掌桥专利:专业的专利平台
掌桥专利
首页

一种可折叠的显示装置和电子设备

文献发布时间:2023-06-19 16:11:11



本申请要求于2021年01月18日提交中国专利局、申请号为202110063298.0、发明名称为“一种可折叠的显示装置和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。

技术领域

本申请实施例涉及显示技术领域,特别涉及一种可折叠的显示装置和电子设备。

背景技术

随着技术的不断发展,折叠屏成为未来移动电子产品的一个发展趋势。采用了折叠屏的终端可以自由的展开与折叠,增强了用户体验。折叠屏在展开的状态下,可以提供较多的显示面积,提升显示效果。在折叠状态时,方便用户携带。

但是,折叠屏经过反复折叠后,在折叠区域会出现弯折拱起问题,导致平整度不好,影响用户体验。

发明内容

本申请提供了一种显示装置和具有显示装置的电子设备,可以解决折叠屏在反复折叠出现的弯折拱起问题,有助于提高用户体验。

第一方面,提供了一种可折叠的显示装置,所述可折叠的显示装置包括:显示面板;堆叠在所述显示面板两侧的第超薄玻璃和第二超薄玻璃;第一粘贴层,位于所述显示面板与所述第一超薄玻璃之间;第二粘贴层,位于所述显示面板与所述第二超薄玻璃之间;其中,由所述第一超薄玻璃、所述第一粘贴层、所述显示面板、所述第二粘贴层和所述第二超薄玻璃组成的堆叠结构,分为第一区域,第二区域,以及折叠区域,其中所述折叠区域位于所述第一区域和所述第二区域之间,所述第一区域和所述第二区域沿所述折叠区域对折或展开;其中,所述第一粘贴层和所述第二粘贴层的弹性模量的范围为15Kpa至100Kpa.

如图4所示,显示面板205两侧有超薄玻璃2031和超薄玻璃2032,其中显示面板205、超薄玻璃2031和超薄玻璃2032呈现堆叠结构。粘贴层A6位于显示面板205与超薄玻璃2032之间,粘贴层A4位于显示面板205与超薄玻璃2031之间。可折叠的显示装置可以分为非弯折区,以及弯折区。在显示面板205两侧采用低弹性模量的粘贴层A6与粘贴层A4,其中所述粘贴层A6与粘贴层A4堆叠在显示面板两侧。由于低弹性模量的粘贴层拥有更低的剪切应力值,采用低弹性模量的粘贴层可以增强显示模组的可折叠弯折性能,在显示模组弯折过程中释放弯折应力,可以更加快速的恢复展平,可以增强显示模组的可折叠弯折性能,避免显示模组在折叠时候损坏。

经过实验,未使用超薄玻璃的显示装置静态弯折之后展平角度为70°,通过在显示面板上方使用第一张超薄玻璃,在显示面板下方使用第二张超薄玻璃,使用超薄玻璃的显示装置静态弯折之后展平的角度100°,大幅度减轻显示装置弯折拱起的程度。

结合第一方面,在第一方面的某些可能的实现方式中,所述粘贴层的弹性模量为30Kpa、45Kpa或者50Kpa。

通过采用弹性模量为30Kpa、45Kpa或者50Kpa的粘贴层,在增强显示模组的可折叠弯折性能的同时,粘贴层也可以保持粘接力,可以更好的起到粘接作用,防止显示模组功能层之间因粘接不牢固而发送脱落现象。

结合第一方面,在第一方面的某些可能的实现方式中,所述第一粘贴层的弹性模量与所述第二粘贴层的弹性模量不同。

通过在显示面板一侧(例如,背光侧)采用不同弹性模量的粘贴层,可以增强显示模组的可折叠弯折性能的同时,也可以为显示模组折叠后展平提供支撑力。

结合第一方面,在第一方面的某些可能的实现方式中,所述第一粘贴层和/或所述第二粘贴层在弯折区与非弯折区具有不同弹性模量。

结合第一方面,在第一方面的某些可能的实现方式中,所述第一粘贴层和/或所述第二粘贴层具有渐变弹性模量(例如,在越靠近弯折区的位置,粘贴层的弹性模量越小,或者粘贴层在沿厚度方向的弹性模量为渐变)。

结合第一方面,在第一方面的某些可能的实现方式中,所述第一粘贴层和/或所述第二粘贴层在弯折区的弹性模量小于非弯折区的弹性模量。

在弯折区与非弯折区采用具有不同弹性模量的粘贴层,可以在增强显示模组的可折叠弯折性能,同时也可以提供显示模组弯折后恢复平整所需的支撑力。

结合第一方面,在第一方面的某些可能的实现方式中,所述第一粘贴层和所述第二粘贴层的厚度至少为15um。

结合第一方面,在第一方面的某些可能的实现方式中,在显示面板两侧的所述第一粘贴层和所述第二粘贴层厚度范围为15um至45um,其中所述粘贴层堆叠在显示面板两侧。

结合第一方面,在第一方面的某些可能的实现方式中,所述第一粘贴层和所述第二粘贴层的厚度为75um,100um,125um,或150um的粘贴层。这样可以在增强显示模组的可折叠弯折性能的同时,不会显著增加显示模组的厚度,保持良好的用户体验。

结合第一方面,在第一方面的某些可能的实现方式中,所述第一粘贴层和/或所述第二粘贴层的厚度在弯折区与非弯折区的不同。

可选的,所述第一粘贴层和/或所述第二粘贴层的厚度在弯折区大于非弯折区。

可选的,所述第一粘贴层和/或所述第二粘贴层的厚度从弯折区到非弯折区为渐变式变化,例如,越靠近弯折区的位置,粘贴层厚度越大。

可选的,所述第一粘贴层和/或所述第二粘贴层的厚度从弯折区到非弯折区为阶跃式变化。

采用厚度在弯折区与非弯折区不同的粘贴层,可以在增强显示模组的可折叠弯折性能的同时,不会显著增加显示模组的厚度,保持良好的用户体验。

采用厚度在弯折区与非弯折区渐变的粘贴层,可以使得剪切应力在弯折区与非弯折区呈现一个渐变状态,避免折叠显示模组在折叠时弯折区与非弯折区的显示面板受力突变造成显示模组被损坏。

结合第一方面,在第一方面的某些可能的实现方式中,可折叠的显示装置还包括:堆叠在显示面板同一侧的第三粘贴层和背膜;其中所述第三粘贴层与所述背膜都位于所述显示面板与所述第一超薄玻璃之间;其中所述第三粘贴层位于所述背膜与所述第一超薄玻璃之间。

例如,如图7所示,堆叠在显示面板205同一侧的粘贴层A5和背膜207,粘贴层A5与所背膜207都位于显示面板205与超薄玻璃2032之间;其中粘贴层A5位于背膜207与超薄玻璃2032之间。

将背膜放在超薄玻璃与显示面板之间,超薄玻璃可以在为显示面板提供展平力,使显示面板在弯折后保持平整,同时,也可以保护背膜,防止背膜损坏。换言之,超薄玻璃可以同时保护背膜和显示面板,可以提升显示装置的抗冲击能力。

结合第一方面,在第一方面的某些可能的实现方式中,所述可折叠的显示装置还包括:堆叠在显示面板同一侧的第四粘贴层和偏振器;其中所述第四粘贴层与所述偏振器都位于所述显示面板与所述第二超薄玻璃之间,其中所述第四粘贴层位于所述偏振器与所述第二超薄玻璃之间。

例如,如图7所示,粘贴层A3和偏振器204堆叠在显示面板205同一侧,粘贴层A3和偏振器204都位于显示面板205和超薄玻璃2031之间,粘贴层A3位于偏振器204与超薄玻璃2031之间。

将偏振器放在超薄玻璃与显示面板之间,超薄玻璃可以在为显示面板提供展平力,使显示面板在弯折后保持平整,同时,也可以利用超薄玻璃硬度高的优势,保护偏振器,防止偏振器损坏;

结合第一方面,在第一方面的某些可能的实现方式中,所述可折叠的显示装置还包括:堆叠在显示面板同一侧的触控层和第五粘贴层;其中所述触控层和第五粘贴层位于所述第二超薄玻璃和所述偏振器之间。其中,所述第五粘贴层位于所述第二超薄玻璃与所述触控层之间。

例如,如图7所示,堆叠在显示面板205同一侧的触控层(图中未示出)和粘贴层(图中未示出),其中触控层和粘贴2可以位于超薄玻璃2031和偏振器204之间,所述粘贴层位于超薄玻璃2031与触控层之间。

通过将触控层放置于偏振器204的出光侧,使触控层更加接近盖板2011,用户可以获得更好的触控体验。

结合第一方面,在第一方面的某些可能的实现方式中,显示面板可以包括:封装层、有机发光器件层、触控层,其中所述封装层、所述有机发光器件层和所述触控层组成堆叠结构。

例如,如图5B所示,显示面板205可以包括封装层2054、有机发光器件层2053、触控层209。

通过将触控层集成在显示面板中,可以有效降低折叠屏显示模组的厚度,同时可以避免弯折时被损坏。

结合第一方面,在第一方面的某些可能的实现方式中,触控层可以包括第三超薄玻璃。

相比于内置集成PET(Polyethylene Terephthalate,聚对苯二甲酸乙二醇酯)的触控层,集成有超薄玻璃的触控层可以具有更好的抗落球能力,同时具备更好的应变力,以避免弯折时被损坏。

结合第一方面,在第一方面的某些可能的实现方式中,所述第一粘贴层、第二粘贴层、第三粘贴层、第四粘贴层、第五粘贴层的折射率的数值范围为1.5-1.8。

由于折叠显示装置大量采用有机高分子膜材,比如CPI(clear Polyimide,透明聚酰亚胺),其中CPI的折射率为1.6,目前所用的粘贴层的折射率为1.47,粘贴层与其他有机高分子膜材折射率匹配不好,导致显示模组叠层各界面的反射率增大,透过率程度降低,导致显示装置的出光效率受到很大影响。可选的,选用折射率为1.5的粘贴层,,可以大幅提高显示模组的光学透光率,降低显示模组的光学反射率。可选的,粘贴层的折射率的数值范围为1.5-1.8。在一些实施例中,对于上述实施例中的粘接层,每一层粘接层的折射率可以不同。

结合第一方面,在第一方面的某些可能的实现方式中,所述偏光器为涂布型偏光片。

采用涂布偏光片,可以有效降低显示装置的厚度,提高用户体验。

结合第一方面,在第一方面的某些可能的实现方式中,所述第一粘贴层、第二粘贴层、第三粘贴层、第四粘贴层、第五粘贴层为可折叠光学透明胶。

结合第一方面,在第一方面的某些可能的实现方式中,所述可折叠的显示装置还包括,支撑结构和第六粘贴层,其中所述支撑结构、所述第六粘贴层、所述第一超薄玻璃为堆叠结构,所述支撑结构、所述第六粘贴层均位于所述第一超薄玻璃的同一侧,所述第六粘贴层位于所述支撑结构和所述第一超薄玻璃之间。

结合第一方面,在第一方面的某些可能的实现方式中,所述支撑结构包括:镂空区、第一非镂空区、第二非镂空区,其中所述镂空区位于所述第一非镂空区和所述第二非镂空区之间。

例如,如图6所示,在弯折区采用镂空结构,在非弯折区(包括第一非弯折区、第二非弯折区)采用非镂空结构对显示模组进行支撑,在满足可弯折的特性的同时,可以给非弯折区和弯折区提供良好的支撑力,降低弯折拱起的程度,增加显示模组折叠后展开的平整度。

结合第一方面,在第一方面的某些可能的实现方式中,所述支撑结构的厚度为50um-200um.

结合第一方面,在第一方面的某些可能的实现方式中,所述支撑结构可以为金属结构。

结合第一方面,在第一方面的某些可能的实现方式中,所述支撑结构中的镂空区的图案也镂空图案可以为长方形、三角形和圆形等形状的一种或多种组合。

结合第一方面,在第一方面的某些可能的实现方式中,所述可折叠的显示装置还包括支撑组件,其中所述支撑组件位于所述背膜与所述支撑结构之间,所述支撑组件、所述背膜与所述支撑结构为堆叠结构。

结合第一方面,在第一方面的某些可能的实现方式中,所述支撑组件可以为SUS(Steel Use Stainless)钢片、铜片、铝片或者金属合金的至少一种。

结合第一方面,在第一方面的某些可能的实现方式中,所述支撑组件的厚度为30um。

第二方面,提供了一种可折叠的电子设备,其中所述电子设备包括第一方面所述的显示装置。

附图说明

图1是本申请实施例提供的电子设备的结构示意图。

图2是本申请实施例提供的电子设备的软件结构框图。

图3A-图3B所示是本申请实施例提供的包含可折叠显示装置的可折叠电子设备示意图。

图3C-图3D所示是本申请实施例提供的存在弯折拱起问题的可折叠电子设备示意图。

图4所示是本申请实施例提供一种可折叠显示装置的示意图。

图5A-图5B是本申请实施例提供一种显示面板的示意图。

图6是本申请实施例提供一种支撑结构的示意图。

图7所示是本申请实施例提供另一种可折叠显示装置的示意图。

具体实施方式

本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请,下面将结合附图对本申请实施例的实施方式进行详细描述。

图1示意了一种电子设备100的结构示意图。

电子设备100可以包括手机、平板电脑、桌面型计算机、膝上型计算机、手持计算机、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本、蜂窝电话、个人数字助理(personal digital assistant,PDA)、增强现实(augmentedreality,AR)设备、虚拟现实(virtual reality,VR)设备、人工智能(artificialintelligence,AI)设备、可穿戴式设备、车载设备、智能家居设备、或智慧城市设备中的至少一种。本申请实施例对该电子设备100的具体类型不作特殊限制。

电子设备100可以包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接头130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。

可以理解的是,本申请实施例示意的结构并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。

处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processingunit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。

处理器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。

处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器可以为高速缓冲存储器。该存储器可以保存处理器110用过或使用频率较高的指令或数据。如果处理器110需要使用该指令或数据,可从该存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。

在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuitsound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purposeinput/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。处理器110可以通过以上至少一种接口连接触摸传感器、音频模块、无线通信模块、显示器、摄像头等模块。

可以理解的是,本申请实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对电子设备100的结构限定。在本申请另一些实施例中,电子设备100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。

USB接头130是一种符合USB标准规范的接口,可以用于连接电子设备100和外围设备,具体可以是Mini USB接头,Micro USB接头,USB Type C接头等。USB接头130可以用于连接充电器,实现充电器为该电子设备100充电,也可以用于连接其他电子设备,实现电子设备100与其他电子设备之间传输数据。也可以用于连接耳机,通过耳机输出电子设备中存储的音频。该接头还可以用于连接其他电子设备,例如VR设备等。在一些实施例中,通用串行总线的标准规范可以为USB1.x、USB2.0、USB3.x和USB4。

充电管理模块140用于接收充电器的充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块140可以通过USB接口130接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块140可以通过电子设备100的无线充电线圈接收无线充电输入。充电管理模块140为电池142充电的同时,还可以通过电源管理模块141为电子设备供电。

电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,显示屏194,摄像头193,和无线通信模块160等供电。电源管理模块141还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块141也可以设置于处理器110中。在另一些实施例中,电源管理模块141和充电管理模块140也可以设置于同一个器件中。

电子设备100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。

天线1和天线2用于发射和接收电磁波信号。电子设备100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。

移动通信模块150可以提供应用在电子设备100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。

无线通信模块160可以提供应用在电子设备100上的包括无线局域网(wirelesslocal area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),蓝牙低功耗(bluetooth low energy,BLE),超宽带(ultra wide band,UWB),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequencymodulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。

在一些实施例中,电子设备100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得电子设备100可以通过无线通信技术与网络和其他电子设备通信。该无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(codedivision multiple access,CDMA),宽带码分多址(wideband code division multipleaccess,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。该GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidounavigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellitesystem,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。

电子设备100可以通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。

显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emittingdiode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrixorganic light emitting diode的,AMOLED),柔性发光二极管(flex light-emittingdiode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot lightemitting diodes,QLED)等。在一些实施例中,电子设备100可以包括1个或多个显示屏194。

在一些实施例中,显示屏194可以是可以为有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏,也可以为液晶(Liquid Crystal Display,LCD)显示屏。应当理解的是,显示屏194可以包括显示器和触控器件,显示器用于向用户输出显示内容,触控器件用于接收用户在显示屏10上输入的触摸事件。在一些实施例中,显示屏194为可折叠显示屏。在一些实施例中,显示屏194可以为柔性OLED(Organic Light-Emitting Diode)显示屏。在一些实施例中,显示屏194也可以为柔性OLCD(Organic Liquid-Crystal Display)显示屏。

电子设备100可以通过摄像模组193,ISP,视频编解码器,GPU,显示屏194以及应用处理器AP、神经网络处理器NPU等实现摄像功能。

摄像模组193可用于采集拍摄对象的彩色图像数据以及深度数据。ISP可用于处理摄像模组193采集的彩色图像数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将该电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,肤色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像模组193中。

在一些实施例中,摄像模组193可以由彩色摄像模组和3D感测模组组成。

在一些实施例中,彩色摄像模组的摄像头的感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。

在一些实施例中,3D感测模组可以是(time of flight,TOF)3D感测模块或结构光(structured light)3D感测模块。其中,结构光3D感测是一种主动式深度感测技术,结构光3D感测模组的基本零组件可包括红外线(Infrared)发射器、IR相机模等。结构光3D感测模组的工作原理是先对被拍摄物体发射特定图案的光斑(pattern),再接收该物体表面上的光斑图案编码(light coding),进而比对与原始投射光斑的异同,并利用三角原理计算出物体的三维坐标。该三维坐标中就包括电子设备100距离被拍摄物体的距离。其中,TOF 3D感测可以是主动式深度感测技术,TOF 3D感测模组的基本组件可包括红外线(Infrared)发射器、IR相机模等。TOF 3D感测模组的工作原理是通过红外线折返的时间去计算TOF 3D感测模组跟被拍摄物体之间的距离(即深度),以得到3D景深图。

结构光3D感测模组还可应用于人脸识别、体感游戏机、工业用机器视觉检测等领域。TOF3D感测模组还可应用于游戏机、增强现实(augmented reality,AR)/虚拟现实(virtual real ity,VR)等领域。

在另一些实施例中,摄像模组193还可以由两个或更多个摄像头构成。这两个或更多个摄像头可包括彩色摄像头,彩色摄像头可用于采集被拍摄物体的彩色图像数据。这两个或更多个摄像头可采用立体视觉(stereo vision)技术来采集被拍摄物体的深度数据。立体视觉技术是基于人眼视差的原理,在自然光源下,透过两个或两个以上的摄像头从不同的角度对同一物体拍摄影像,再进行三角测量法等运算来得到电子设备100与被拍摄物之间的距离信息,即深度信息。

在一些实施例中,电子设备100可以包括1个或多个摄像模组193。具体的,电子设备100可以包括1个前置摄像模组193以及1个后置摄像模组193。其中,前置摄像模组193通常可用于采集面对显示屏194的拍摄者自己的彩色图像数据以及深度数据,后置摄像模组可用于采集拍摄者所面对的拍摄对象(如人物、风景等)的彩色图像数据以及深度数据。

在一些实施例中,处理器110中的CPU或GPU或NPU可以对摄像模组193所采集的彩色图像数据和深度数据进行处理。在一些实施例中,NPU可以通过骨骼点识别技术所基于的神经网络算法,例如卷积神经网络算法(CNN),来识别摄像模组193(具体是彩色摄像模组)所采集的彩色图像数据,以确定被拍摄人物的骨骼点。CPU或GPU也可来运行神经网络算法以实现根据彩色图像数据确定被拍摄人物的骨骼点。在一些实施例中,CPU或GPU或NPU还可用于根据摄像模组193(可以是3D感测模组)所采集的深度数据和已识别出的骨骼点来确认被拍摄人物的身材(如身体比例、骨骼点之间的身体部位的胖瘦情况),并可以进一步确定针对该被拍摄人物的身体美化参数,最终根据该身体美化参数对被拍摄人物的拍摄图像进行处理,以使得该拍摄图像中该被拍摄人物的体型被美化。后续实施例中会详细介绍如何基于摄像模组193所采集的彩色图像数据和深度数据对被拍摄人物的图像进行美体处理,这里先不赘述。

数字信号处理器用于处理数字信号,还可以处理其他数字信号。例如,当电子设备100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。

视频编解码器用于对数字视频压缩或解压缩。电子设备100可以支持一种或多种视频编解码器。这样,电子设备100可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。

NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现电子设备100的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。

外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展电子设备100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。或将音乐,视频等文件从电子设备传输至外部存储卡中。

内部存储器121可以用于存储计算机可执行程序代码,该可执行程序代码包括指令。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储电子设备100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。处理器110通过运行存储在内部存储器121的指令,和/或存储在设置于处理器中的存储器的指令,执行电子设备100的各种功能方法或数据处理。

电子设备100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。

音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块170还可以用于对音频信号编码和解码。在一些实施例中,音频模块170可以设置于处理器110中,或将音频模块170的部分功能模块设置于处理器110中。

扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。电子设备100可以通过扬声器170A收听音乐,或输出免提通话的音频信号。

受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。当电子设备100接听电话或语音信息时,可以通过将受话器170B靠近人耳接听语音。

麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风170C发声,将声音信号输入到麦克风170C。电子设备100可以设置至少一个麦克风170C。在另一些实施例中,电子设备100可以设置两个麦克风170C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,电子设备100还可以设置三个,四个或更多麦克风170C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。

耳机接口170D用于连接有线耳机。耳机接口170D可以是USB接口130,也可以是3.5mm的开放移动电子设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。

压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器180A可以设置于显示屏194。压力传感器180A的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。电容式压力传感器可以是包括至少两个具有导电材料的平行板。当有力作用于压力传感器180A,电极之间的电容改变。电子设备100根据电容的变化确定压力的强度。当有触摸操作作用于显示屏194,电子设备100根据压力传感器180A检测该触摸操作强度。电子设备100也可以根据压力传感器180A的检测信号计算触摸的位置。在一些实施例中,作用于相同触摸位置,但不同触摸操作强度的触摸操作,可以对应不同的操作指令。例如:当有触摸操作强度小于第一压力阈值的触摸操作作用于短消息应用图标时,执行查看短消息的指令。当有触摸操作强度大于或等于第一压力阈值的触摸操作作用于短消息应用图标时,执行新建短消息的指令。

陀螺仪传感器180B可以用于确定电子设备100的运动姿态。在一些实施例中,可以通过陀螺仪传感器180B确定电子设备100围绕三个轴(即,x,y和z轴)的角速度。陀螺仪传感器180B可以用于拍摄防抖。示例性的,当按下快门,陀螺仪传感器180B检测电子设备100抖动的角度,根据角度计算出镜头模组需要补偿的距离,控制镜头反向运动抵消电子设备100的抖动,实现防抖。陀螺仪传感器180B还可以用于导航,体感游戏场景。

气压传感器180C用于测量气压。在一些实施例中,电子设备100根据气压传感器180C测得的气压值计算海拔高度,辅助定位和导航。

磁传感器180D包括霍尔传感器。电子设备100可以利用磁传感器180D检测翻盖皮套的开合。当电子设备为可折叠电子设备,磁传感器180D可以用于检测电子设备的折叠或展开,或折叠角度。在一些实施例中,当电子设备100是翻盖机时,电子设备100可以根据磁传感器180D检测翻盖的开合。进而根据检测到的皮套的开合状态或翻盖的开合状态,设置翻盖自动解锁等特性。

加速度传感器180E可检测电子设备100在各个方向上(一般为三轴)加速度的大小。当电子设备100静止时可检测出重力的大小及方向。还可以用于识别电子设备姿态,应用于横竖屏切换,计步器等应用。

距离传感器180F,用于测量距离。电子设备100可以通过红外或激光测量距离。在一些实施例中,拍摄场景,电子设备100可以利用距离传感器180F测距以实现快速对焦。

接近光传感器180G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。电子设备100通过发光二极管向外发射红外光。电子设备100使用光电二极管检测来自附近物体的红外反射光。当检测到的反射光的强度大于阈值时,可以确定电子设备100附近有物体。当检测到的反射光的强度小于阈值时,电子设备100可以确定电子设备100附近没有物体。电子设备100可以利用接近光传感器180G检测用户手持电子设备100贴近耳朵通话,以便自动熄灭屏幕达到省电的目的。接近光传感器180G也可用于皮套模式,口袋模式自动解锁与锁屏。

环境光传感器180L可以用于感知环境光亮度。电子设备100可以根据感知的环境光亮度自适应调节显示屏194亮度。环境光传感器180L也可用于拍照时自动调节白平衡。环境光传感器180L还可以与接近光传感器180G配合,检测电子设备100是否被遮挡,例如电子设备在口袋里。当检测到电子设备被遮挡或在口袋里,可以使部分功能(例如触控功能)处于禁用状态,以防误操作。

指纹传感器180H用于采集指纹。电子设备100可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。

温度传感器180J用于检测温度。在一些实施例中,电子设备100利用温度传感器180J检测的温度,执行温度处理策略。例如,当通过温度传感器180J检测的温度超过阈值,电子设备100执行降低处理器的性能,以便降低电子设备的功耗以实施热保护。在另一些实施例中,当通过温度传感器180J检测的温度低于另一阈值时,电子设备100对电池142加热。在其他一些实施例中,当温度低于又一阈值时,电子设备100可以对电池142的输出电压升压。

触摸传感器180K,也称“触控器件”。触摸传感器180K可以设置于显示屏194,由触摸传感器180K与显示屏194组成触摸屏,也称“触控屏”。触摸传感器180K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏194提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器180K也可以设置于电子设备100的表面,与显示屏194所处的位置不同。

骨传导传感器180M可以获取振动信号。在一些实施例中,骨传导传感器180M可以获取人体声部振动骨块的振动信号。骨传导传感器180M也可以接触人体脉搏,接收血压跳动信号。在一些实施例中,骨传导传感器180M也可以设置于耳机中,结合成骨传导耳机。音频模块170可以基于该骨传导传感器180M获取的声部振动骨块的振动信号,解析出语音信号,实现语音功能。应用处理器可以基于该骨传导传感器180M获取的血压跳动信号解析心率信息,实现心率检测功能。

按键190可以包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。电子设备100可以接收按键输入,产生与电子设备100的用户设置以及功能控制有关的键信号输入。

马达191可以产生振动提示。马达191可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不同的振动反馈效果。作用于显示屏194不同区域的触摸操作,马达191也可对应不同的振动反馈效果。不同的应用场景(例如:时间提醒,接收信息,闹钟,游戏等)也可以对应不同的振动反馈效果。触摸振动反馈效果还可以支持自定义。

指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。

SIM卡接口195用于连接SIM卡。SIM卡可以通过插入SIM卡接口195,或从SIM卡接口195拔出,实现和电子设备100的接触和分离。电子设备100可以支持1个或多个SIM卡接口。SIM卡接口195可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口195可以同时插入多张卡。多张卡的类型可以相同,也可以不同。SIM卡接口195也可以兼容不同类型的SIM卡。SIM卡接口195也可以兼容外部存储卡。电子设备100通过SIM卡和网络交互,实现通话以及数据通信等功能。在一些实施例中,电子设备100采用eSIM,即:嵌入式SIM卡。eSIM卡可以嵌在电子设备100中,不能和电子设备100分离。

电子设备100的软件系统可以采用分层架构,事件驱动架构,微核架构,微服务架构,或云架构。本申请实施例以分层架构的Android系统为例,示例性说明电子设备100的软件结构。

图2是本申请实施例的电子设备100的软件结构框图。

分层架构将软件分成若干个层,每一层都有清晰的角色和分工。层与层之间通过软件接口通信。在一些实施例中,将Android系统分为五层,从上至下分别为应用程序层,应用程序框架层,安卓运行时(Android runtime,ART)和原生C/C++库,硬件抽象层(HardwareAbstract Layer,HAL)以及内核层。

应用程序层可以包括一系列应用程序包。

如图2所示,应用程序包可以包括相机,图库,日历,通话,地图,导航,WLAN,蓝牙,音乐,视频,短信息等应用程序。

应用程序框架层为应用程序层的应用程序提供应用编程接口(applicationprogramming interface,API)和编程框架。应用程序框架层包括一些预先定义的函数。

如图2所示,应用程序框架层可以包括窗口管理器,内容提供器,视图系统,资源管理器,通知管理器,活动管理器,输入管理器等。

窗口管理器提供窗口管理服务(Window Manager Service,WMS),WMS可以用于窗口管理、窗口动画管理、surface管理以及作为输入系统的中转站。

内容提供器用来存放和获取数据,并使这些数据可以被应用程序访问。该数据可以包括视频,图像,音频,拨打和接听的电话,浏览历史和书签,电话簿等。

视图系统包括可视控件,例如显示文字的控件,显示图片的控件等。视图系统可用于构建应用程序。显示界面可以由一个或多个视图组成的。例如,包括短信通知图标的显示界面,可以包括显示文字的视图以及显示图片的视图。

资源管理器为应用程序提供各种资源,比如本地化字符串,图标,图片,布局文件,视频文件等等。

通知管理器使应用程序可以在状态栏中显示通知信息,可以用于传达告知类型的消息,可以短暂停留后自动消失,无需用户交互。比如通知管理器被用于告知下载完成,消息提醒等。通知管理器还可以是以图表或者滚动条文本形式出现在系统顶部状态栏的通知,例如后台运行的应用程序的通知,还可以是以对话窗口形式出现在屏幕上的通知。例如在状态栏提示文本信息,发出提示音,电子设备振动,指示灯闪烁等。

活动管理器可以提供活动管理服务(Activity Manager Service,AMS),AMS可以用于系统组件(例如活动、服务、内容提供者、广播接收器)的启动、切换、调度以及应用进程的管理和调度工作。

输入管理器可以提供输入管理服务(Input Manager Service,IMS),IMS可以用于管理系统的输入,例如触摸屏输入、按键输入、传感器输入等。IMS从输入设备节点取出事件,通过和WMS的交互,将事件分配至合适的窗口。

安卓运行时包括核心库和安卓运行时。安卓运行时负责将源代码转换为机器码。安卓运行时主要包括采用提前(ahead or time,AOT)编译技术和及时(just in time,JIT)编译技术。

核心库主要用于提供基本的Java类库的功能,例如基础数据结构、数学、IO、工具、数据库、网络等库。核心库为用户进行安卓应用开发提供了API。

原生C/C++库可以包括多个功能模块。例如:表面管理器(surface manager),媒体框架(Media Framework),libc,OpenGL ES、SQLite、Webkit等。

其中,表面管理器用于对显示子系统进行管理,并且为多个应用程序提供了2D和3D图层的融合。媒体框架支持多种常用的音频,视频格式回放和录制,以及静态图像文件等。媒体库可以支持多种音视频编码格式,例如:MPEG4,H.264,MP3,AAC,AMR,JPG,PNG等。OpenGL ES提供应用程序中2D图形和3D图形的绘制和操作。SQLite为电子设备100的应用程序提供轻量级关系型数据库。

硬件抽象层运行于用户空间(user space),对内核层驱动进行封装,向上层提供调用接口。

内核层是硬件和软件之间的层。内核层至少包含显示驱动,摄像头驱动,音频驱动,传感器驱动。

下面结合捕获拍照场景,示例性说明电子设备100软件以及硬件的工作流程。

当触摸传感器180K接收到触摸操作,相应的硬件中断被发给内核层。内核层将触摸操作加工成原始输入事件(包括触摸坐标,触摸操作的时间戳等信息)。原始输入事件被存储在内核层。应用程序框架层从内核层获取原始输入事件,识别该输入事件所对应的控件。以该触摸操作是触摸单击操作,该单击操作所对应的控件为相机应用图标的控件为例,相机应用调用应用框架层的接口,启动相机应用,进而通过调用内核层启动摄像头驱动,通过摄像头193捕获静态图像或视频。

本申请实施例提供一种可折叠显示模组,其中所述可折叠显示模组可以应用于电子设备100。

可折叠显示模组由于其可折叠特性,可以应用于电子设备100,使电子设备100方便携带。

下面以上述电子设备100为例进行说明。

图3A是本申请实施例的一种具有可折叠显示模组的电子设备100展开示意图。应理解,所述具有可折叠显示模组的电子设备100可以被称为可折叠电子设备。

图3B所示分别是该电子设备100正面(b图)和背面(f图)、底面(c图)和顶面(d图)、左面(a图)和右面(e图)六个不同的角度的外观示意图。其中,正面视图(b)中10为电子设备的可折叠显示模组,背面视图(f)中20和30为电子设备100的壳体(例如第一壳体20和第二壳体30),虚线框示出的是电子设备100的弯折区40。应理解,在一些实施例中,电子设备100可以有多个壳体,且每两个相邻壳体之间存在一个弯折区域。在一些实施例中,电子设备100的显示模组可以包括多个弯折区域且弯折区域连续分布(例如,显示模组可以为卷曲屏)。

图3B所示是本申请提供的一种具有可折叠显示模组的电子设备折叠状态的示意图。如图3B中所示,在两个壳体转动到折叠状态时,弯折区40发生形变并且第一壳体20及第二壳体30层叠。此外,第一壳体20及第二壳体30转动连接时,还可以采用常用的转轴等能够实现转动连接的部件进行转动连接。

此外,在本申请中建立如图3B所示坐标系,其中,x、y和z方向两两垂直,z方向可以理解为电子设备的厚度方向,y方向也可以理解为电子设备的弯折区域的轴线方向,x方向与y方向垂直,且平行于柔性屏幕处于展开状态的平面。本申请中所提到的坐标轴都以此坐标系为基准。

应理解,对于任一种可折叠的电子设备,弯折区40还可以横向(沿x方向)分布,显示模组可以沿横向分布的弯折区域进行折叠。

本申请将以图3A和图3B中示出的折叠方式为例,介绍一种折叠屏支撑结构,解决折叠屏折叠过程的弯折拱起问题。应理解,本申请提供的折叠屏支撑结构,同样适用于其他折叠方式的电子设备,本申请对屏幕的折叠方式不作限定。

在一些实施例中,可折叠的电子设备在展开形态下可以朝着左屏和右屏相面对的方向折叠,在一些实施例中,可折叠的电子设备在展开形态下还可以朝着左屏和右屏相背对的方向折叠,本申请的实施例描述中,以图3B示出的显示模组10位于折叠后的外表面为例进行介绍,本申请对折叠的方向不作限定。

但是折叠显示模组经过反复弯折之后会出现明显的弯折拱起问题,影响设备的美观,影响用户体验,这主要是因为折叠显示模组缺乏足够的支撑。由于可折叠显示模组中的显示面板采用有机高分子材料,而有机高分子材料在弯折时被拉伸,形成塑性形变无法恢复,造成折叠显示模组弯折拱起,影响用户体验。

如图3C和3D所示,具有可折叠显示模组的电子设备100经过反复折叠后,会出现弯折拱起的问题。应理解,图3C和3D的拱起方向、拱起的位置是示意性的,不代表对拱起方向、拱起位置的具体限定。

折叠显示模组的弯折拱起问题已经成为业界难题,严重影响了折叠手机的外观及信赖性。

在进行本申请实施例描述之前,先对一些词语做出说明。

本实施例中所述功能层指代除了粘贴层(例如,图4中的第一粘贴层、第二粘贴层等)以外的组成屏幕模组的层(例如盖板、偏振器、触控层、显示面板、超薄玻璃、背膜、金属支撑结构等)。

本实施例中所述超薄玻璃指的是一种可以应用到复杂结构上的玻璃,具有普通玻璃不可比拟的优点,具有耐高温、耐腐蚀、透光率高、表面平整、硬度高、化学稳定性好、应用面广等优点。在一些实施例中,所述超薄玻璃的厚度可以为0.03mm~0.5mm。在本申请实施例中,同一功能层或者同一粘贴层沿显示模组堆叠方向(例如,上下堆叠)可以分为出光侧表面和背光侧表面。本实施例所述的“出光侧表面”指的是当显示模组为堆叠结构时候,某一个功能层或者粘贴层更接近显示模组外表面(可与用户直接交互的表面,例如图4所示的101表面)的表面。例如,如4所示,盖板2011可以包括出光侧表面2011-2和背光侧表面2011-1。

还应理解,在显示模组为上下堆叠结构时,可以将同一功能层或者同一粘贴层分为出光侧方向和背光侧方向。在本申请实施例,所述出光侧方向指的是上侧,所述背光侧指的是下侧。例如,如图4,第一粘贴层A1可以有出光侧和背光侧,盖板位于第一粘贴层A1的出光侧,附加层2012位于第一粘贴层A1的背光侧。

在一个实施例中,超薄玻璃可以直接放在显示面板两侧。应理解,此处所述的“直接放在柔性显示面板两侧”是指超薄玻璃与柔性显示面板之间只有粘贴层,而无其他功能层。示意性的,如图4所示,超薄玻璃可以直接放在柔性显示面板的上下两侧。还应理解,所述“在显示面板两侧”指的是超薄玻璃在显示面板的上下两侧,超薄玻璃与显示面板呈现堆叠结构。

图4所示的是一个电子设备100在展开状态的显示模组10的截面图。显示模组10可以包括弯折区和第一非弯折区、第二非弯折区。应理解,所述弯折区和非弯折区的位置和数量是示意性的,不代表对显示模组10具体结构的限定。在一些实施例,所述弯折区可以被称为折叠区域,所述第一非弯折区域可以被称为第一区域,所述第二非弯折区域可以被称为第二区域,其中所述第一区域和所述第二区域可以沿所述折叠区域对折或展开。

还应理解,在本申请实施例中,所述显示模组也可以被称为显示装置。

电子设备100的显示模组10可以是以下层的多种及其组合而成的堆叠结构。层2011:盖板;

层A1:第一粘贴层

层2012:附加盖板

层A2:第二粘贴层

层204:偏振器

层A3:第三粘贴层

层2031:超薄玻璃

层A4:第四粘贴层

层205:显示面板

层A6:第六粘贴层

层2032:超薄玻璃;

层A5:第五粘贴层

层207:背膜层

层A7:第六粘贴层

层208:支撑结构

层2011为盖板,在一些实施例中又可以被称为保护层,本申请实施例不对其名称做具体限定。盖板可以保护显示模组10被划伤。盖板的材料可以为塑料材质膜PET(Polyethylene Terephthalate,聚对苯二甲酸乙二醇酯)。由于PET膜在长期的弯折过程中容易产生塑性变形,在一些实施例中,盖板的材料也可以为透明聚酰亚胺(CPI,clearPolyimide)。相比于PET膜,CPI膜可以提供更高的应变值,并且可以耐高温。在一些实施例中,盖板也可以为超薄玻璃(UTG,Ultra Thin Glass)。在一些实施例中,盖板还可以加有硬化层HC(Hard Coating)(图中未示出),以获得高光透过率、低雾度、耐摩擦、高温/高湿/高气压可用、不易破碎、且柔韧性好的效果。在一些实施例中,层2011的材料也可以为超薄玻璃。

在一些实施例中,显示模组10还可以包括层2012。层2012可以被称为附加层,用以加强屏幕的抗冲击能力。附加层2012的材料选取可以援引盖板2011所述内容,此处不再赘述。

盖板与附加层通过第一粘贴层A1粘贴(例如光学透明胶、压敏胶、热反应性粘合剂)。

层204为偏振器(例如偏光片)。偏振器可以允许非偏振光通过而阻断偏振光,且偏振器可将穿过偏振器的非偏振光转化成偏振光。由于外界入射进显示模组的自然光为非偏振光,穿过偏振器成为偏振光。当所述偏振光遇到阻碍(例如超薄玻璃2031、显示面板205)而被反射后,被偏振器阻断。因此,偏振器可以有效阻断来自于自然光遇到阻碍发生反射而传播到层2011外的反射光,起到环境光反射截止功能,改善用户体验。在一些实施例中,偏振器可以为金属偏光片、碘系偏光片、染料系偏光片、聚乙烯偏光片等,本实施例不对偏振器的类型做具体限定。在一些实施例中,偏振器可以为涂布型偏光片。采用涂布型偏光片可以有效降低显示模组的厚度,提升弯折性能。通过涂布型偏光片,可以将偏光片的厚度67um降低到5um。在一些实施例中,偏振器可以为圆偏光片。

在存在附加层2012的一些实施例中,偏振器204与附加层2012可以通过第二粘贴层A2粘贴(例如光学透明胶、压敏胶、热反应性粘合剂)。在一些实施例中,显示模组200可以不包含附加层2012,偏振器204可以与盖板2011可以通过第一粘贴层A1或者第二粘贴层A2粘贴(例如光学透明胶、压敏胶、热反应性粘合剂)。

超薄玻璃具备良好的可弯折特性,耐划伤,抗水氧,耐热性好,透光率高,同时具有一定的表面硬度,因此在满足可弯折的同时也能够提供支撑力。另外,由于其超薄特性,超薄玻璃也可以降低显示模组的厚度。

超薄玻璃2031与偏振器204的背光侧表面可以通过第三粘贴层A3(例如光学透明胶、压敏胶、热反应性粘合剂)粘贴。在一些实施例中,第三粘贴层A3的厚度约为50um,以提供更好的粘贴力。在一些实施例中,第三粘贴层A3可以为低剪切应力值的粘贴胶,以增强显示模组的可折叠弯折性能,避免显示模组在折叠时候损坏。应理解,剪切应力值用来衡量第三粘贴层的可拉伸性能。剪切应力值小,说明第三粘贴层的可拉伸性能较好。

在一些实施例中,超薄玻璃2031与显示面板205的出光侧表面可以通过第四粘贴层A4(例如光学透明胶、压敏胶、热反应性粘合剂)粘贴。关于第四粘贴层A4的描述可以援引对第三粘贴层A3的描述,此处不再赘述。

在一些实施例中,显示模组可以不包括超薄玻璃2031,偏振器与显示面板可以通过第三粘贴层A3和/或第四粘贴层A4进行粘合。

显示模组10包括显示面板205。

在一些实施例中,显示面板205可以为柔性OLED(Organic Light-EmittingDiode)显示面板。在一些实施例中,显示面板205也可以为柔性OLCD(Organic Liquid-Crystal Display)显示面板。下面以柔性OLED显示面板为例做说明。如图5A所示,柔性OLED显示面板的结构可以包括:基底2051、驱动电路层2052、有机发光器件层2053、封装层2054、封装保护层2055。其中,基底2051可以为有机发光器件层提供良好的水氧阻隔性能,阻断OLED有机材料遇水和/或氧气容易发生反应而失效。在一些实施例中,基底2051可以选择PI(Polyimide,聚酰亚胺)膜或者PET(Polyethylene Terephthalate,聚对苯二甲酸乙二醇酯)膜等材料。在一些实施例中,有机发光器件层2053可以为有源型矩阵驱动发光器件AMOLED(Active Matrix Organic Light Emitting Diode)。在一些实施例中,驱动电路层2052可以为薄膜晶体管(Thin Film Tansistor,简称TFT)阵列,其中TFT阵列决定AMOLED中哪些像素发光,从而生成图像。在一些实施例中,TFT阵列可以为改进传统的非晶硅技术(a-Si TFT),也可以是载流子迁移率高的低温多晶硅技术(LTPS TFT,Low Temperature Poly-silicon Thin Film Transistor),也可以为有机薄膜晶体管(OTFT)。

在一些实施例中,有机发光器件层2053也可以为无源型矩阵驱动发光器件PMOLED(Passive Matrix Organic Light Emitting Diode)。封装层2054可以对所述OLED发光器件进行封装以阻隔水氧,避免水氧进入OLED发光而造成OLED发光器件层失效。在一些实施例中,柔性OLED显示面板还可以包括封装保护层,其中所述封装保护层位于柔性OLED显示面板的出光侧。封装保护层2055可以对有机发光器件层2053与封装层2054起到保护作用,防止在屏幕弯折时候的应力变形。

在一些实施例中,在封装保护层2055与封装层2054之间还可以有触控层,如图5B所示。在一些实施例中,触摸层209可以采用电阻式触控层、电容式触控层、表面声波式触层或光波触控层。在一些实施例中,触控层209可以选用包括导电材料形成的触控网格图案,例如,导电材料可以选用金属、金属氧化物、石墨烯等。

通过将触控层集成在显示面板中,可以有效降低折叠屏显示模组的厚度,同时可以避免弯折时被损坏。

在一些实施例中,触控层可以内置集成超薄玻璃。相比于内置集成PET的触控层,集成有超薄玻璃的触控层可以具有更好的抗落球能力,同时具备更好的应变力,以避免弯折时被损坏。

在一些实施例中,触控层可以为外挂式触控层。在一些实施例中,外挂式触控层可以还被放置于图4所示的显示面板205的出光侧,超薄玻璃2031的背光侧(图中未示出)。通过将外挂式触控层置于超薄玻璃2031的背光侧,可以利用超薄玻璃的抗落球性能特性增强对外挂式触控层的保护。在一些实施例中,外挂式触控层可以被放置于图4所示的超薄玻璃2031的出光侧(图中未示出)。例如,外挂式触控层可以放置于超薄玻璃2031的出光侧,偏振器204的背光侧。将外挂式触控层可以放置于偏振器204的背光侧,可以使得照射到外挂式触控层的环境光反射截止,提升用户体验。

在一些实施例中,外挂式触控层也可以位于偏振器204的出光侧,盖板2011的背光侧。

通过将触控层放置于偏振器204的出光侧,使触控层更加接近盖板2011,用户可以获得更好的触控体验。

在一些实施例中,显示模组10还可以包括超薄玻璃2032,其中超薄玻璃2032与显示面板205的背光侧可以通过第六粘贴层A6(例如可折叠光学透明胶)粘贴。关于第六粘贴层A6的描述可以援引对第三粘贴层A3的描述,此处不再赘述。此外,在显示模组被弯折时,显示面板205与超薄玻璃层2032之间发生错位移动,第六粘贴层A6还可以避免过大的滑移对显示面板205造成的损坏。

通过将超薄玻璃2031、超薄玻璃2032直接置于显示面板的上下两侧,超薄玻璃可以对显示面板起到很好的支撑作用,有效避免显示模组弯折后显示面板内的有机高分子材料塑性变形造成的弯折拱起问题。

通过可折叠光学透明胶将超薄玻璃与显示面板粘合,可避免在弯折时候的超薄玻璃与显示面板之间的过大滑移对显示面板造成的损伤,保护显示面板。

层207为背膜,用以支撑柔性显示面板205。在一些实施例中,背膜207的材料可以包括PI(Polyimide,聚酰亚胺)、PET(Polyethylene Terephthalate,聚对苯二甲酸乙二醇酯)、TAC(Triacetyl Cellulose,三醋酸纤维素)中任意一种高分子薄膜材料。在一些实施例中,,背膜207的材料也可以为其他的柔性材料。

在一些实施例中,背膜可以为LCP(Liquid Crystal Polymer,液晶高分子)。

由于LCP具有比PI膜更优良的机械强度,因此可以更好的支撑显示面板,减轻折叠显示模组多次弯折产生的拱起问题。

在一些实施例中,背膜207与超薄玻璃2032通过第五粘贴层A5(例如光学透明胶)粘贴。

层208为支撑结构,可以包括镂空区和非镂空区,如图6所示。应理解,在一些实施例中,镂空结构也可以被称为竹书结构。在一些实施例中,层208可以为金属结构(例如,层208包括金属镂空区和金属非镂空区)。应理解,在一些实施例中,镂空区的图案也可以为其他图案(例如,镂空图案可以为长方形、三角形和圆形等形状的一种或多种组合),本申请实施例不对镂空区的图案做具体限制。可选的,层208的厚度为50um-200um。

在弯折区采用镂空结构,在非弯折区采用非镂空结构对显示模组进行支撑,在满足可弯折的特性的同时,可以给显示模组提供良好的支撑力,降低弯折拱起的程度,增加显示模组折叠后展开的平整度。

在一些实施例中,层208的镂空结构的背光侧可以放置共形天线,所述共性天线可以由在柔性电路板上喷涂的导电轨迹构成。可选的,所述天线的形式可以包括一个或多个定向天线或全向天线,例如,天线可以包括偶极天线,单极天线,贴片天线,环形天线,缝隙天线或适合于射频信号传输的其它类型的天线。可选的,柔性电路板的基材为LCP(LiquidCrystal Polymer,液晶高分子)。

金属镂空结构可以作为金属腔体,可以提高共形天线辐射的增益。

通过采用LCP作为柔性电路板的基材,由于LCP的损耗正切值小于常规的柔性电路板所用的PI膜,因此可以降低天线辐射的损耗,同时由于LCP具有良好的机械强度、耐高温,可以保证避免弯折损坏天线,降低天线的寿命。

在一些实施例中,非弯折区可以放置透明天线。可选的,所述透明天线可以为导电薄膜天线。应理解,所述透明天线可以放置于触控层的出光侧。可选的,透明天线的接地端可以为显示模组的金属外壳或者金属支撑结构208。

背膜207与支撑结构208可以通过第六粘贴层A6(例如光学透明胶、压敏胶等)粘贴。

在一些实施例中,背膜207与支撑结构208之间还可以包括缓冲区(图中未示出),其中缓冲区用于减震和缓冲。其中缓冲区的材料可以为泡棉和/或铜箔。在一些实施例中,缓冲区材料可以包括石墨,以提高显示模组的散热效果。在一些实施例中,背膜207与支撑结构208之间还可以包括支撑组件,其中所述支撑组件可以为SUS(Steel Use Stainless)钢片(例如厚度为30um)、铜片或者铝片的至少一种。在一些实施例中,支撑组件还可以为合金材料。支撑组件具备较高弹性模量,可以起到支撑作用,降低弯折造成的折痕问题。

在一些实施例中,在背膜207与支撑结构208之间包括金属支撑组件,第六粘贴层A6可以为环氧树脂胶或者热熔胶膜。由于金属支撑结构208与金属支撑组件(例如,SUS钢片)均为金属结构,因此第六粘贴层采用环氧树脂胶或者热熔胶膜,可以粘贴更加牢固,同时可以避免可折叠第五粘贴层在金属镂空区导致的横纹问题,使显示模组保持平整。

在一些实施例中,为了更好的散热。背膜207与支撑结构208之间还可以包括散热层(图中未示出),其中散热层与背膜207通过第一粘贴层A1、第二粘贴层A2、第三粘贴层A3、第四粘贴层、第五粘贴层、第六粘贴层中的任意一种粘贴。在一些实施例中,散热层材料可以为石墨烯。在一些实施例中,为了对散热材料进行保护,散热层下方可以放置保护层,其中保护层的材料可以为PET。

在本申请的另一个实施例中,如图7,超薄玻璃2031可以被放置于偏振器204的出光侧,超薄玻璃2032可以被放置于背膜207的背光侧。与图4所述实施例的不同的是,超薄玻璃2031与偏振器204互换了位置,超薄玻璃2032与背膜207互换了位置。关于其他层的内容(包括材料、位置、有益效果等)可以援引图4实施例的内容,此处不再赘述。

通过将超薄玻璃放置于偏光片的出光侧,可以增强屏幕模组的抗落球性能。

通过将超薄玻璃放置于背膜的背光侧,超薄玻璃与背膜同时支撑显示面板,能够更有效的为显示面板提供支撑力,减轻可折叠显示模组因为多次折叠造成的弯折拱起问题。

超薄玻璃2032下方有支撑结构208。关于支撑结构208的描述可援引图4实施例的相关内容。

超薄玻璃2032与支撑结构208通过第六粘贴层(例如光学透明胶)粘贴。关于第六粘贴层的描述可援引图4实施例的相关内容。

在一些实施例中,超薄玻璃2032与支撑结构208之间还可以包括缓冲区,超薄玻璃2032与金属支撑结构208之间还可以包括SUS钢片(图中未示出),其中SUS钢片具备较高弹性模量,可以起到降低弯折造成的折痕问题。

可选的,在一些实施例中,为了更好的散热。超薄玻璃2032与支撑结构208之间还可以包括散热层,其中散热层与背膜通过光学透明胶粘贴,其中散热层材料可以为石墨烯。为了对散热材料进行保护,散热层下方可以放置保护层,其中保护层的材料可以为PET。

经过实验,未使用超薄玻璃的显示模组静态弯折之后展平角度为70°,通过在显示面板上方使用第一张超薄玻璃,在显示面板下方使用第二张超薄玻璃,静态弯折之后展平的角度100°。

进一步的,在上述实施例中,可以选用特定折射率的粘贴层(例如,可折叠光学透明胶)。由于可折叠显示模组大量采用有机高分子膜材,比如CPI,其中CPI的折射率为1.6,而目前的粘贴层的折射率多为1.47,与其他有机高分子膜材折射率匹配不好,导致显示模组叠层各界面的反射率增大,透过率程度降低,显示模组的出光效率受到很大影响。可选的,选用折射率为1.5的粘贴层,可以大幅提高显示模组的光学透光率,降低显示模组的光学反射率。可选的,粘贴层的折射率的数值范围为1.5-1.8。在一些实施例中,对于上述实施例中的粘贴层,每一层粘贴层的折射率可以不同。

进一步的,在上述实施例中,可以增大所述粘贴层(例如,可折叠光学透明胶)的厚度(例如不低于15um)。增大所述粘贴层的厚度可以降低剪切应力值,以增强显示模组的可折叠弯折性能,避免显示模组在折叠时候损坏。可选的,所述粘贴层的厚度15um-45um。在一些实施例中,所述粘接层的厚度可以为75um,100um,125um,或150um。

采用厚度为15um-45um的粘贴层,可以在增强显示模组的可折叠弯折性能的同时,不会显著增加显示模组的厚度,保持良好的用户体验。

采用厚度为75um,100um,125um,或150um的粘贴层,可以在增强显示模组的可折叠弯折性能的同时,不会显著增加显示模组的厚度,保持良好的用户体验。

在一些实施例中,所述粘贴层(例如可折叠光学透明胶)的厚度在弯折区与非弯折区不同。可选的,所述粘贴层在弯折区的厚度大于所述粘贴层在非弯折区的厚度。可选的,所述粘贴层的厚度在弯折区与非弯折区为渐变,例如,越靠近弯折区的位置,粘贴层厚度越大。可选的,所述粘贴层的厚度从弯折区到非弯折区为阶跃式变化。

采用厚度在弯折区与非弯折区不同的粘贴层,可以在增强显示模组的可折叠弯折性能的同时,不会显著增加显示模组的厚度,保持良好的用户体验。

采用厚度在弯折区与非弯折区渐变的粘贴层,可以使得剪切应力在弯折区与非弯折区呈现一个渐变状态,避免折叠显示模组在折叠时弯折区与非弯折区的显示面板受力突变造成显示模组被损坏。

进一步的,在上述实施例中,可以采用低弹性模量的粘贴层(例如,可折叠光学透明胶)。低弹性模量的粘贴层拥有更低的剪切应力值,可以增强显示模组的可折叠弯折性能,避免显示模组在折叠时候被损坏。

在一些实施例中,所述粘贴层的弹性模量可以在15Kpa-100Kpa之间。

优选的,所述粘贴层的弹性模量为30Kpa、45Kpa或者50Kpa。

通过采用弹性模量为30Kpa、45Kpa或者50Kpa的粘贴层,在增强显示模组的可折叠弯折性能的同时,粘贴层也可以保持粘接力,可以更好的起到粘接作用,防止显示模组功能层之间因粘接不牢固而发送脱落现象。

进一步的,在上述实施例中,显示面板与其上下两侧的粘贴层呈现堆叠结构,显示面板一侧(例如,背光侧)的粘贴层的弹性模量不同于显示面板另外一侧(例如,出光侧)的粘贴层的弹性模量。在一些实施例中,显示面板一侧(例如,背光侧)的粘贴层的弹性模量与显示面板另外一侧(例如,出光侧)的粘贴层的弹性模量的差值小于10Kpa。

在显示面板的两侧采用具有不同弹性模量的粘贴层,可以在增强显示模组的可折叠弯折性能,同时也可以提供显示模组弯折后恢复平整所需的支撑力。

在一些实施例中,可以采用在弯折区与非弯折区具有不同弹性模量的粘贴层。可选的,粘贴层在弯折区的弹性模量小于非弯折区的弹性模量。

在一些实施例中,可以采用具有渐变弹性模量的粘贴层(例如,在越靠近弯折区的位置,粘贴层的弹性模量越小,或者粘贴层在沿厚度方向的弹性模量为渐变)。可选的,粘贴层在弯折区的弹性模量小于非弯折区的弹性模量。

在弯折区与非弯折区采用具有不同弹性模量的粘贴层,可以在增强显示模组的可折叠弯折性能,同时也可以提供显示模组弯折后恢复平整所需的支撑力。

应理解,本申请实施例所述的粘贴层可以为可折叠光学透明胶。

以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

技术分类

06120114733427