掌桥专利:专业的专利平台
掌桥专利
首页

基于深度学习的多基站协同波束匹配方法

文献发布时间:2023-06-19 16:04:54



技术领域

本发明涉及无线通信技术领域,尤其涉及一种波束匹配方法,可用于基站到用户的无线传输。

背景技术

第五代移动通信系统5G在网络性能及用户体验方面有着极高要求,毫米波通信技术和大规模多输入多输出MIMO系统是第五代移动通信系统中的关键技术。由于毫米波信号在自由空间中的路径损耗很大,基站采用大规模天线阵列和波束成形技术来传输毫米波信号。大规模天线阵列能够提供足够的阵列增益,能有效补偿毫米波信号传播过程中的损耗,而波束成形技术通过配置基站或用户阵列天线上发射信号的相位,产生发送波束,使其发射到空间的能量产生聚焦,可提高系统的能量效率和频谱效率,同时减少用户间的干扰,进而有助于实现更高的数据速率。毫米波信道通常包含一条视距路径和若干条非视距路径,若能将发送波束对准信道的视距路径方向,则可使信号传输中的信道增益变大,引起的信号衰减变小,极大的增加了用户端的可达速率。但在实际中由于基站所配备大规模天线系统产生的发送波束较窄,因而在角度域上数量较多,这使得准确又高效的选出最优发送波束对成为一种挑战。因此,波束匹配成为毫米波通信中的重要研究内容。

获取毫米波信道的最佳发送波束的过程称为波束匹配。最直接的波束匹配方法是波束扫描。波束扫描是一种以规则间隔在所有预定义方向传输发送波束以覆盖一个空间区域的技术。由于大规模天线阵列形成的波束非常狭窄,因此动态扫描以覆盖整篇区域显得十分关键。例如,移动终端连接过程的第一步,与系统同步并接收系统广播信息时就需要波束扫描,基站在特定时间将发送波束传输到特定方向,然后在下一个时间帧中改变方向,以此类推,直到扫描过了它应该覆盖的所有区域,再分别测试发送波束集合与接收端的接收信号强度,从中选择接收信号强度最大的发送波束作为最佳的发送波束,这种波束匹配方法尽管具有较好的性能,但是需要遍历所有的发送波束,具有指数级的计算复杂度,当用户规模较大时开销极大,是无法接受的。而且传统波束匹配方法尚存的众多有待攻克和完善的技术难点,如算法复杂度太高、系统性能未能达到预期等。近期,在《Deep Learning formmWave Beam and Blockage Prediction Using Sub-6 GHz Channels》中,作者首先证明了基站与用户之间的毫米波信道和sub-6GHz信道之间的映射函数存在并且是双射的,然后用基站采集到的sub-6Ghz信道状态信息作为神经网络输入,采取深度学习模型来匹配下行毫米波波束,该波束匹配方法由于没有考虑发射波束与用户所在位置之间所隐含的相关性,因而仅在信噪比较高的条件下可达到70%的准确度,在信噪比较低的情况下,其准确度较低。

发明内容

本发明的目的在于克服上述现有技术存在的缺陷,提出一种基于深度学习的多基站协同波束匹配方法,以避免基站波束扫描的巨大开销,减少基站能耗,降低波束匹配时延,提高波束匹配准确性。

本发明的技术思路是:选取用户周围的三个基站,将其划分为一个主基站和两个辅基站,分别获取三个基站与用户之间的部分信道状态信息,通过将三个基站与用户的部分信道状态进行融合后依次输入至波束匹配模型,预测主基站与用户之间的最佳下行波束。

根据上述思路,本发明基于深度学习的多基站协同波束匹配方法,其实现方案包括如下:

(1)获取融合信道状态信息:

(1a)选取用户周围的三个基站,其中包含一个主基站与两个辅基站,每个基站均设有一个天线阵列,每个天线阵列包含N个天线,其中32≤N≤64;

(1b)在主基站的天线阵列中随机选择四个天线,分别在两个辅基站的天线阵列中随机选择一个天线;

(1c)用(1b)中被选中的天线发射下行导频,获取各个基站与用户之间的信道状态信息,并将其进行数据融合,得到融合信道状态信息;

(2)构建波束匹配模型:

(2a)建立基础网络:

设置5个全连接层,每个全连接层设有2048个神经元,每个神经元的激活函数采用线性整流函数,每个全连接层连接至一个drop-out层;

将五个全连接层的神经元进行级联后得到基础网络;

(2b)建立线性分类器:

设置一个由64个神经元组成全连接层,并在此全连接层连接至一个soft-max层,构成线性分类器,其中soft-max层用于计算每个可用波束成形矢量f的概率分布;

(2c)将基础网络与线性分类器接口处的神经元依次级联,得到波束匹配模型,并将交叉熵L作为该模型的损失函数;

(3)生成训练集:

(3a)根据毫米波信道模型生成主基站、辅基站与用户之间的信道状态信息训练样本;

(3b)对生成的用户的信道状态信息训练样本进行归一化;

(3c)将(3b)中归一化后的信道状态信息训练样本的实部与虚部拆分后拼接,根据(1b)中选择的天线转换为主基站的8K维训练特征向量和辅基站的2K维训练特征向量;

(3d)定义增益指标函数:

其中,f表示波束成形矢量,ω表示主基站波束成形矢量f到用户的增益指标,P表示主基站处的传输功率,K表示子载波个数,h

(3e)根据增益指标函数计算主基站波束码本中每个波束成形矢量到用户的增益;

(3f)将每个用户与主基站、辅基站天线上的训练特征向量进行融合;

(3g)根据增益为每个融合后的训练特征向量生成对应的最佳波束索引标签,并将所有训练特征向量和其对应最佳波束索引标签划分为训练集;

(4)利用训练集,通过深度神经网络分类器算法对波束匹配模型进行训练,得到训练好的波束匹配模型;

(5)将(1)获取的融合信道状态信息输入到训练好的波束匹配模型,获得主基站与用户之间的最佳波束成形矢量;

其中,F为波束成形矢量码本,其中包含N个波束成形矢量,

本发明与现有技术相比,具有如下优点:

1.本发明在基站与用户的波束匹配中,基站只需发射导频获取部分信道状态信息,无需进行波束扫描,降低了波束匹配所需的能耗与时间,并在波束方向有限的约束下实现最大化系统的可达和速率,减少了在多用户情况下波束匹配的时延,而且兼容多种通信系统。

2.本发明在波束匹配时,采用多基站协同模式,选取三个基站与用户的信道状态信息,补偿单一信道信息作为训练输入的不足,考虑了下行波束与用户所在位置之间所隐含的相关性,从而获得比单基站波束匹配更优的性能。

附图说明

图1为本发明的实现流程图。

图2为本发明中基站与用户的分布示意图。

图3为本发明中构建的波束匹配模型结构示意图。

图4为本发明实施例与现有技术的波束匹配准确率对比示意图;

图5为本发明实施例的系统可达速率与理想状态下系统可达速率对比示意图;

具体实施方式

以下结合附图对本发明的实施例和效果,作进一步详细描述。

参照图1,本实例的实现步骤包括如下:

步骤1,获取融合信道状态信息。

本实施例以一个下行链路mmWave-MIMO系统为例进行说明其波束匹配原理。该下行链路mmWave-MIMO系统设有多个基站,基站在其工作范围内服务U个用户,基站下行链路采用正交频分复用(OFDM)技术,其中包含K个子载波;每个基站配备有一个天线阵列,天线阵列中包含N个天线,采用模拟波束赋形技术,设置有一个码本F,其中包含N个波束成形矢量,具体为:

F={f

其中,波束成形矢量具体为:

本步骤的具体实现如下:

1.1)选取用户周围的三个基站:

如图2所示,选取用户周围的三个基站,其中包含一个主基站与两个辅基站,在主基站的天线阵列中随机选择四个天线,分别在两个辅基站的天线阵列中随机选择一个天线,被选中的天线发射下行导频,获取每个子载波上的信道状态信息h

其中,

式中d表示天线的间距,

1.2)根据子载波顺序将得到的信道状态信息进行拼接,得到主基站与用户之间的4×K维信道状态信息矩阵,和两个辅基站通与用户之间的两个1×K维信道状态信息矩阵,再将这两个矩阵进行数据融合,得到6×K维的融合信道状态信息。

步骤2,构建波束匹配模型。

2.1)建立基础网络:

设置5个全连接层,每个全连接层设有2048个神经元,每个神经元的激活函数采用线性整流函数,每个全连接层连接至一个drop-out层;

将五个全连接层的神经元进行级联后得到基础网络;

2.2)建立线性分类器:

设置一个由64个神经元组成全连接层;为了计算每个可用波束成形矢量的概率分布,将此全连接层连接到一个soft-max层构成线性分类器,该线性分类器的输出为:

其中,S

2.3)将基础网络与线性分类器接口处的神经元依次级联,得到波束匹配模型,如图3所示,并将交叉熵L作为该模型的损失函数,其表示为:

其中,r

步骤3,生成训练集。

3.1)根据毫米波信道模型分别生成U个主基站与用户之间和2U个辅基站与用户之间的信道状态信息训练样本

3.2)根据信道状态信息训练样本

3.3)用3.1)中生成的信道状态信息训练样本除以全局归一化因子Ω,得到归一化后的信道状态信息训练样本;

3.4)将3.3)中归一化后的信道状态信息训练样本的实部与虚部拆分后拼接,转换为主基站的U个8K维训练特征向量和辅基站的2U个2K维训练特征向量;

3.5)将主基站的U个8K维训练特征向量和辅基站的2U个2K维训练特征向量进行融合,得到U个12K维训练特征向量;

3.6)根据增益指标函数:

3.7)将所有训练特征向量和其对应最佳波束索引标签划分为训练集。

步骤4,训练波束匹配模型。

4.1)初始学习率设置为为0.1,学习率的下界为设置为0.001,完成前向计算和反向传播过程的次数设置为100,随机初始化全连接层的权重和偏差;

4.2)将步骤3中生成的训练集输入到波束匹配模型,进行前向计算,输出为第n个波束成形矢量是最佳波束成形矢量的概率S

其中,

4.3)根据S

其中,r

4.4)根据损失函数L进行反向传播;

4.5)重复4.2)-4.4)共100次,得到训练好的波束匹配模型。

步骤5,波束匹配。

将步骤1所获取的融合信道状态信息转换为特征向量后输入到步骤4中训练好的波束匹配模型,模型的输出为最佳波束成形矢量

其中,R

式中,s

本发明的效果可通过仿真结果进一步说明:

一.仿真条件

仿真场景如图2所示为,其中红色小方块代表整齐排列的用户,场景中总共有107871个用户,均匀分布街道的x轴和y轴上。绿色的建筑代表基站,其中用虚线框起来的基站是选中的三个基站,分别为主基站BS3,辅基站BS4,辅基站BS5,每个基站都配备一个天线阵列,天线阵列中包含64个天线,天线间距为0.5cm,基站采用的毫米波频段为28.8GHz,系统带宽为0.5GHz,采用模拟波束赋形技术,设置一个码本,码本中包含64个波束成形矢量,采用的OFDM子载波个数为512个,基站获取的融合信道状态信息OFDM子载波数为32个;灰色的建筑物代表相应比例尺的建筑。

二.仿真内容

仿真1,在信噪比在-5dB到20dB的条件下,将基站基于仿真场景获取的融合信道状态信息输入到训练好的波束匹配模型,得到不同信噪比条件下本发明匹配的最佳波束成形矢量,根据最佳波束成形矢量计算本发明在信噪比-5dB到20dB的top-1与top-3波束匹配准确率,并与使用sub-6GHz信道在-5dB到20dB的条件下进行波束匹配的top-1与top-3波束匹配准确率进行对比,结果如图4所示。

从图4可以看出,本发明在信噪比为20dB的条件下,top-3匹配准确率有99.9%,而使用sub-6GHz信道的top-3匹配准确率只有95%;在信噪比为-5dB的条件下的top-1匹配准确率接近82%,而使用sub-6GHz信道的技术在信噪比为-5dB的条件下top-1匹配准确率仅有26%。仿真结果表明,本发明不仅匹配准确率高,而且可以从容应对高度恶劣的噪声条件。

仿真2,在信噪比-5dB到20dB的条件下,将基站基于仿真场景获取的融合信道状态信息输入到训练好的波束匹配模型,得到本发明匹配的最佳波束成形矢量,根据最佳波束成形矢量计算出在信噪比在-5dB到20dB的用户可达速率,并与相同信噪比下理论最佳用户可达速率进行对比,结果如图5所示。

从图5可以看出,本发明的用户可达速率与理论用户可达速率非常接近,其证实了本波束匹配模型可以高精度匹配最佳毫米波波束,且成功概率很高,即使在极端条件下也有着较高的匹配性能。

以上描述仅是本发明的一个具体实例,显然对于本领域的专业人员来说,在了解了本发明内容和原理后,都可能在不背离本发明原理、结构的情况下,进行形式和细节上的各种修正和改变,但是这些基于本发明思想的修正和改变仍在本发明的权利要求保护范围之内。

技术分类

06120114696990