掌桥专利:专业的专利平台
掌桥专利
首页

改进的微通道蒸发器

文献发布时间:2024-07-23 01:35:21


改进的微通道蒸发器

说明书

发明技术领域

本发明涉及一种用于冷却电子元件并利用双相流体操作的微通道蒸发器的制造方法以及如此实现的蒸发器。

具体而言,本发明涉及一种通过选定的表面处理来制造微通道蒸发器的方法,该方法可以获得提高的热交换效率。

背景

近年来,人们越来越关注元器件的小型化,特别是在电子领域。事实上,电子设备和装置通常具有较小的可用面积来消散所产生的热量,因此它们通常会产生非常高的热流。因此,需要相当紧凑且有效的冷却解决方案。

采用双相流体流动(液体和蒸汽)运行的微通道热交换器或蒸发器是高热流冷却问题的最佳解决方案。这种类型的交换器可以将高密度热交换面积与高热交换系数结合在一起。

但高密度传热区域大批量生产难度大、成本高。此外,由于微通道内发生的并且降低冷却液的质量流速的压降相对较高,设计用于非常高热流的被动冷却装置(如散热器或脉冲热管)是非常复杂的。

因此,在冷却系统中,需要提供解决方案来提高采用双相流运行的散热装置的热交换效率,同时降低生产成本并保持电子应用所需的极其紧凑的整体尺寸。

发明内容

本发明所提出和解决的技术问题是提供一种制造微通道型热交换器,特别是蒸发器的方法,从而可以避免上述现有技术中提到的一个或多个缺点。

该问题通过根据权利要求1的制造方法来解决。本发明还涉及一种利用上述制造方法获得的微通道型热交换器,特别是蒸发器。

本发明的优选特征在从属权利要求中阐明。

在本上下文中,与表述“热交换器”或“蒸发器”相关的术语“微通道”表示热交换器领域技术人员已知的一种热交换器类型,即在使用中穿过热交换区域的热载体(特别是双相流体)被限制在水力直径为毫米或更低级别的路径中的交换器。

另外,在本上下文中,术语"润湿性"涉及固体表面影响同一表面的亲水性程度和/或疏水性程度的性质,并且它很大程度上取决于所述表面与静止环境(蒸汽)中的静态液滴(液体)之间形成的接触角。通常,相对于固体表面与液滴形成较高接触角(疏水性)的情况而言,当接触角减小时,检测到固体表面更具可润湿性(亲水性)。

本发明的制造方法允许实现热交换装置,特别是配置为利用双相流体操作并且适合于冷却电子元件的微通道蒸发器,其在热交换效率方面提供改进的性能。

根据本发明,提供了包括耦合面的第一板状体,以及包括用于双相冷却流体进/出蒸发器的入口和出口的第二板状体。然后,在所述耦合面上形成多个凹槽,以使所述入口和所述出口流体连通。然后,该方法提供通过激光雕刻装置在一个或多个凹槽的内表面上形成切口。随后,将第二板状体重叠并密封耦合到所述耦合面,使得在每个凹槽处限定用于双相冷却流体的相应流动通道或微通道。

实质上,根据本发明的制造方法提供了蒸发器微通道的表面处理,从而允许在使用双相冷却流体流时改善热传递。

这种表面处理,如下文将详细说明的,甚至将结合为支持本发明可获得的有利技术效果而提供的实验数据,目的在于改变双相流的流动通道的表面润湿性,并显著影响后者相变过程中的传热。

换句话说,可以理解的是,本发明的方法可以在流体流动通道中形成切口,从而选择性地改变表面“粗糙度”,并获得根据蒸发器打算操作的操作条件来优化的通道本身的润湿度。

通过限制流动不稳定性并消除在相对于根据已知方法实现的冷却装置所达到的极限值高得多的热流值下出现干燥现象(缺乏沸腾)的风险,这有利地允许改善待冷却的电子元件和穿过蒸发器的冷却液之间的热传递,而不会显著影响负载损耗。

此外,有利的是,与在不同技术领域中通常已知的用于获得表面处理的不同处理类型(例如蚀刻、沉积、金属泡沫和烧结)相比,使用激光装置形成切口代表了一种更快速且更方便的工艺。

此外,根据本方法实施的蒸发器可获得的最高传热效率允许减少需要在板状体上实施的微通道的数量(热交换表面相同),并进一步降低生产成本。

有利的是,可以通过简单、方便的制造工艺获得有效的解决方案,该解决方案满足电子领域冷却应用中所需的减小的整体尺寸的限制。

本发明的其他优点、特征和使用模式将从以下以示例而非限制目的示出的一些实施例的详细描述中显而易见。

附图简要说明

将参考附图中的图,其中:

图1和1A分别为根据本发明的方法获得的蒸发器的示例性实施例的示意图(分别为顶视图和横截面图);

图1B和1C分别示出了图1和1A中所示的蒸发器的部件的顶视图和对应的横截面视图;

图2A和图2B分别示出了根据本发明的第一实施例获得的流动通道部分的局部示意图和图2A的细节的放大视图;

图3A和图3B分别示出了根据本发明的第二实施例获得的流动通道部分的局部示意图和图3A的细节的放大视图;

图4示出了蒸发器中使用的冷却流体的核沸腾临界半径随蒸发器流动通道的笔和所述流体之间的温差变化的过程图;

图5示出了冷却流体在经过不同表面处理的流动通道中流过蒸发器的三条沸腾曲线的过程图,并且该沸腾曲线是根据蒸发器和所述流体之间的温差获得的。

优选实施例的详细描述

首先参考图1,1A-1C,示出了根据本发明的方法制造的热交换器的优选实施例。所述交换器整体以参考标记100表示。

交换器100是所谓“微通道”类型的热交换器并且其适合与电子系统(例如处理单元、电力电子装置和数据中心)结合使用。

特别地,热交换器100用作蒸发器,其结果是适合于冷却电子元件或然而用于电子系统的冷却装置,例如冰箱类型的冷却装置。

热交换器或蒸发器100包括具有大致板状总体尺寸的主体10。主体10的外表面11用于与需待冷却的电子元件(未示出)耦合。

优选地,所述外表面11是平面的,并且主体10具有大致四边形的几何形状。所述外表面11可通过界面材料(例如导热膏或导热垫)与电子元件热耦合。

主体10可以包括锚固装置,例如图1、1A-1C中以参考标记15表示的突起,以与待冷却的电子元件固定,甚至可拆卸地固定。

为了制造蒸发器100,本发明的方法提供供给在图中所示的实施例示例中指定的第一板状体和第二板状体(或覆盖元件),分别为参考标记10A和10B。所述第一板状体和第二板状体优选由金属材料,优选为铝,制成。

覆盖元件10B具有用于双相冷却流体进/出蒸发器100的入口10’和出口10”。当第一主体10A和覆盖元件10B组装在二者之间时,入口10’优选地与适合于接收双相冷却流体的入口歧管12流体连通,并且出口10”优选地与用于热交换的下游的所述流体的出口歧管13流体连通。

用于交换器100的冷却流体优选地是商业上指定的R1234ze(E)或R1233zd(E)类型。它们都是GWP值非常低的流体,适合在常温下沸腾。

覆盖元件10B可具有附加开口10’”,用于(重新)填充交换器100内的冷却流体。

在所示的示例中,入口歧管12和出口歧管13位于第一板状体10A中,并且通过位于上述外表面11处的热交换室14在它们之间实现流体连通,外表面11用于与要冷却的设备接触。所述外表面11的延伸宽度优选至少等于热交换室14的平面延伸宽度。

有利的是,热交换室14位于入口歧管12和出口歧管13之间。这种解决方案在减小交换器100的垂直整体尺寸方面具有优势。

热交换室14位于蒸发器100内部。具体地,热交换室14被限定在第一板状体10A的耦合面101上形成的多个凹槽141处,以使上述入口10’和出口10”流体连通。

凹槽141可以通过铣削或刮削形成。在铣削的情况下,例如可以通过旋转工具从第一板状体10A去除材料。为了优化制造时间、成本以及可获得的凹槽141的数量,刮削程序优于铣削程序。

凹槽141可以限制冷却流体的运动,并且如上所述,使入口10’和出口10”流体连通。参照所示的示例,凹槽进一步使入口歧管12和出口歧管13流体连通。

所述凹槽141优选地沿各自的主延伸方向d平行且直线地延伸。每个凹槽141的相对面之间的距离优选地介于0.5毫米(mm)和2毫米(mm)之间。

参照上述板状体10的四边形几何形状,入口歧管12和出口歧管13(如果存在)优选沿第一板状体10的相对周边边缘定位。所述入口歧管12和出口歧管13优选具有与所述凹槽141的延伸方向d正交或基本正交的主延伸方向。

根据所述实施例,如图1B所示,入口歧管12和出口歧管13还可经由冷却流体的单向循环装置进行流体连通,该单向循环装置以示例的方式示出并以参考标记T表示。然而,就本发明的目的而言,所述单向循环装置T的存在是可选的,因此下文中不再详细讨论。

现在参考图2A、2B和3A、3B,一旦形成多个凹槽141,本发明的方法就提供通过激光雕刻装置在一个或多个所述凹槽141的内表面141a上形成切口2。所述切口2的形成以及相关的技术效果下面很快会进行介绍。

随后,将第二板状体10B重叠并密封地耦合至第一板状体10A的耦合面101,使得在每个凹槽141处限定用于双相冷却流体的相应流动通道14a。

如此形成的流动通道14a优选具有介于0.5毫米(mm)和2.0毫米(mm)之间的水力直径。

优选地,该制造方法中,第一主体10A和覆盖元件10B焊接在其间。根据第一和第二板状体10A、10B所选的涂层类型、几何形状和材料,可以使用例如TIG焊接工艺、激光焊接、摩擦焊接。

一旦重叠并耦合,第一主体10A和覆盖元件10B有利地形成一体式主体。

在实施例变型中,如图1A所示,该方法提供了在第一板状体10A和覆盖元件10B之间的两相流体流之间插入分配器元件18的步骤。后者优选用CNC铣床获得,而分配器元件18可通过激光切割实现。所述分配器元件18使得流体在流动通道14a中均匀分布,并且可直接在覆盖元件10B上获得均匀分布。

如上所述,激光雕刻装置允许在凹槽141内形成切口2。实质上,使用所述激光装置熔化凹槽141的内表面141a的一部分(特别是金属部分),并以受控和选择的方式改变表面“韧性”,以获得根据蒸发器100预期操作的操作条件优化的流动通道14a的润湿程度。

通过限制流动不稳定性并消除在相对于根据已知方法实现的冷却装置所达到的极限值高得多的热流值下出现干燥现象(缺乏沸腾)的风险,这有利地允许改善待冷却的电子元件和穿过蒸发器100的冷却流体之间的热传递,而不会显著影响负载损耗。

为了解释利用本制造方法可获得的优点,适合于在下文中引用主要的物理现象,这些物理现象决定了与利用双相冷却流体流操作的冷却系统中的热传递的关键方面相关的表面润湿性。

成核沸腾:

成核沸腾是发生在从液体到蒸汽的相变过程中的传热机制之一。当热量施加到被液体润湿的固体表面时,壁面温度通常必须达到高于液体饱和温度的值。这种过剩的能量是由于液体的表面张力造成的。与未经处理的表面相比,有利于疏水性的表面处理可以减少成核沸腾所需的过剩能量。疏水性通过有利于尽早脱离固体表面来排斥蒸汽泡。然后,相对于未处理的表面,疏水表面上的蒸汽泡更小且更频繁。

薄膜蒸发:

薄膜蒸发是发生在双相流中,特别是在微通道中的传热机制之一。当流动模型是蒸汽帽或细长气泡模型时,微通道核心被蒸汽相占据。相反,液相是蒸汽和固体表面之间几乎静态的薄膜或膜。液膜实际上从蒸气帽或细长气泡后面流动的液体元素中重新获得燃料。液膜厚度随蒸汽泡而变化,一般在气泡前部较大,在气泡中部较小,甚至可以在气泡后部不存在液膜,从而产生干燥区域。亲水性的表面处理有助于将液膜铺展到整个表面,使薄膜更加均匀,避免出现干燥区域。

干燥:

固体表面液膜的干燥通常在确定的蒸汽质量下进行。当蒸汽相接触表面时,热交换系数非常低,这对于需要冷却的设备来说可能是危险的。在微通道中,发生干燥的蒸汽质量值可能非常低。亲水性通常有助于延缓蒸汽质量的干燥。

不稳定性:

微通道蒸发器中不稳定性的主要来源是所谓的回流。当蒸汽泡在其成核点生长时,它可以被限制在垂直于微通道延伸方向d的方向上,同时沿着微通道的延伸方向d扩展。在某些情况下,蒸汽泡的膨胀力足够强,可以通过防止通道表面重新加湿来将进入微通道的液体排斥至入口。使表面具有疏水性的处理,特别是在微通道入口附近,增加了成核点的数量,并预计蒸汽泡会从表面本身脱离。因此,气泡可以达到更大的尺寸,避免沿微通道的延伸方向突然扩张。这种不稳定性不仅发生在上述局部层面,而且当蒸发器应用于使用被动装置(即散热器)的复杂冷却装置时,甚至会发生在系统层面,其中冷却流体的运动由相对于泵系统明显较低的推力控制。

实质上,本发明的方法允许对双相冷却流体蒸发器100的流动通道14a或微通道的内表面141a进行处理,由于在所述内表面141a上获得选定的亲水和疏水特性,因此优化了热传递并降低了流动不稳定性。

激光雕刻装置包括电子和光学装置,例如,可以组装在CNC机器上。以此方式,有可能利用数字文件(例如矢量类型(CAD等))来复制预定的切口形成模块。形成切口的图案、激光功率、激光频率、激光雕刻速度(mm/min)、焦距(mm)、获得切口的激光重复应用次数是影响凹槽141的内表面141a的润湿性的主要变量。我们将参考附录中的实验结果更详细地讨论这些方面。

回到图2A、2B和3A、3B,切口优选地根据与相应凹槽141的延伸方向d正交的方向v或平行的方向p形成。但是,可以获得不同的切口图案,例如平行和正交的组合,或蜂窝线。

具体地,所述切口2形成在所述内表面141a的一部分上、与覆盖元件10B的面相对,在蒸发器100的使用中,覆盖元件10B的该面面向相应流动通道14a的内部。一个或多个切口2的相对面之间的距离优选等于80微米。切口的深度优选等于切口2本身相对面之间的距离。

在未示出的实施例中,切口2的取向沿着相应凹槽141的延伸方向d变化。然后,可以在同一凹槽141内形成不同图案的切口2,例如,根据距凹槽141的端部141’、141”的轴向距离而定。例如,在双相流体进入流动通道14a的端部141’处形成的切口网格或矩阵可增强疏水性、增加成核点并防止不稳定性。在双相流体离开流动通道14a的端部141”处形成的与凹槽的延伸方向d平行的切口图案有利于交叉,因为它促进亲水性,防止干燥并改善薄膜的蒸发。

仅从表面上看,激光切口2的相对面之间的距离(或开口宽度)是根据临界流体成核半径进行校准的,从而赋予凹槽141的内表面141a疏水特性,而与切口2本身的方向无关。

事实上,考虑到存在液体-蒸汽界面,可以在切口2的底部2a上产生毛细管效应。当切口2的取向v与流动通道14a正交时,不会产生由毛细管现象引起的液体运动,因为沿着切口2,液体-蒸汽界面没有曲率变化。相反,在切口2的取向p平行于流动通道14a的情况下,沿着流动通道14a的某一点的液-气界面的曲率与不同点的液-气界面的曲率不同。沿着与凹槽141的延伸方向d平行的切口2的界面曲率变化可以通过流动通道14a中的毛细管现象建立液体运动,从而模拟亲水效果。

根据优选实施例,该方法用于形成在凹槽141的端部141’、141”之间连续延伸的切口。

实验数据

初步阐述了核沸腾临界半径这一物理概念,以解释通过激光装置获得的切口如何影响双相流体微通道蒸发器中的热处理。

对于与热表面接触的静止液体,仅当壁面温度高于流体饱和温度时,壁面空腔中才会产生蒸汽泡。引发蒸汽泡的壁面和流体之间的温差取决于空腔半径、流体密度、表面张力、汽化潜热和热流。

图4显示了冷却剂R1234ze(E)的核沸腾临界半径随壁面和流体(T

图4的图表显示,当流动通道14a的壁的表面腔半径减小时,触发蒸汽泡所需的温差增加。

上面提到的表面腔半径与流动通道14a的内表面141a的粗糙度成比例,由此可知,当微通道14a的表面粗糙度减小时,需要较高的温差来产生蒸汽泡。如果不采用本发明提供的激光处理,并且不形成切口2,则微通道14a的内表面的粗糙度通常为微米单位的级别。为此,本发明的方法选择了激光雕刻装置的一组操作参数,以形成相对面之间的宽度等于约80微米(pm)的切口2。以此方式,推定出微通道2的内表面的粗糙度值相对于没有切口的情况下相同表面可获得的粗糙度值具有至少大一个数量级。

优选地,使用以下激光装置操作参数形成切口2:切口速度等于约200毫米/分钟(mm/min),使用功率为30W的激光发生器的90%功率,焦距为49毫米(mm),并且对于每个切口2使用激光装置的重复次数等于3。

图5示出了激光雕刻技术对具有上述实施例特征的微通道蒸发器100的换热系数产生有利影响的实验数据。

具体而言,图5示出了穿过蒸发器100的冷却流体(其制冷功率以瓦特表示)的三条沸腾曲线的走向,其中,切口2分别为:不存在(曲线标识为“无激光”),平行于凹槽141的延伸方向d形成(曲线标识为“激光0°”),垂直于凹槽141的延伸方向d形成(曲线标识为“激光90°”)。每条曲线都是根据蒸发器100与待冷却的电子元件接触的外表面11的温度与双相冷却流体的温度之间的差值(T

可以看出,激光装置赋予的表面处理对传热的全局有效性具有有意义的有利影响,特别是对于中低热负荷。以数字为例,对于等于300W的热负荷值,激光处理显示比不处理的配置少大约3或4开尔文度。在300W之后,与流动通道14a表面上的切口2的存在相对应的两条曲线趋于具有更平坦的斜率,表明激光处理的有利效果趋于降低。该效果表明壁中存在不含液体的局部点,并且很可能通过激光处理获得了流动通道14a的内表面141a的主要疏水特性。

至此已参考优选实施例描述了本发明。这意味着可能存在属于同一发明核心的其它实施例,如下述权利要求的保护范围所定义。

相关技术
  • 一种微通道蒸发器及微通道蒸发器的制作方法
  • 微通道蒸发器的水盘、微通道蒸发器及空调机组
技术分类

06120116679929