掌桥专利:专业的专利平台
掌桥专利
首页

一种纳/微米结构过渡金属硼化物高熵陶瓷块体材料及其制备方法

文献发布时间:2023-06-19 16:09:34



技术领域

本申请涉及高熵陶瓷领域,具体而言,涉及一种纳/微米结构过渡金属硼化物高熵陶瓷块体材料及其制备方法。

背景技术

一直以来,科学家都努力寻找比钻石/金刚石更硬、热稳定性更好的材料。高熵陶瓷(HECs)由于具有热力学上的高熵效应、结构上的晶格畸变效应与高稳定性、动力学上的迟滞扩散效应、以及性能上的“鸡尾酒”效应,而受到国内外学者的广泛关注。对过渡金属硼化物高熵陶瓷材料而言,由于其具有很强的B-B共价键特征,因此利用常规的陶瓷材料制备方法,其主要面临的挑战为很难制备出高致密度的单一物相的硼化物陶瓷块体材料,从而使其硬度、强度以及断裂韧性等性能受限。

发明内容

本申请提供了一种纳/微米结构过渡金属硼化物高熵陶瓷块体材料及其制备方法,其能够利用制备方法的改进,获得高致密度且具有单一物相的纳/微米结构过渡金属硼化物高熵陶瓷块体材料,有效提高纳/微米结构过渡金属硼化物高熵陶瓷块体材料的硬度、强度以及断裂韧性等性能。

本申请的实施例是这样实现的:

在第一方面,本申请示例提供了一种纳/微米结构过渡金属硼化物高熵陶瓷块体材料的制备方法,纳/微米结构过渡金属硼化物高熵陶瓷块体材料包括:(Zr

制备方法包括:

依据各元素在名义化学式中所占的原子比例,称取各初始原料的所需质量,然后将各初始原料混合均匀,获得混合原料。

将混合原料压缩成型,获得素坯。

将素坯置于反应腔体中,保持压力为1-25GPa,温度为800-2000℃进行高温高压相变及烧结,获得纳/微米结构的纳/微米结构过渡金属硼化物高熵陶瓷块体材料。

本申请提供的一种纳/微米结构金属硼化物高熵陶瓷块体材料制备方法中,利用高压能抑制晶粒长大的热力学效应,及压力能使晶粒破碎而细化的机制,通过对压力-温度-化学组分等热力学参数的调控与优化,采用高温高压相变及一次烧结工艺,通过对压力、温度、及化学组分及保温时间的精确调控,在压力P=1-25GPa,温度T=800-2000℃的范围内,实现对过渡金属硼化物高熵陶瓷块体材料不同晶粒尺寸的可控制备与性能截获,使制得的纳/微米结构过渡金属硼化物高熵陶瓷块体材料的晶粒与晶粒之间能形成紧密结合的高强度的B-B化学键及TM-B化学键,从而获得大尺寸(毫米-微米级)高致密且具有单一物相的超硬、超强、高断裂韧性的纳/微米结构过渡金属硼化物高熵陶瓷块体材料。

在一些可选地实施例中,高温高压相变及烧结的时间为至少10min。

在一些可选地实施例中,高温高压相变及烧结的时间为10-120min。

在一些可选地实施例中,混合原料的D50粒径为10-300nm。

可选地,混合原料的D50粒径为10-200nm。

可选地,各初始原料中的各金属原料为:与纳/微米结构过渡金属硼化物高熵陶瓷块体材料中的金属元素对应的金属单质。

在一些可选地实施例中,各金属原料及非晶硼混合均匀包括:将各金属原料及非晶硼混合,在300-500rmp的条件下球磨10-23h。

可选地,球磨的方式为间歇球磨,每球磨20-40min间歇10-20min。

在一些可选地实施例中,将混合原料压缩成型之前之前,将混合原料真空热处理,真空热处理的真空度为(2-5)×10

在一些可选地实施例中,制备方法包括:将素坯置于具有反应腔体的高温高压实验装置的反应元件中进行高温高压相变及烧结,反应元件包括基于国产六面顶压机的一级高压装置及二级增压实验装置、DIA型一级高压装置、国外进口的Kawai型、Walker型或DIA型多面顶压机。

在第二方面,本申请示例提供了一种纳/微米结构过渡金属硼化物高熵陶瓷块体材料,其由本申请第一方面提供的制备方法制得,纳/微米结构过渡金属硼化物高熵陶瓷块体材料的晶粒尺寸为纳米级和/或亚微米级。

也即是,基于上述制备方法制得的实际为纳/微米结构过渡金属硼化物高熵陶瓷块体材料,其不仅晶粒尺寸为纳米级和/或亚微米级,同时致密度高且具有单一物相,并且晶粒与晶粒之间能形成紧密结合的高强度的B-B化学键及TM-B化学键,从而有效提高过渡金属硼化物高熵陶瓷块体材料的硬度、强度、断裂韧性等性能。

在一些可选地实施例中,纳/微米结构过渡金属硼化物高熵陶瓷块体材料的尺寸为毫米-厘米级。

附图说明

为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。

图1为纳/微米结构过渡金属硼化物高熵陶瓷块体材料的制备方法流程示意图;

图2为立方结构(Zr

图3为立方结构的(Zr

图4为六方结构(Re

图5为六方结构(Re

具体实施方式

下面将结合实施例对本申请的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本申请,而不应视为限制本申请的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。

以下针对本申请实施例的纳/微米结构过渡金属硼化物高熵陶瓷块体材料及其制备方法进行具体说明:

本申请中,纳/微米结构过渡金属硼化物高熵陶瓷块体材料包括:(Zr

其中,前四种为立方结构过渡金属硼化物高熵陶瓷,后四种为六方结构过渡金属硼化物高熵陶瓷。

上述纳/微米结构过渡金属硼化物高熵陶瓷块体材料的制备流程如图1所示,根据图1,可以看出,上述纳/微米结构过渡金属硼化物高熵陶瓷块体材料的制备方法包括:

S1、依据各元素在名义化学式中所占的原子比例,称取各初始原料的所需质量,然后将各初始原料混合均匀,获得混合原料。

也即是,获得用于制备纳/微米结构过渡金属硼化物高熵陶瓷块体材料的各金属原料及非晶硼,然后将各金属原料及非晶硼混合均匀。

为了保证称取的精度,可用精密天秤进行称取。

可选地,各金属原料为:与纳/微米结构过渡金属硼化物高熵陶瓷块体材料中的金属元素对应的金属单质。其中,金属单质的纯度≥99.5%,也即是采用高纯金属单质作为金属原料,避免杂质的引入,同时有利于后续高温高压相变及烧结过程中,各金属原料和非晶硼充分且快速反应,形成稳定的化学键。

为了便于后续混合均匀,各金属原料与非晶硼可均为粉末,同时各金属原料与非晶硼的配比依据对应的金属硼化物高熵陶瓷的化学式中各元素所占的原子比例用称取各初始原材料所需质量。

混合均匀的混合原料有利于在后续进行高温高压相变及烧结的过程中,获得制得成分均一分布的纳/微米结构过渡金属硼化物高熵陶瓷块体材料。

其中,混合可以为采用三维混料机使各金属原料及非晶硼充分混合均匀,也可以采用球磨的方式使各金属原料及非晶硼充分混合均匀。

可选地,将各金属原料及非晶硼混合均匀的步骤包括:将各金属原料及非晶硼在转速为300-500rmp的高能球磨机里混合,例如300rmp、350rmp、400rmp、450rmp或500rmp的条件下球磨10-23h,例如球磨10h、15h、17h、18h、20h或23h等。

利用上述球磨方式,能够细化金属原料及非晶硼并且使其混合均匀。

其中,球磨的方式为持续球磨,也可以为间歇式球磨。

在一些可选地实施例中,球磨的方式为间歇球磨,每球磨20-40min间歇10-20min,例如每球磨20min、25min、30min、35min或40min等的间歇10min、15min或20min,可以理解的是,间歇时停止球磨以进行自然冷却,从而降低因球磨时间过长导致的混合原料氧化以及过热。

可选地,在一些可选地实施例中,将混合原料压缩成型之前之前,将混合原料进行真空热处理,以去除混合原料表面所吸附的水分、氮气/氧气等气氛,提高高熵合金块体材料的纯净度并且活化晶格,其中,真空热处理真空热处理的真空度为(2-5)×10

可选地,混合原料的D50粒径为10-300nm;可选地,混合原料的D50粒径为10-200nm,上述粒径条件下,有利于混合原料快速进行高温高压相变及烧结。

S2、将混合原料压缩成型,获得素坯。

利用预先压缩成型后再进行高温高压相变及烧结,有利于提高纳/微米结构过渡金属硼化物高熵陶瓷块体材料的致密度以及性能。

压缩成型例如在20MPa下,保压5min。

S3、将素坯置于反应腔体中,保持压力为1-25GPa,温度为800-2000℃进行高温高压相变及烧结,获得纳/微米结构过渡金属硼化物高熵陶瓷块体材料。

也即是说,高温高压相变及烧结的温度为800-2000℃,例如高温高压相变及烧结的温度为800℃、900℃、1000℃、1000℃、1100℃、1200℃、1300℃、1400℃、1500℃、1600℃、1700℃、1800℃、1900℃或2000℃中的任一温度值或介于任意两个温度值之间,高温高压相变及烧结的压力为1-25GPa,例如高温高压相变及烧结的压力为1GPa、5GPa、7GPa、9GPa、10GPa、12GPa、15GPa、18GPa、20GPa、22GPa、25GPa等中的任一温度值或介于任意两个温度值之间。

通过对压力-温度-化学组分等热力学参数的调控与优化,采用高温高压相变及一次烧结工艺,通过对压力、温度、及化学组分及保温时间的精确调控,在压力P=1-25GPa,温度T=800-2000℃范围内进行,实现对纳/微米结构过渡金属硼化物高熵陶瓷块体材料不同晶粒尺寸的可控制备与性能截获,使制得的纳/微米结构过渡金属硼化物高熵陶瓷块体材料的晶粒与晶粒之间能形成紧密结合的高强度的B-B化学键及TM-B化学键,从而获得高致密且具有单一物相的超硬、超强、高断裂韧性的纳/微米结构过渡金属硼化物高熵陶瓷块体材料。

纳/微米结构过渡金属硼化物高熵陶瓷块体材料高温高压相变及烧结的时间可根据实际的温度以及压力进行调控。

可选地,高温高压相变及烧结的时间为至少10min。上述高温高压相变及烧结的时间限定下,可使各金属原料及非晶硼之间进行高温高压相变及烧结反应,获得性能佳的纳/微米结构过渡金属硼化物高熵陶瓷块体材料。

可选地,高温高压相变及烧结的时间为10-120min,例如高温高压相变及烧结的时间为10min、15min、20min、30min、40min、50min、60min、70min、80min、90min、100min、110min或120min等中的任一时间值或介于任意两个时间值之间。上述条件下,不仅能够使各金属原料及非晶硼之间进行充分的高温高压相变及烧结反应,同时有利于节省能耗。

在一些可选地实施例中,制备方法包括:将素坯置于具有反应腔体的高温高压实验装置的反应元件中进行高温高压相变及烧结,反应元件包括基于国产六面顶压机的一级高压装置及二级增压实验装置、德国1000吨6-8模大腔体压机,德国DIA型大腔体压机(一级)以及国外进口的Kawai型、Walker型或DIA型多面顶压机,其中德国1000吨6-8模大腔体压机的压力-温度可达到~25GPa,~2500℃,利用上述反应元件提供高温高压相变及烧结所需的高温高压。

其中,基于国产六面顶压机的二级增压实验装置的升压以及降压速度快,可有效提高生产的效率,进而实现大规模工业生产需求。国产六面顶压机主要指国产铰链式六面顶压机。除此以外,本领域技术人员还可以选择性能与基于国产铰链式六面顶压机的二级增压装置性能相当的其它大腔体压机,在此不做限定。

本申请示例提供了一种纳/微米结构过渡金属硼化物高熵陶瓷块体材料的制备方法,其由上述制备方法制得,纳/微米结构过渡金属硼化物高熵陶瓷块体材料的晶粒尺寸为纳米级和/或亚微米级。其中,晶粒尺寸为纳米级是指晶粒的粒径尺寸介于1-100nm。

其中,纳/微米结构过渡金属硼化物高熵陶瓷为块体材料,例如纳/微米结构过渡金属硼化物高熵陶瓷块体材料呈圆柱体结构,圆柱体结构可以为非标准的圆柱体,也即是类似于圆柱体型均在其保护范围内,根据反应元件的反应腔体的设计及实验压力大小,圆柱体结构的高熵合金块材的直径变化范围为2mm-1cm,高度也为2mm-1cm可变。

也即是,纳/微米结构过渡金属硼化物高熵陶瓷块体材料的尺寸为毫米-厘米级,也即是说,可根据实际的需求制得不同尺寸以及大尺寸的纳/微米结构过渡金属硼化物高熵陶瓷块体材料,从而提高其工业应用价值以及应用场景。

以下结合实施例对本申请的纳/微米结构过渡金属硼化物高熵陶瓷块体材料及其制备方法作进一步的详细描述。

以下实施例中,各金属原料均为金属单质粉末,B为非晶硼粉。

实施例1

一种纳/微米结构过渡金属硼化物高熵陶瓷块体材料,其由以下制备方法制得:

S1:按照如表1所示的各元素在名义化学式中所占的原子比例,用精密天秤称取各初始原料所需质量后,将称取的各初始原料经过球磨混合,真空热处理,在20MPa油压下保压5min以压缩成型,获得素坯。

S2:将真空热处理后的混合原料置于铰链式国产六面顶压机的一级高压装置或二级增压实验装置的叶腊石(传压介质)或氧化镁腔体中,对应表1的数据,在通过对高温高压相变及烧结的压力、温度、时间的调控,泄压降温,取出制备所得的纳/微米结构过渡金属硼化物高熵陶瓷块体材料。

表1-10步骤S1的制备参数

表2步骤S2的制备参数

图2为硼化物高熵陶瓷(Zr

图4为高熵陶瓷(Re

试验例

对实施例1-26制得的纳/微米结构过渡金属硼化物高熵陶瓷块体材料利用维氏硬度计在1N-5 0N变化的荷载下的硬度-断裂韧性测试、密度测试等对该体系材料的力学性能进行测试,每个测试最少测量15个压痕取平均值。试样的工程或真应力-应变关系通过压缩试验机或精密拉伸仪测试,对检测试样都需精心准备,例如,每个样品的两个端面都经过了精心的研磨和抛光。应用超声干涉测量实验技术,研究不同组分纳/微米结构过渡金属硼化物高熵陶瓷块体材料的声速弹性模量(体弹模量、剪切模量、杨氏模量)、泊松参数及Grüneisen参数等物理力学性能;结果如表3所示。

表3测试结果

综上,本申请提供的一种纳/微米结构过渡金属硼化物高熵陶瓷块体材料的制备方法,通过对压力-温度-化学组分等热力学参数的调控与优化,在压力P=1-25GPa,温度T=800-2000℃、烧结时间t=10-120min范围内进行,采用高温高压一次相变及烧结工艺,实现对纳/微米结构过渡金属硼化物高熵陶瓷块体材料的可控制备与性能截获,从而获得高致密且具有单一物相的超硬、超强、高断裂韧性的纳/微米结构过渡金属硼化物高熵陶瓷块体材料。

以上所述仅为本申请的具体实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

技术分类

06120114726327