设备并实施严格控制的反应条件实现,如高温、高压、密封等。与此同时,由于多数方法所施加的能量是经反应溶液传至基底,加之纳米材料本身易于均相成核,这导致了大量非预期的游离颗粒在溶液中形成,不仅消耗着大量能量与原料,也与其在基底上的成核与生长构成竞争关系,使得方法对复合体的制备效率提升有限。

综上,原位法制备复合体普遍存在步骤多、耗时长、原料和能耗的利用率低、反应条件严苛、对设备要求高、成本高等缺点,不利于其工业化大规模的生产和应用,如何实现复合体的简单、高效制备是领域中的热点和难点问题。

发明内容

本发明的目的在于提供一种简单、高效的复合体制备方法,解决纳米材料粉末状态限制其实际应用的问题。

本发明采用的技术方案及具体制备步骤如下:

1)前期准备:按需将基底裁成特定大小,将基底放置,配制合成纳米材料所需的反应前驱体溶液;

2)将少量前驱体溶液均匀滴涂于基底上/内;

所述2)中的少量前驱体溶液为微升量级,具体可以为1-10微升,相比现有技术降低两个数量级。

3)通过一定发热方式使基底发热产生高温并向基底上/内的前驱体溶液传热,一段时间后终止基底发热以结束合成,取下基底并充分清洗,而后经干燥、活化等步骤制得对应的纳米材料宏观复合体。

本发明产生的高温一方面将诱导和促进纳米材料在基底表面及其附近区域内成核及生长;另一方面,又促使基底表面少量溶剂受热迅速蒸发,导致溶剂体积减少前驱体被浓缩,进而协同局域高温进一步加速更多纳米材料的成核与生长。

所述的基底的材料种类包括但不限于碳材料(碳黑、石墨烯、碳纳米管)、二维过渡金属硫族化合物、金属(金、镍)、金属氧化物等。

所述的基底的材料形式采用可直接或间接产热或者传热的材料,包括但不限于一维纤维、二维膜和布、三维海绵和泡沫等。

所述步骤3)中,基底的发热方式为所有使基底材料迅速升温的方式,包括电热、光热、微波加热等基底自身直接产生焦耳热的方式,也包括将基底置于热台表面传热等间接被加热的方式。

所述的反应前驱体溶液主要成分包括反应原料A、溶剂B和生长调节剂C,A和C充分溶解于溶剂B,且混合均匀。

所述反应前驱体溶液中,反应原料A的浓度为0.1-200mM,反应原料A包括但不限于无机金属离子、有机物。

所述无机金属离子种类采用Cu

所述有机物采用均苯三甲酸、对苯二甲酸、2-氨基对苯二甲酸、2-甲基咪唑或富马酸。

所述反应前驱体溶液中,溶剂B包括但不限于水、乙醇(EtOH)或N,N-二甲基甲酰胺(DMF)中的一种或者多种的混合。

所述的反应前驱体溶液还包括生长调节剂C,生长调节剂C依据合成反应的需要添加,种类包括但不限于乙二胺、三乙胺或聚乙烯吡咯烷酮。

所述反应前驱体溶液中,生长调节剂C的体积分数为0.1-10%。

所述的纳米材料宏观复合体中纳米材料的种类包括但不限于金属有机框架(MOFs)、共价有机框架(COFs)、金属及其氧化物等所有通过溶剂热方式制备的材料。金属有机框架(MOFs)如HKUST-1(CuBTC)、ZIF-8、ZnBDC、MIL-88A、MIL-88B、TbBTC、EuBTC或UiO-66等。

所述的纳米材料宏观复合体的成分为单一组分,或者为二元、三元等多组分,组分由反应前驱体溶液中反应原料的种类决定。

本发明所得的纳米材料宏观复合体包含上述基底种类与纳米材料种类之间排列组合形成的所有可能。

本发明通过特定的制备方法制备获得了复合体材料,以极短时间仅加入极少量的原料就能实现性能同样优异的产物结果,实现了高效的制备。

当反应原料A为无机金属离子时,反应原料A的浓度为0.1-200mM,溶剂B采用水或有机溶剂。

当基底为可发热材料时,所述的发热方式为电热、微波加热、光热等刺激-发热行为,以施加刺激的时间长度作为反应时间。

当基底为导热材料时,所述的发热方式为热台加热。

所述步骤3)中,在二维平面的基底上前驱体溶液的体积量为5-15μL cm

前驱体溶液体积根据基底可容纳的液体体积、前驱体粘度、前驱体与基底的亲和性调整,以前驱体刚好覆盖反应部分为宜。

所述步骤3)中,高温温度为常温至纳米材料或基底材料能承受的最高温度,以基底在反应时间内达到的温度低于纳米材料的热分解温度为参考;反应时间为0.01-15s;清洗溶剂为水、乙醇EtOH、丙酮或水-乙醇-DMF;干燥温度为60-150℃,时间为6-24h。

所述的纳米材料宏观复合体用于包括但不限于水体净化、气体分离、催化、传感等方面。

本发明通过调控基底表面/内部产生的局域高温,同步结合基底表面少量前驱体蒸发浓缩效应,协同诱导并促进纳米材料的快速成核与生长,最终得到结构完整、品质优良的复合体器件。与现有技术相比,本发明的优点如下:

1)通过“基底发热-蒸发浓缩”效应协同促进纳米材料在基底的成核和生长,极大地提升了器件的制备效率:能耗低、反应时间缩短至秒级或者亚秒级、原料浓度最低可降至微摩尔每升量级。

2)制备步骤简洁、操作简单,对仪器和环境要求低,仅需电源控制基底发热,在常温、常压、大气环境中即可进行。

3)基底上纳米材料的生长进程、结构、形貌、位置分布等可通过控制基底发热情况调控。

4)所得复合体中,基底的结构、物理化学性质等保存良好,其上纳米材料品质优良,具有连续、均匀、比表面积大等特点,作为有效吸附剂在水体净化领域中展现了优良的应用性能。

附图说明

图1为实施例1中石墨烯膜基底(GF,A)和产物HKUST-1/GF-1(B)的扫描电镜图。

图2为实施例1中HKUST-1/GF-1的X射线粉末衍射图(XRD,A)及其吸附亚甲基蓝(MB)前后,MB溶液的数码照片及紫外可见吸收光谱对比图(B)。

图3为与实施例1相同前驱体浓度条件,采用其他常规方法制备的产物HKUST-1/GF的扫描电镜图。各图反应条件如下:A-常温对照组400μL前驱体、25℃反应(A1反应时长为1min、A2为10min),B-溶剂热组400μL前驱体、120℃反应(B1时长1min、B2为10min)。

图4为实施例2中产物HKUST-1/GF-2的扫描电镜图。

图5为实施例3中产物HKUST-1/GF-3的扫描电镜图。

图6为实施例4中产物MIL-88A/GF的扫描电镜图。

具体实施方式

为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图与实施例对本发明提供的方法进行详细描述。以下实施例仅用于说明本发明而非用于限制本发明的范围。

本发明实施例如下:

实施例1 HKUST-1/GF-1

采用电热方式使GF产生局域焦耳热制备HKUST-1/GF-1,具体制备方法如下:

将GF洗净、干燥并裁剪成2mm×2.25cm大小。搭建合成反应装置:GF水平、悬空放置,中间留1cm宽的反应区用于滴涂反应前驱体,两端固定并通过银胶与导线相连,导线与电源的正、负两级相连。将255mM Cu(NO

表征结果如下:

用场发射扫描电子显微镜观察对所实施例1制得的HKUST-1/GF-1的结构和形貌进行了表征。反应前,基底GF由大量石墨烯片层紧密堆叠而成,如图1-A所示,其表面较为光滑,并有许多微褶皱分布。反应后,GF上出现了一层平整、均匀、基本无缝隙的致密膜,膜内晶体棱角分明但彼此紧密连接共生(图1-B)。进一步采用XRD对GF和HKUST-1/GF-1的物相组成进行了分析,结果如图2-A所示。2θ为5-45°范围内,GF仅在26.43°处有一明显的特征峰,对应石墨烯的(002)面。而HKUST-1/GF-1样品除了26.43°处石墨烯的特征峰外,还在2θ为5.45、6.71、9.45、11.58、13.46、14.28、14.61、16.49、17.40、18.93和20.20°等多处有特征峰,分别对应HKUST-1的(111)、(200)、(220)、(222)、(400)、(331)、(420)、(422)、(511)、(440)和(620)等晶面,同时2θ为36.4、42.3和43.3°等处无常见杂质Cu

本实施例1的应用性能验证情况如下:

将所得HKUST-1/GF-1用于MB吸附以评估HKUST-1的品质及其用于水体净化的应用性能。如图2-B插图所示,经HKUST-1/GF-1浸泡后,MB溶液由蓝色转变为浅蓝色,经O.D.下降比例和HKUST-1含量占比计算求得,HKUST-1/GF-1中HKUST-1吸附MB的饱和吸附容量为365mg g

与其他制备方法对比例结果如下:

为了比较该方法与常规制备方法的区别,尤其是制备效率优势,本处设置了两组对照实验,分别模拟了常温反应和溶剂热法制备HKUST-1/GF复合体。

对比例1

将GF静置于相同浓度、大体积(400μL)的前驱体中,常温(即不发热)、密封反应10和60min,所得产物SEM表征结果如图3-A所示。10min时GF上几乎无晶体(图3-A1),反应60min后GF上出现少量HKUST-1小晶核,粒径约50-150nm(图3-A2),这反映该前驱体浓度和常温条件下,HKUST-1难以在短时间内成核并长大。

对比例2

将实施例1的相同原料体系置于120℃烘箱反应10和60min(模拟常规溶剂热制备),所得HKUST-1/G CF的SEM表征结果如图3-B所示。反应10min时前驱体仍为澄清透明的蓝色溶液,GF上少量HKUST-1晶种生成(图3-B1)。反应60min后溶液中出现了大量蓝色物质,微观下(图3-B2),GF上主要是100-300nm球形颗粒,并附着有少量完整的微米级HKUST-1八面体(图3-B2,插图)。

该结果一方面说明相较常温下反应,高温能诱导并促进HKUST-1的成核与生长,但热量是从外部空气氛围经前驱体溶液最后传导至GF表面,再加之MOFs本身易于在溶液中均相成核,因此这些热量主要作用于溶液生成游离的HKUST-1颗粒(对应溶液中出现的大量蓝色沉淀),而非预期的在GF上原位生长形成HKUST-1/GF。同时,生成这些游离的微米级HKUST-1大颗粒也消耗了大量反应前驱体,这进一步降低了反应效率,更不利于GF上HKUST-1的高效负载。

将两组对照与实验组的过程、产物与效率对比,体现了该方法相较于常规制备方法的超高效率,不仅时间耗时短(制备用时缩短至少4个数量级(少于1s),所需原料用量可下降2个数量级),而且仪器、装置及操作简单,在常温、常压环境中即可开展。

实施例2 HKUST-1/GF-2

采用电热方式使GF产生局域焦耳热制备HKUST-1/GF-2,具体制备方法如下:

按前述步骤搭建制备装置,反应区宽为1cm。将255mM Cu(NO

表征结果如下:

如图3,实施例2所得HKUST-1/GF-2的扫描电子显微镜观察结果显示,电流大小为2.5A条件下制得的HKUST-1/GF-2中HKUST-1为典型的八面体颗粒状,直径约350nm。相较实施例1(电流大小为3A)制得的产物,此时GF上HKUST-1的数量和大小明显减少,这主要源于电流减少焦耳热效应减弱,HKUST-1的生长进程随GF表面温度降低而减慢,该结果体现了该方法能通过电流程序控制MOFs等纳米材料的成核与生长反应进程与快慢。

实施例3 HKUST-1/GF-3

采用电热方式使GF产生局域焦耳热制备HKUST-1/GF-3,具体制备方法如下:

按前述步骤搭建制备装置,反应区宽为1cm。将2.55mM Cu(NO

表征结果如下:

如图4,实施例3所得HKUST-1/GF-3的扫描电子显微镜观察结果显示,当前驱体浓度降低至mM级(比常规浓度(实施例1)降低2个数量级)时,GF上仍有大量HKUST-1八面体颗粒生成,这得益于蒸发浓缩效应对HKUST-1生长的促进作用。该结果展示了本发明方法的优越性,相较常规方法,本发明方法显著降低了反应原料的使用量,提升了反应原料的利用率。

实施例4 MIL-88A/GF

采用电热方式使GF产生局域焦耳热制备MIL-88A/GF,具体制备方法如下:

按前述步骤搭建制备装置,反应区宽为1cm。将GF洗净、干燥并裁剪成2mm×2.25cm大小,水平置于反应区,而后通过银胶将GF的两端固定于载玻片,并通过铜箔和导线与电源的正、负两级相连。将0.04M FeCl

表征结果如下:

如图5,实施例4的扫描电子显微镜观察结果显示,MIL-88A/GF中MIL-88A呈典型的纺锤体,且相互之间共生、紧密相连,证明了该方法对其他MOFs器件的制备具有普适性。

技术分类

06120114708648