掌桥专利:专业的专利平台
掌桥专利
首页

一种涂布机烘箱以及涂布机废气回收系统

文献发布时间:2023-06-19 16:08:01



技术领域

本申请涉及有机气体回收技术领域,尤其涉及一种涂布机烘箱以及涂布机废气回收系统。

背景技术

在锂电池生产流程中,涂布是一个非常重要的步骤,该步骤主要应用的设备为涂布机,而烘箱作为涂布机中最为重要的一部分,包括多节烘箱单元,每节烘箱单元相互连通成一体,涂布基材在烘箱内按相同的方向前进,在前进过程中连续受各烘箱单元内的高温烘烤,并进行烘干,而锂电池极片在进行涂布烘干的过程中,会伴随有高温N-甲基吡咯烷酮(NMP)废气的产生。NMP具有本身成本高、危害人类健康、影响生产安全等问题,若直接排放不仅污染环境,还会造成能源浪费。因此,在锂电池生产中需要对涂布过程中产生的NMP废气进行处理,实现达标排放。

目前对涂布过程中产生的NMP的回收方式有多种,传统常用的回收方式如图1所示,对于每条涂布机生产线上的N节(通常是10-12节)烘箱,采用一套NMP回收装置集中进行处理。该方式存在以下问题:

1、每节烘箱中NMP的浓度无法精准控制;

2、为了满足烘箱中最大允许浓度的要求,存在着排风、送风风量过大、造成能量浪费的问题;

3、所有烘箱集中处理,存在风管过大、送风距离长而产生的风阻损失的问题;

4、开始生产/更换产品时各节烘箱风量调节复杂、耗时过长的问题。

针对上述回收方式存在的问题,目前虽然有提出对应于每节烘箱或者每两节烘箱使用一个NMP回收装置,如图2所示,这样设置虽然可以解决上述部分问题,但是每个NMP回收装置还是需要通过回风、送风风管线与烘箱进行连接。这样又带来了需要风管现场施工,造成建设时间增长,建设成本上升的问题以及虽然风管的距离变短、风量变小,送风、回风阻力会大大降低,但是,还是存在着回风、送风的风阻损失等问题。

综上所述,亟需提出一种新的涂布机烘箱,以解决上述问题。

发明内容

为了解决现有技术中存在的上述一个或多个技术问题,本申请实施例提供了一种新的无风管化涂布机烘箱,以达到高效回收有机气体以及节约能源的技术效果。

为了达到上述目的,本申请就解决其技术问题所采用的技术方案是:

第一方面,本申请提供了一种涂布机烘箱,所述涂布机烘箱包括第一箱体和第二箱体,所述第一箱体内限定有对目标产品进行烘干的烘干区域,所述第二箱体内装配有供风回收装置;

所述第一箱体上设置有烘干进气口以及废气出气口,所述供风回收装置包括供风回收进气口以及供风回收出气口,所述废气出气口与所述供风回收进气口相连通,所述烘干进气口与所述供风回收出气口相连通。

在一个具体的实施例中,所述供风回收装置包括供风组件和回收组件,所述供风回收进气口包括所述供风组件的供风进气口以及所述回收组件的回收进气口,所述供风回收出气口包括所述供风组件的供风出气口以及所述回收组件的回收出气口。

在一个具体的实施例中,所述废气出气口包括第一废气出气口和第二废气出气口,所述第一废气出气口与所述回收进气口相连通,所述第二废气出气口以及所述回收出气口与所述供风进气口相连通,所述供风出气口与所述烘干进气口相连通。

在一个具体的实施例中,所述废气出气口包括第一废气出气口和第二废气出气口,所述第一废气出气口分别与所述回收进气口以及所述供风进气口相连通,所述第二废气出气口、所述第一废气出气口以及所述回收出气口均与所述供风进气口相连通,所述供风出气口与所述烘干进气口相连通。

在一个具体的实施例中,所述废气出气口包括第一废气出气口和第二废气出气口,所述第一废气出气口、所述第二废气出气口以及所述回收出气口均与所述供风进气口相连通,所述第一废气出气口以及所述第二废气出气口均与所述回收进气口相连通,所述供风出气口与所述烘干进气口相连通。

在一个具体的实施例中,所述目标产品包括相对设置的第一表面和第二表面,所述第一表面上涂布有待烘干的浆料,所述烘干区域包括第一烘干区域以及第二烘干区域,所述第一表面对应于所述第一烘干区域,所述第二表面对应于所述第二烘干区域,所述第一废气出气口设置于所述第一箱体对应于所述第一烘干区域的位置上,所述第二废气出气口设置于所述第一箱体对应于所述第二烘干区域的位置上。

在一个具体的实施例中,所述烘干进气口包括第一烘干进气口和第二烘干进气口,所述第一烘干进气口设置于所述第一箱体对应于所述第一烘干区域的位置上,所述第二烘干进气口设置于所述第一箱体对应于所述第二烘干区域的位置上。

在一个具体的实施例中,进入所述回收进气口的处理风量小于进入所述供风进气口的处理风量。

在一个具体的实施例中,所述回收组件包括至少一热交换器、至少一冷凝器以及至少一处理风机,其中所述热交换器、所述冷凝器以及所述处理风机依次连接形成有机气体热交换-冷凝回收循环流路。

在一个具体的实施例中,所述回收组件还包括至少一除雾器,所述除雾器设置于所述冷凝器与所述处理风机之间。

在一个具体的实施例中,所述冷凝器包括冷却盘管、冷冻盘管、热管、直膨盘管中的至少一个。

在一个具体的实施例中,所述冷凝器包括直膨盘管。

在一个具体的实施例中,所述供风组件包括依次连接的至少一循环风机以及至少一加热器。

在一个具体的实施例中,所述供风件还包括至少一过滤器

第二方面,本申请还提供了一种涂布机废气回收系统,所述系统包括至少一层烘干模块,每层所述烘干模块包括若干个上述涂布机烘箱。

本申请实施例提供的技术方案带来的有益效果是:

本申请实施例提供的涂布机烘箱以及涂布机废气回收系统,所述涂布机烘箱包括第一箱体和第二箱体,所述第一箱体内限定有对目标产品进行烘干的烘干区域,所述第二箱体内装配有供风回收装置,所述第一箱体上设置有烘干进气口以及废气出气口,所述供风回收装置包括供风回收进气口以及供风回收出气口,所述废气出气口与所述供风回收进气口相连通,所述烘干进气口与所述供风回收出气口相连通,通过将NMP等有机气体的回收组件耦合在每节涂布机烘箱内,使得涂布机烘箱同时具有烘干和有机气体回收功能,实现无风管化的涂布机烘箱,一方面可以减少因风管施工所造成的建设周期长的问题以及降低设备成本,另一方面,每节烘箱可以精准控制必要的循环风量,减少因风量过大而造成的能量浪费问题以及每节烘箱可以单独自动精准调节风量,减少设备启动时所需的调整时间,减少设备无效运转时间,降低生产成本;

进一步地,本申请实施例提供的涂布机烘箱以及涂布机废气回收系统,由于进入回收组件的气体为目标产品所述第一表面上涂布的待烘干的浆料上面的NMP浓度较高的气体,因此设置进入所述回收进气口的处理风量小于进入所述供风进气口的处理风量,可以减少回收组件在回收有机气体等废气过程中所需冷却水、冷冻水的使用量,以及后续加热用导热油的使用量,从而降低能耗、节省运行成本,降低锂电池制造成本,同时减少碳排放;

进一步地,本申请实施例提供的涂布机烘箱以及涂布机废气回收系统,设置冷凝器采用直膨盘管,从而保证在盘管出现泄露时,不会有冷却水流入到涂布机烘箱中,造成二次损害。

附图说明

为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1是现有技术中一种涂布烘干废气处理系统NMP回收的原理示意图;

图2是现有技术中另一种涂布烘干废气处理系统NMP回收的原理示意图;

图3是本申请实施例一提供的涂布机烘箱的原理示意图;

图4是本申请实施例二提供的涂布机烘箱的原理示意图;

图5是本申请实施例三提供的涂布机烘箱的原理示意图。

具体实施方式

为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。

下面结合附图具体描述本申请实施例的方案。

本申请中的涂布机烘箱包括但不限于涂布机阴极烘箱,待回收处理的废气包括但不限于NMP等有机气体。为便于描述,以下各优选实施例中的涂布机烘箱均以涂布机阴极烘箱为例、废气均以NMP为例进行说明,但应理解的是本申请中所述的涂布机烘箱不应局限于涂布机电极烘箱,凡是在生产中产生有机气体等废气需要送风、排风的生产装置,如锂电池涂布烘箱、印刷、半导体、粘合胶带制造等都可使用本申请的方案,涂布机阴极烘箱不应理解为对本申请中涂布机烘箱的限制,NMP同样不应理解为对本申请中废气的限制,其他涂布相关有机气体,如甲苯、N,N-二甲基乙酰胺(DMAC)、N,N-二甲基甲酰胺(DMF)亦可应用本发明的涂布机烘箱进行回收。

如背景技术所述,目前常规的涂布机烘箱一般只具有烘干功能,NMP等有机气体的回收处理通常需要通过风管外接回收装置来实现,这样的设置方式需要在烘箱外连接大量通风管道,这些通风管道需进行现场施工,造成建设时间增长,建设成本上升以及回风、送风风阻大等一系列问题。针对上述一个或多个问题,本申请实施例中创造性地提出了一种新的涂布机烘箱,该涂布机烘箱通过将供风组件以及回收组件集成部署在烘箱内部,实现无风管化的涂布机烘箱。

实施例一

图3是本申请实施例一提供的涂布机烘箱的原理示意图,参照图3所示,所述涂布机烘箱一般性地包括第一箱体100、第二箱体200和供风回收装置300。其中,供风回收装置300集成设置在第二箱体200内部。第一箱体100内部限定有烘干区域110,烘干区域110用于让涂布浆料后的目标产品通过,以在供风回收装置300的配合下实现对涂布浆料后的目标产品进行烘干以及回收处理烘干过程中产生的NMP等有机气体。第一箱体100上设置有烘干进气口120以及废气出气口130,作为一种较优的示例,烘干进气口120和废气出气口130可以分别开设在第一箱体100相对的两个侧壁上,以形成送风、排风回路。作为一种示例性而非限制性的示例,本申请中的目标产品包括但不限于阴极极片,以下为了便于说明,目标产品均以阴极极片为例。

进一步参照图3所示,供风回收装置300包括供风组件310和回收组件320。供风组件310主要用于向第一箱体100内的烘干区域110内提供一定温度的热风,以对涂布浆料后的阴极极片400(即目标产品)进行烘干。回收组件320主要用于对涂布浆料后的阴极极片在第一箱体100中进行烘干的过程中产生的NMP等有机气体进行回收处理。具体实施时,供风组件310上设置至少一个供风进气口311和至少一个供风出气口312,回收组件320上设置至少一个回收进气口321和至少一个回收出气口322。

通常阴极极片400等产品只需一面涂布浆料,另一面不需要进行涂布。设定阴极极片400包括第一表面410和第二表面420,第一表面410和第二表面420相对设置,第一表面410上需要涂布浆料,而第二表面420上则不需要涂布浆料。因而在烘干过程中,涂布有浆料的第一表面410对应的区域里的NMP等有机气体的浓度相对于未涂布浆料的第二表面420对应的区域里的NMP等有机气体的浓度会更高一点,因而在进行NMP等有机气体的回收处理时,可以优先回收处理第一表面410对应的区域里的气体。

由于设置进入回收组件320的气体为NMP等有机气体的浓度较高的气体,因此可以设置进入回收组件320的回收进气口321的处理风量小于进入供风组件310的供风进气口311的处理风量,从而减少回收组件在回收有机气体过程中所需冷却水、冷冻水的使用量,以及后续加热用导热油的使用量,从而降低能耗、节省运行成本,降低锂电池制造成本,同时减少碳排放。

具体实施时,作为一种较优的实施方式,本申请中的烘干区域110可以划分为第一烘干区域111以及第二烘干区域112。其中,第一烘干区域111对应于第一表面410,第二烘干区域112对应于第二表面420。相对应地,设置在第一箱体100上的废气出气口130可以包括第一废气出气口131和第二废气出气口132。第一废气出气口131设置在第一箱体100对应于第一烘干区域111的位置上,以与第一烘干区域111相连通,第二废气出气口132设置于第一箱体100对应于第二烘干区域112的位置上,以与第二烘干区域112相连通。

由于烘干区域110包括第一烘干区域111和第二烘干区域112两部分,为了提高涂布机烘箱的烘干效果,本申请中设置烘干进气口120包括分别对应于第一烘干区域111设置的第一烘干进气口121和对应于第二烘干区域112设置的第二烘干进气口122,即第一烘干进气口121设置于第一箱体100对应于第一烘干区域111的位置上,以与第一烘干区域111相连通,第二烘干进气口122设置于第一箱体100对应于第二烘干区域112的位置上,以与第二烘干区域112相连通。通过第一烘干进气口121与第一废气出气口131在第一烘干区域111形成第一送风、排风回路,通过第二烘干进气口122与第二废气出气口132在第二烘干区域112形成第二送风、排风回路。应该理解的是,所述第一送风、排风回路与所述第二送风、排风回路在空间上并非两个单独的封闭空间,从第一烘干进气口121流入的部分气体可从第二废气出气口132流出,从第二烘干进气口122流入的部分气体亦可从第一废气出气口131流出,这里所述第一送风、排风回路与所述第二送风、排风回路仅仅表征两者之间的位置关系,不应理解为对保护范围的限缩。

进一步参照图3所示,作为一种较优的实施方式,本申请实施例中,回收组件320包括一个热交换器323、一个冷凝器324、一个处理风机325以及一个除雾器326。其中热交换器323、冷凝器324、除雾器326以及处理风机325依次连接形成有机气体热交换-冷凝回收循环流路,循环流路中的风量的大小可以通过处理风机325进行控制。其中,热交换器323包括高温气体入口、高温气体出口、低温气体入口以及低温气体出口。高温气体入口即为回收组件320的回收进气口321,其与第一箱体100上的第一废气出气口131连接,低温气体出口与冷凝器324的入口相连通,冷凝器324的出口与除雾器326的入口相连通,除雾器326的出口与处理风机325的入口相连通,处理风机325的出口与低温气体入口相连通,高温气体出口即为回收组件320的回收出气口322,其与供风进气口311相连。

在废气处理过程中,第一烘干区域111内产生的高温废气自第一废气出气口131进入热交换器323的高温气体入口后,与热交换器323的低温气体入口流入的低温废气进行热交换,高温废气经过热交换后转化成的低温废气从热交换器323的低温气体出口进入冷凝器324的入口,在冷凝器324中进行NMP的冷凝回收,经冷凝回收后的低温气体从冷凝器324的出口流入除雾器326的入口,经除雾器326去除气体中携带的冷凝液等液体后,从除雾器326的出口进入处理风机325后进入热交换器323的低温气体入口,经过与热交换器323内的高温气体热交换后转化成高温气体后经高温气体出口进入供风进气口311,经供风组件310加热处理后重新进入第一箱体100内,从而形成有机气体热交换-冷凝回收循环流路。

这里需要说明的是,本申请实施例中,不对回收组件320包含的具体部件做限定,用户可以根据实际需求选择热交换器323、冷凝器324、处理风机325以及除雾器326中的一种或多种。另外,本申请实施例同样不对热交换器323、冷凝器324、处理风机325以及除雾器326的具体数量做限定,用户可以根据实际需求进行设置。

作为一种较优的实施方式,本申请实施例中的热交换器320包括波纹板式气-气交换器或热管换热器中的至少一种。优选为波纹板式气-气交换器,且其与壳体底面呈45°角倾斜设置。这里应该理解的是,本申请中的换热器种类、数量及其布置方式只是较佳的一种示例,现有技术中任何其他常规的热交换器,如管壳式换热器、双管板换热器、陶瓷换热器、蓄热式换热器等也都应纳入到本申请的保护范围。

本申请实施例中的冷凝器优选为冷却盘管324a与冷冻盘管324b两者的组合。这里应该理解的是该实施例只是较佳的一种示例,本领域技术人员能够根据实际需要选择冷却盘管、冷冻盘管、热管、直膨盘管中的至少一个作为冷凝器。冷却盘管与冷冻盘管不应视为对本申请实施中冷凝器保护范围的限制。

本申请实施例中的冷凝器进一步优选为直膨盘管,从而保证在盘管出现泄露时,不会有冷却水流入到涂布机烘箱中,造成二次损害。

作为一种较优的实施方式,本申请实施例中,回收组件320还可以包括压力调节装置327,压力调节装置327设置在处理风机325与热交换器323之间,以维持负压排风。

本申请实施例中的供风组件310一个循环风机313、一个加热器314以及一个过滤器315,其中循环风机313、加热器314以及过滤器315依次连接,循环风机313的入口即为供风组件310的供风进气口311,过滤器315的出口即为供风组件310的供风出气口312。循环风机313可以实现进入加热器314的风量大小的精准控制。这里需要说明的是,本申请实施例中,不对供风组件310包含的具体部件做限定,用户可以根据实际需求选择循环风机313、加热器314以及过滤器315中的一种或多种。另外,本申请实施例同样不对循环风机313、加热器314以及过滤器315的具体数量做限定,用户可以根据实际需求进行设置。

进一步参照图3所示,本申请实施例中,循环风机313入口与第二废气出气口132以及热交换器323的高温气体出口相连通,循环风机313出口与加热器314入口相连通,加热器314出口与过滤器315入口相连通,过滤器315出口与第一箱体100上的第一烘干进气口121以及第二烘干进气口122相连通。在供风过程中,第二烘干区域112内产生的高温废气以及来自热交换器320的高温气体一起进入循环风机313入口后,经循环风机313送入加热器314入口,经加热器314加热后从加热器314出口进入过滤器315入口,经过滤器315对气体中携带的粉尘等杂质进行过滤后,经过滤器315出口分别进入第一烘干进气口121以及第二烘干进气口122,从而进入第一烘干区域111以及第二烘干区域112,以在第一烘干区域111以及第二烘干区域112分别形成一个送风、排风回路。

实施例二

实施例二是产业中另一种较佳的实施例,与实施例一的不同之处在于,参照图4所示,第一废气出气口131与热交换器323的高温气体入口以及循环风机313入口均相连通。

进一步参照图4所示,第一烘干区域111内产生的高温废气一部分自第一废气出气口131进入热交换器323的高温气体入口,经热交换器323、冷凝器324、除雾器326以及处理风机325形成的有机气体热交换-冷凝回收循环流路进行有机气体回收处理,第一烘干区域111内产生的另一部分高温废气自第一废气出气口131与第二烘干区域112内产生的高温废气以及来自热交换器320经热交换后的高温气体一起进入循环风机313入口,经循环风机313、加热器314以及过滤器315处理后进入第一烘干区域111以及第二烘干区域112,以在第一烘干区域111以及第二烘干区域112分别形成一个送风、排风回路。其中具体废气处理过程以及供风过程可参照实施例一中相关内容,这里不在一一赘述。

实施例三

实施例三是产业中第三种较佳的实施例,与实施例一的不同之处在于,参照图5所示,第一废气出气口131与循环风机313入口相连通,循环风机313出口与热交换器323的高温气体入口相连通,即第一废气出气口131、第二废气出气口132以及回收出气口322均通过循环风机313与回收进气口相连通,从而将部分回风回输至回收组件320的热交换器323的高温气体入口处。将返回热交换器323的高温气体入口的回风设置在循环风机313的下游,可以防止循环风机313与回收组件320中的处理风机325入口相互干扰。但应该理解的是,本实施例中循环风机313的安装位置仅作为较佳的示例,本领域技术人员可根据实际需要将循环风机313设置在供风组件310中任何合适的位置,例如:将循环风机313设置在加热器314以及过滤器315之间,并直接将第一废气出气口131、第二废气出气口132以及回收出气口322的部分回风回输至热交换器323的高温气体入口。

进一步参照图5所示,第一烘干区域111内产生的高温废气与第二烘干区域112内产生的高温废气以及来自热交换器320的高温气体一起进入循环风机313入口,经循环风机313出口一部分进入热交换器320的高温气体入口,经热交换器323、冷凝器324、除雾器326以及处理风机325形成的有机气体热交换-冷凝回收循环流路进行有机气体回收处理,另一部分经循环风机313出口进入加热器314入口,经加热器314以及过滤器315处理后进入第一烘干区域111以及第二烘干区域112,以在第一烘干区域111以及第二烘干区域112分别形成一个送风、排风回路。其中具体废气处理过程以及供风过程可参照实施例一中相关内容,这里不在一一赘述。

对应于上述涂布机烘箱本申请还提供了一种涂布机废气回收系统,所述系统包括至少一层烘干模块,每层所述烘干模块包括若干个上述涂布机烘箱。

在本申请的描述中,需要理解的是,术语“垂直”“平行”“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。

在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。

以上所述仅为本申请的较佳实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

技术分类

06120114715344