掌桥专利:专业的专利平台
掌桥专利
首页

摄像光学镜头

文献发布时间:2023-06-19 09:35:27


摄像光学镜头

技术领域

本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。

背景技术

近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device,CCD)或互补性氧化金属半导体器件(Complementary Metal-Oxide Semiconductor Sensor,CMOS Sensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化摄像镜头俨然成为目前市场上的主流。

为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式透镜结构。然而,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且系统对成像品质的要求不断提高的情况下,常见的三片式透镜虽然已经具有较好的光学性能,但是其光焦度、透镜间距和透镜形状设置仍然具有一定的不合理性,导致透镜结构在具有良好光学性能的同时,无法满足广角化、超薄化的设计要求。

因此,有必要提供一种具有良好的光学性能且满足广角化、超薄化设计要求的摄像光学镜头。

发明内容

针对上述问题,本发明的目的在于提供一种摄像光学镜头,其具有良好光学性能的同时,满足广角化、超薄化的设计要求。

为解决上述技术问题,本发明的实施方式提供了一种摄像光学镜头,所述摄像光学镜头自物侧至像侧依序包括:具有正屈折力的第一透镜、具有负屈折力的第二透镜以及具有正屈折力的第三透镜;其中,所述摄像光学镜头的焦距为f,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第三透镜的焦距为f3,所述第一透镜的物侧面的中心曲率半径为R1,所述第一透镜的像侧面的中心曲率半径为R2,所述第二透镜的物侧面的中心曲率半径为R3,所述第二透镜的像侧面的中心曲率半径为R4,所述第一透镜的像侧面到所述第二透镜的物侧面的轴上距离为d2,所述第二透镜的像侧面到所述第三透镜的物侧面的轴上距离为d4,且满足下列关系式:1.20≤f1/f≤1.80;-2.00≤f2/f≤-1.00;0.75≤f3/f≤1.10;-6.00≤R2/R1≤-2.00;2.20≤R4/R3≤8.00;1.50≤d2/d4≤3.50。

优选地,所述第三透镜的物侧面的中心曲率半径为R5,所述第三透镜的像侧面的中心曲率半径为R6,且满足下列关系式:-10.00≤(R5+R6)/(R5-R6)≤-3.00。

优选地,所述第一透镜的轴上厚度为d1,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-1.43≤(R1+R2)/(R1-R2)≤-0.22;0.06≤d1/TTL≤0.25。

优选地,所述第二透镜的轴上厚度为d3,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:-5.33≤(R3+R4)/(R3-R4)≤-0.86;0.04≤d3/TTL≤0.18。

优选地,所述第三透镜的轴上厚度为d5,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:0.07≤d5/TTL≤0.32。

优选地,所述摄像光学镜头的对角线方向的视场角为FOV,满足下列关系式:FOV≥87.00°。

优选地,所述摄像光学镜头的像高为IH,所述摄像光学镜头的光学总长为TTL,且满足下列关系式:TTL/IH≤1.45。

优选地,所述第一透镜与所述第二透镜的组合焦距为f12,且满足下列关系式:-112.19≤f12/f≤12.47。

本发明的有益效果在于:本发明的摄像光学镜头具有优秀的光学特性,且具有广角化、超薄化的特性,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。

附图说明

为了更清楚地说明本发明实施方式中的技术方案,下面将对实施方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:

图1是本发明第一实施方式的摄像光学镜头的结构示意图;

图2是图1所示摄像光学镜头的轴向像差示意图;

图3是图1所示摄像光学镜头的倍率色差示意图;

图4是图1所示摄像光学镜头的场曲及畸变示意图;

图5是本发明第二实施方式的摄像光学镜头的结构示意图;

图6是图5所示摄像光学镜头的轴向像差示意图;

图7是图5所示摄像光学镜头的倍率色差示意图;

图8是图5所示摄像光学镜头的场曲及畸变示意图;

图9是本发明第三实施方式的摄像光学镜头的结构示意图;

图10是图9所示摄像光学镜头的轴向像差示意图;

图11是图9所示摄像光学镜头的倍率色差示意图;

图12是图9所示摄像光学镜头的场曲及畸变示意图;

图13是本发明第四实施方式的摄像光学镜头的结构示意图;

图14是图13所示摄像光学镜头的轴向像差示意图;

图15是图13所示摄像光学镜头的倍率色差示意图;

图16是图13所示摄像光学镜头的场曲及畸变示意图;

图17是本发明第五实施方式的摄像光学镜头的结构示意图;

图18是图17所示摄像光学镜头的轴向像差示意图;

图19是图17所示摄像光学镜头的倍率色差示意图;

图20是图17所示摄像光学镜头的场曲及畸变示意图。

具体实施方式

为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。

(第一实施方式)

参考附图,本发明提供了一种摄像光学镜头10。图1所示为本发明第一实施方式的摄像光学镜头10的结构示意图,该摄像光学镜头10包括三片透镜。具体的,左侧为物侧,右侧为像侧,摄像光学镜头10由物侧至像侧依序包括:第一透镜L1、光圈S1、第二透镜L2以及第三透镜L3。

在本实施方式中,第一透镜L1具有正屈折力,第二透镜L2具有负屈折力,第三透镜L3具有正屈折力。

在本实施方式中,第一透镜L1为塑料材质,第二透镜L2为塑料材质,第三透镜L3为塑料材质。在其他实施例中,各透镜也可以是其他材质。

在本实施方式中,定义所述摄像光学镜头10的焦距为f,所述第一透镜L1的焦距为f1,满足下列关系式:1.20≤f1/f≤1.80,规定了第一透镜L1的焦距f1与摄像光学镜头10的焦距f的比值,可以有效地平衡摄像光学镜头10的球差以及场曲量。

所述摄像光学镜头10的焦距为f,定义所述第二透镜L2的焦距为f2,满足下列关系式:-2.00≤f2/f≤-1.00,规定了第二透镜L2的焦距f2与摄像光学镜头10的焦距f的比值,通过焦距的合理分配,使得摄像光学镜头10具有较佳的成像品质和较低的敏感性。

所述摄像光学镜头10的焦距为f,定义所述第三透镜L3的焦距为f3,满足下列关系式:0.75≤f3/f≤1.10,规定了第三透镜L3的焦距f3与摄像光学镜头10的焦距f的比值,通过焦距的合理分配,使得摄像光学镜头10具有较佳的成像品质和较低的敏感性。

定义所述第一透镜L1的物侧面的中心曲率半径为R1,所述第一透镜L1的像侧面的中心曲率半径为R2,满足下列关系式:-6.00≤R2/R1≤-2.00,规定了第一透镜L1的形状,在关系式范围内,可以缓和光线经过镜片的偏折程度,有效减小像差。

定义所述第二透镜L2的物侧面的中心曲率半径为R3,所述第二透镜L2的像侧面的中心曲率半径为R4,满足下列关系式:2.20≤R4/R3≤8.00,规定了第二透镜L2的形状,在关系式范围内,有利于补正轴上色像差。

定义所述第一透镜L1的像侧面到所述第二透镜L2的物侧面的轴上距离为d2,所述第二透镜L2的像侧面到所述第三透镜L3的物侧面的轴上距离为d4,满足下列关系式:1.50≤d2/d4≤3.50。规定了第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离d2与第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离d4的比值,在关系式范围内有助于压缩光学总长TTL,实现超薄化效果。

定义所述第三透镜L3的物侧面的中心曲率半径为R5,所述第三透镜L3的像侧面的中心曲率半径为R6,满足下列关系式:-10.00≤(R5+R6)/(R5-R6)≤-3.00。规定了第三透镜L3的形状,在关系式范围内,有利于补正轴外画角的像差。

本实施方式中,第一透镜L1的物侧面于近轴处为凸面,像侧面于近轴处为凸面。

所述第一透镜L1的物侧面的中心曲率半径为R1,所述第一透镜L1的像侧面的中心曲率半径为R2,满足下列关系式:-1.43≤(R1+R2)/(R1-R2)≤-0.22,合理控制第一透镜L1的形状,使得第一透镜L1能够有效地校正摄像光学镜头10的球差。优选地,满足-0.89≤(R1+R2)/(R1-R2)≤-0.28。

定义所述摄像光学镜头10的光学总长为TTL,所述第一透镜L1的轴上厚度为d1,满足下列关系式:0.06≤d1/TTL≤0.25,在关系式范围内,有利于实现超薄化。优选地,满足0.10≤d1/TTL≤0.20。

本实施方式中,第二透镜L2的物侧面于近轴处为凹面,像侧面于近轴处为凸面。

所述第二透镜L2的物侧面的中心曲率半径为R3,所述第二透镜L2的像侧面的中心曲率半径为R4,满足下列关系式:-5.33≤(R3+R4)/(R3-R4)≤-0.86,规定了第二透镜L2的形状,在关系式范围内时,随着摄像光学镜头10向超薄化、广角化发展,有利于补正轴上色像差问题。优选地,满足-3.33≤(R3+R4)/(R3-R4)≤-1.07。

所述摄像光学镜头10的光学总长为TTL,定义所述第二透镜L2的轴上厚度为d3,满足下列关系式:0.04≤d3/TTL≤0.18,在关系式范围内,有利于实现超薄化。优选地,满足0.07≤d3/TTL≤0.15。

本实施方式中,第三透镜L3的物侧面于近轴处为凸面,像侧面于近轴处为凹面。

所述摄像光学镜头10的光学总长为TTL,定义所述第三透镜L3的轴上厚度为d5,满足下列关系式:0.07≤d5/TTL≤0.32,在关系式范围内,有利于实现超薄化。优选地,满足0.12≤d5/TTL≤0.25。

在本实施方式中,所述摄像光学镜头10的焦距为f,所述第一透镜L1与所述第二透镜L2的组合焦距为f12,满足下列关系式:-112.19≤f12/f≤12.47,在条件式范围内,可消除所述摄像光学镜头10的像差与歪曲,且可压制摄像光学镜头10后焦距,维持影像镜片系统组小型化。优选的,满足-70.12≤f12/f≤9.98。

可以理解的是,在其他实施方式中,第一透镜L1、第二透镜L2以及第三透镜L3的物侧面和像侧面于近轴处的面型也可设置为其他凹、凸分布情况。

本实施方式中,所述摄像光学镜头10的对角线方向的视场角为FOV,满足下列关系式:FOV≥87.00°,从而有利于实现广角化。

本实施方式中,所述摄像光学镜头10的像高为IH,所述摄像光学镜头10的光学总长为TTL,满足下列关系式:TTL/IH≤1.45,从而有利于实现超薄化。

当满足上述关系时,使得摄像光学镜头10具有良好光学性能的同时,能够满足广角化、超薄化的设计要求;根据该摄像光学镜头10的特性,该摄像光学镜头10尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。

下面将用实例进行说明本发明的摄像光学镜头10。各实例中所记载的符号如下所示。焦距、轴上距离、中心曲率半径、轴上厚度、反曲点位置、驻点位置的单位为mm。

TTL:光学总长(第一透镜L1的物侧面到像面Si的轴上距离),单位为mm;

光圈值FNO:是指摄像光学镜头的有效焦距和入瞳直径的比值。

优选的,所述透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。

表1、表2示出本发明第一实施方式的摄像光学镜头10的设计数据。

【表1】

其中,各符号的含义如下。

S1:光圈;

R:光学面中心处的曲率半径;

R1:第一透镜L1的物侧面的中心曲率半径;

R2:第一透镜L1的像侧面的中心曲率半径;

R3:第二透镜L2的物侧面的中心曲率半径;

R4:第二透镜L2的像侧面的中心曲率半径;

R5:第三透镜L3的物侧面的中心曲率半径;

R6:第三透镜L3的像侧面的中心曲率半径;

d:透镜的轴上厚度、透镜之间的轴上距离;

d0:光圈S1到第一透镜L1的物侧面的轴上距离;

d1:第一透镜L1的轴上厚度;

d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;

d3:第二透镜L2的轴上厚度;

d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;

d5:第三透镜L3的轴上厚度;

d6:第三透镜L3的像侧面到像面Si的轴上距离;

nd:d线的折射率;

nd1:第一透镜L1的d线的折射率;

nd2:第二透镜L2的d线的折射率;

nd3:第三透镜L3的d线的折射率;

vd:阿贝数;

v1:第一透镜L1的阿贝数;

v2:第二透镜L2的阿贝数;

v3:第三透镜L3的阿贝数;

表2示出本发明第一实施方式的摄像光学镜头10中各透镜的非球面数据。

【表2】

其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16、A18、A20是非球面系数。

y=(x

其中,x是非球面曲线上的点与光轴的垂直距离,y是非球面深度。(非球面上距离光轴为x的点,与相切于非球面光轴上顶点的切面两者间的垂直距离)。

为方便起见,各个透镜面的非球面使用上述公式(1)中所示的非球面。但是,本发明不限于该公式(1)表示的非球面多项式形式。

表3、表4示出本发明第一实施方式的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,P1R1、P1R2分别代表第一透镜L1的物侧面和像侧面,P2R1、P2R2分别代表第二透镜L2的物侧面和像侧面,P3R1、P3R2分别代表第三透镜L3的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。

【表3】

【表4】

图2、图3分别示出了波长为650nm、610nm、555nm、510nm、470nm及430nm的光经过第一实施方式的摄像光学镜头10后的轴向像差以及倍率色差示意图。图4则示出了波长为555nm的光经过第一实施方式的摄像光学镜头10后的场曲及畸变示意图,图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。

后出现的表21示出各实施方式一、二、三、四、五中各种数值与条件式中已规定的参数所对应的值。

如表21所示,第一实施方式满足各条件式。

在本实施方式中,所述摄像光学镜头10的入瞳直径ENPD为0.723mm,全视场像高IH为1.750mm,对角线方向的视场角FOV为88.80°,所述摄像光学镜头10满足广角化、超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。

(第二实施方式)

图5所示为本发明第二实施方式的摄像光学镜头20的结构示意图,第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。

表5、表6示出本发明第二实施方式的摄像光学镜头20的设计数据。

【表5】

表6示出本发明第二实施方式的摄像光学镜头20中各透镜的非球面数据。

【表6】

表7、表8示出本发明第二实施方式的摄像光学镜头20中各透镜的反曲点以及驻点设计数据。

【表7】

【表8】

图6、图7分别示出了波长为650nm、610nm、555nm、510nm、470nm及430nm的光经过第二实施方式的摄像光学镜头20后的轴向像差以及倍率色差示意图。图8则示出了波长为555nm的光经过第二实施方式的摄像光学镜头20后的场曲及畸变示意图。图8的场曲S是弧矢方向的场曲,T是子午方向的场曲。

如表21所示,第二实施方式满足各条件式。

在本实施方式中,所述摄像光学镜头20的入瞳直径ENPD为0.713mm,全视场像高IH为1.750mm,对角线方向的视场角FOV为89.00°,所述摄像光学镜头20满足广角化、超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。

(第三实施方式)

图9所示为本发明第三实施方式的摄像光学镜头30的结构示意图,第三实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。

表9、表10示出本发明第三实施方式的摄像光学镜头30的设计数据。

【表9】

表10示出本发明第三实施方式的摄像光学镜头30中各透镜的非球面数据。

【表10】

表11、表12示出本发明第三实施方式的摄像光学镜头30中各透镜的反曲点以及驻点设计数据。

【表11】

【表12】

图10、图11分别示出了波长为650nm、610nm、555nm、510nm、470nm及430nm的光经过第三实施方式的摄像光学镜头30后的轴向像差以及倍率色差示意图。图12则示出了波长为555nm的光经过第三实施方式的摄像光学镜头30后的场曲及畸变示意图。图12的场曲S是弧矢方向的场曲,T是子午方向的场曲。

如表21所示,第三实施方式满足各条件式。

在本实施方式中,所述摄像光学镜头30的入瞳直径ENPD为0.753mm,全视场像高IH为1.750mm,对角线方向的视场角FOV为87.00°,所述摄像光学镜头30满足广角化、超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。

(第四实施方式)

图13所示为本发明第四实施方式的摄像光学镜头40的结构示意图,第四实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。

表13、表14示出本发明第四实施方式的摄像光学镜头40的设计数据。

【表13】

表14示出本发明第四实施方式的摄像光学镜头40中各透镜的非球面数据。

【表14】

表15、表16示出本发明第四实施方式的摄像光学镜头40中各透镜的反曲点以及驻点设计数据。

【表15】

【表16】

图14、图15分别示出了波长为650nm、610nm、555nm、510nm、470nm及430nm的光经过第四实施方式的摄像光学镜头40后的轴向像差以及倍率色差示意图。图16则示出了波长为555nm的光经过第四实施方式的摄像光学镜头40后的场曲及畸变示意图,图16的场曲S是弧矢方向的场曲,T是子午方向的场曲。

如表21所示,第四实施方式满足各条件式。

在本实施方式中,所述摄像光学镜头40的入瞳直径ENPD为0.718mm,全视场像高IH为1.750mm,对角线方向的视场角FOV为89.40°,所述摄像光学镜头40满足广角化、超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。

(第五实施方式)

图17所示为本发明第五实施方式的摄像光学镜头50的结构示意图,第五实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。

表17、表18示出本发明第五实施方式的摄像光学镜头50的设计数据。

【表17】

表18示出本发明第五实施方式的摄像光学镜头50中各透镜的非球面数据。

【表18】

表19、表20示出本发明第五实施方式的摄像光学镜头50中各透镜的反曲点以及驻点设计数据。

【表19】

【表20】

图18、图19分别示出了波长为650nm、610nm、555nm、510nm、470nm及430nm的光经过第五实施方式的摄像光学镜头50后的轴向像差以及倍率色差示意图。图20则示出了波长为555nm的光经过第五实施方式的摄像光学镜头50后的场曲及畸变示意图,图20的场曲S是弧矢方向的场曲,T是子午方向的场曲。

以下表21按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学镜头50满足上述的条件式。

在本实施方式中,所述摄像光学镜头50的入瞳直径ENPD为0.710mm,全视场像高IH为1.750mm,对角线方向的视场角FOV为89.40°,所述摄像光学镜头50满足广角化、超薄化的设计要求,其轴上、轴外色像差被充分补正,且具有优秀的光学特征。

【表21】

本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。

相关技术
  • 光学镜头组装方法及用该方法组装的光学镜头、摄像模组
  • 光学镜头、光学镜头的制造方法及摄像模组
技术分类

06120112224733