掌桥专利:专业的专利平台
掌桥专利
首页

用于驱动LED装置的驱动电路及LED电路

文献发布时间:2023-06-19 11:39:06


用于驱动LED装置的驱动电路及LED电路

技术领域

本发明涉及工业控制电路技术领域,具体涉及一种用于驱动LED装置的驱动电路及LED电路。

背景技术

随着照明技术的发展,LED指示灯的应用越来越广泛。传统的LED指示灯根据电网中的输入电压不同划分类型和种类,一般通过电容降压电路、整流电路和LED指示灯电路的设计来兼容交流、直流两种供电系统。但是,这种设计方案带来的问题显而易见,例如产品使用电压范围窄、兼容性能差、设计方案种类多,进而导致企业生产管理成本提高。此外,传统的电阻降压电路会导致产品发热,长期使用会导致器件老化,影响产品的使用寿命。

因此,有必要设计一种新型的用于驱动LED装置的驱动电路及LED电路,以解决上述问题。

发明内容

本发明的目的在于提供一种用于驱动LED装置的驱动电路及LED电路,围绕LED恒流驱动芯片设计,实现了超宽的交、直流输入电压范围,解决了使用电压范围窄、兼容性能差的问题。

为达到上述目的,本发明提出一种用于驱动LED装置的驱动电路,其特征在于,该驱动电路包括:输入单元,用于接收外部电源信号,包括第一输入端和第二输入端;整流滤波单元,连接至该第一输入端和该第二输入端之间,用于对该外部电源信号进行整流及滤波;PWM控制恒流单元,包括恒流控制芯片,接于该整流滤波单元的输出端正负极之间并与该LED装置串联,用于对该LED装置进行稳压、稳流;以及输出电压电流调整单元,接于该PWM控制恒流单元和该LED装置之间,包括第九控制节点、第十控制节点、第五电阻和稳压二极管,该第九控制节点耦接该LED装置的正极端、该稳压二极管的正极端及该第五电阻的一端,该第十控制节点耦接该LED装置的负极端、该第五电阻的另一端及该PWM控制恒流单元的负极输出端,该稳压二极管的负极端耦接该PWM控制恒流单元的正极输出端。

进一步地,该第一输入端为正极端,该第二输入端为负极端。

进一步地,该PWM控制恒流单元还包括MOSFET管,该MOSFET管内置在该恒流控制芯片上,该恒流控制芯片包括HV引脚、CS引脚、Dra引脚及GND引脚,该MOSFET管的栅极和该恒流控制芯片相连,该Dra引脚耦接该MOSFET管的漏极,该CS引脚耦接该MOSFET管的源极。

进一步地,该PWM控制恒流单元还包括:第五控制节点,连接至该整流滤波单元的负极输出端;以及第三电阻,该第三电阻的一端连接该第五控制节点,该第三电阻的另一端与该CS引脚相连接。

进一步地,该PWM控制恒流单元还包括:第六控制节点,连接至该整流滤波单元的正极输出端;以及第四电阻,该第四电阻的一端连接该第六控制节点,该第四电阻的另一端与该HV引脚相连接。

进一步地,该PWM控制恒流单元还包括:第七控制节点,与该Dra引脚相连接;电感,接于该第七控制节点和该第十控制节点之间;第八控制节点,与该稳压二极管的负极端耦接;以及二极管,该二极管的正极端耦接该第七控制节点,该二极管的负极端耦接该第八控制节点。

进一步地,该PWM控制恒流单元还包括:接地点,与该GND引脚相连接。

进一步地,该恒流控制芯片还包括依次相连的电源发生器、基准源、恒流调制器、PWM发生器及PWM驱动器,该恒流调制器和该PWM驱动器连接,该HV引脚耦接该电源发生器,该CS引脚耦接该恒流调制器,该MOSFET管的栅极耦接该PWM驱动器。

进一步地,该整流滤波单元包括第三控制节点、第四控制节点、整流模块和滤波模块,该整流模块和该滤波模块连接于该第三控制节点和该第四控制节点之间。

进一步地,该整流模块包括相连接的第一子二极管、第二子二极管、第三子二极管和第四子二极管,该滤波模块包括第一电容,该第一电容耦接于该第三控制节点和该第四控制节点之间,其中该第一子二极管的负极端和该第二子二极管的正极端相连接的接点连接该第一输入端,该第二子二极管的负极端和该第三子二极管的负极端相连接的接点连接该第三控制节点,该第三子二极管的正极端和该第四子二极管的负极端相连接的接点连接该第二输入端,该第四子二极管的正极端和该第一子二极管的正极端相连接的接点连接该第四控制节点。

进一步地,该驱动电路还包括过电压保护单元,接于该输入单元和该整流滤波单元之间。

进一步地,该过电压保护单元包括第一控制节点、第二控制节点、第一电阻、第二电阻和第一可变电阻,该第一可变电阻耦接于该第一控制节点和该第二控制节点之间,该第一电阻的两端分别连接该第一输入端和该第一控制节点,该第二电阻的两端分别连接该第二输入端和该第二控制节点。

进一步地,该LED装置包括一个或多个LED指示灯。

进一步地,该外部电源信号为电压范围为20.4V~264V的交直流电压。

本发明还提供一种LED电路,包括:上述所述的驱动电路;以及连接到该驱动电路的LED装置。

进一步地,该LED装置包括至少一个LED指示灯。

与现有技术相比,本发明提供的用于驱动LED装置的驱动电路及LED电路,驱动电路包括输入单元、整流滤波单元、PWM控制恒流单元和输出电压电流调整单元,输入单元用于接收外部电源信号,整流滤波单元用于对该外部电源信号进行整流及滤波,PWM控制恒流单元用于对该LED装置进行稳压、稳流,输出电压电流调整单元包括第五电阻和稳压二极管,该LED装置与该第五电阻并联后与该稳压二极管串联,且该稳压二极管的正极端连接该LED装置的正极端。本发明的驱动电路围绕LED恒流驱动芯片设计,实现了超宽的交、直流输入电压范围,解决了使用电压范围窄、兼容性能差的问题。

应当理解,前述构思以及在下面更加详细地描述的额外构思的所有组合只要在这样的构思不相互矛盾的情况下都可以被视为本公开的发明主题的一部分。另外,所要求保护的主题的所有组合都被视为本公开的发明主题的一部分。

结合附图从下面的描述中可以更加全面地理解本发明教导的前述和其他方面、实施例和特征。本发明的其他附加方面例如示例性实施方式的特征和/或有益效果将在下面的描述中显见,或通过根据本发明教导的具体实施方式的实践中得知。

附图说明

附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。

附图不意在按比例绘制。在附图中,在各个图中示出的每个相同或近似相同的组成部分可以用相同的标号表示。为了清晰起见,在每个图中,并非每个组成部分均被标记。现在,将通过例子并参考附图来描述本发明的各个方面的实施例,其中:

图1为本发明的一种用于驱动LED装置的驱动电路的电路原理图;

图2为本发明的一种用于驱动LED装置的驱动电路中的恒流控制芯片的模块结构示意图。

具体实施方式

为了更了解本发明的技术内容,特举具体实施例并配合所附图式说明如下。

在本公开中参照附图来描述本发明的各方面,附图中示出了许多说明的实施例。本公开的实施例不必定意在包括本发明的所有方面。应当理解,上面介绍的多种构思和实施例,以及下面更加详细地描述的那些构思和实施方式可以以很多方式中任意一种来实施,这是因为本发明所公开的构思和实施例并不限于任何实施方式。另外,本发明公开的一些方面可以单独使用,或者与本发明公开的其他方面的任何适当组合来使用。

本领域的技术人员将认识到可在没有一个或多个特定细节的情况下或者与其它替换和/或附加方法、材料或组件一起实施各实施例。在其它情形中,未示出或未详细描述公知的结构、材料或操作以免使本发明的各实施例的诸方面晦涩。类似地,为了解释的目的,阐述了特定数量、材料和配置,以便提供对本发明的实施例的全面理解。然而,本发明可在没有特定细节的情况下实施。此外,应理解附图中示出的各实施例是说明性表示且不一定按比例绘制。

请参考图1,图1为本发明实施例的一种驱动LED装置的驱动电路的电路原理图。本发明实施例的用于驱动LED装置200的驱动电路100,包括输入单元10、整流滤波单元30、PWM控制恒流单元40和输出电压电流调整单元50。其中,输入单元10用于接收外部电源信号,包括第一输入端L和第二输入端N;整流滤波单元30连接至第一输入端L和第二输入端N之间,用于对该外部电源信号进行整流及滤波;PWM控制恒流单元40包括恒流控制芯片IC1,接于整流滤波单元30的输出端正负极之间并与LED装置200串联,用于对LED装置200进行稳压、稳流;输出电压电流调整单元50接于PWM控制恒流单元40和LED装置200之间,包括第九控制节点109、第十控制节点110、第五电阻R5和稳压二极管ZD1,第九控制节点109耦接LED装置200的正极端、稳压二极管ZD1的正极端及第五电阻R5的一端,第十控制节点110耦接LED装置200的负极端、第五电阻R5的另一端及PWM控制恒流单元40的负极输出端,稳压二极管ZD1的负极端耦接PWM控制恒流单元40的正极输出端。

由上述,本发明实施例中用于驱动LED装置200驱动电路100,针对现有芯片驱动工业LED装置能力不足的问题,尤其当工业LED装置的导通电压和电流较小时,现有LED恒流驱动控制芯片无法在AC/DC宽电压输入下进行驱动,就此,创新性地设计了输出电压电流调整电路,利用与LED装置串联稳压二极管ZD1的方法,通过调节稳压管的参数可以提高驱动芯片输出电压值,从而解决芯片驱动LED装置较小导通电压的问题;同样的,利用与LED装置并联第五电阻R5的方法,既可以将驱动芯片输出电流提高又可以通过调节电阻阻值来限制流过LED灯上的电流,从而改变LED灯的发光亮度,满足多规格LED灯珠应用场景,也解决了现有芯片驱动工业LED装置较小导通电流的问题。

本实施例中,第一输入端L为正极端,第二输入端N为负极端,并据此进行后续电路设计,但不以此为限,实际应用中,也可以是第一输入端为负极端,第二输入端为正极端,本发明仅以此示例作整体电路原理的说明。

本实施例中,外部电源信号是输入电压范围为20.4V~264V的AC/DC(交直流)电压,即本发明可以实现超宽交、直流输入电压范围,降低了电源输入范围的下限值。

请一并参考图2,图2为本发明的一种用于驱动LED装置的驱动电路中的恒流控制芯片的模块结构示意图。于本实施例中,PWM控制恒流单元40还包括MOSFET管M1,MOSFET管M1的栅极GATE和恒流控制芯片IC1相连,其中本实施例中的MOSFET管M1内置在恒流控制芯片IC1上。如图1和图2所示,恒流控制芯片IC1包括HV引脚、CS引脚、Dra引脚及GND引脚,Dra引脚耦接MOSFET管M1的漏极,CS引脚耦接MOSFET管M1的源极。关于恒流控制芯片IC1将在后文中阐述更多细节。

于本实施例中,PWM控制恒流单元40还包括第五控制节点105、第六控制节点106、第三电阻R3和第四电阻R4,如图1所示,第五控制点105连接至整流滤波单元30的负极输出端(下述第四控制点104),第六控制节点106连接至整流滤波单元30的正极输出端(下述第三控制点103)。第三电阻R3的一端连接第五控制节点105,第三电阻R3的另一端与恒流控制芯片IC1的CS引脚相连接,用于调节输出电流,也即,恒流控制芯片IC1输出电流的大小的调节可以通过改变与恒流控制芯片IC1 CS引脚相连的第三电阻R3(取样电阻)的值来实现。第四电阻R4的一端连接第六控制节点106,第四电阻R4的另一端与恒流控制芯片IC1的HV引脚相连接,用于调节输入电压,也即,HV引脚作为电压输入端接收前述交直流电压经过整流滤波单元30流入恒流控制芯片IC1。

进一步地,PWM控制恒流单元40还包括第七控制节点107、电感L1、第八控制节点108和二极管D2,其中,第七控制节点107与恒流控制芯片IC1的Dra引脚相连接,电感L1接于第七控制节点107和第十控制节点110之间,第八控制节点108与稳压二极管ZD1的负极端耦接,二极管D2的正极端耦接第七控制节点107,二极管D2的负极端耦接第八控制节点108。本实施例中,通过恒流控制芯片IC1内部集成MOSFET管M1,且恒流控制芯片IC1的Dra引脚与电感L1相连,通过改变电感L1的电感量来调节MOSFET管M1的导通、关断时间和工作开关频率等,从而降低由于宽电压范围输入时导致的芯片开关损耗,减少芯片的发热问题。二极管D2的正极端藉由第七控制点107分别耦接Dra引脚以及电感L1,二极管D2是为了调节储能电路的性能,起到防止电流回流的作用,例如,当MOSFET管M1关断时,二极管D2用于释放电感L1中存储的能量。进一步地,MOSFET管M1(Metal Oxide Semiconductor Field EffectTransistor,即金属氧化物半导体场效应晶体管)为550V的高压MOSFET管。

更进一步地,PWM控制恒流单元40还包括接地点G,接地点G与恒流控制芯片IC1的GND引脚相连接。

接下来将对恒流控制芯片IC1作较为详细的阐述。如图2所示,恒流控制芯片IC1还包括依次相连的电源发生器、基准源、恒流调制器、PWM发生器及PWM驱动器,其中恒流调制器和PWM驱动器连接,HV引脚耦接电源发生器,CS引脚耦接恒流调制器,MOSFET管M1的栅极GATE耦接PWM驱动器。再结合图1,本实施例中的恒流控制芯片IC1包括八个引脚,其中第一脚为HV引脚;第二脚和第三脚均为NC引脚、且两者互连;第四脚为CS引脚;第五脚和第六脚均为Dra引脚、且共同耦接第七控制点107,第七脚和第八脚为GND引脚,且共同连接至接地点G。

于本实施例中,恒流控制芯片IC1的型号为LIS9411,但本发明不限于此。MOSFET管M1为N沟道MOSFET管。接下来进一步说明本实施例采用的恒流控制芯片IC1的运作原理,芯片的内部功能主要分为以下七个部分:

(1)启动和锁定:采用了启动和供电技术,通过HV引脚(即第一脚)连接母线电压,内部的高压模块提供启动电流和工作电流,并无需VCC电容。在启动时,芯片的VDD首先通过高压模块由线电压充电,当其上的电压达到阈值UVLO(off)后,芯片启动,并开始输出脉冲驱动内部功率开关。在启动后,由于芯片自身的耗电非常少,可直接通过高压模块供电,使VDD电压维持在某一值上,保证IC正常工作。

(2)欠压锁定(UVLO):内部设有一个欠压锁定迟滞比较器,当VDD电压从低于UVLO(on)往上升高到UVLO(off)时,芯片才开始启动;而当VDD电压从高于UVLO(off)往下降低到UVLO(on)时才锁定,因此形成迟滞窗口。

(3)软启动:每次启动之后,芯片从最低工作频率逐渐建立到最终恒流所需的开关频率。整个软启动过程大约在9ms左右。软启动可以抑制启动时的电流过冲,以降低LED在启动时承受的应力,从而提升LED的寿命。另一方面,软启动也能抑制启动时内部MOSFET漏极的电压过冲,从而增加系统可靠性。

(4)前沿消隐(LEB):内部集成了前沿消隐功能。在开关管开通前的600ns内,CS引脚(即第四脚)的干扰信号被屏蔽,从而可以很好地防止内部开关管误触发关断,保证系统稳定工作。

(5)过温调节:内部集成了过温调节功能,在驱动电源过热时逐渐减小输出电流,从而控制输出功率和温升,使电源温度保持在设定值,以提高系统的可靠性。芯片内部设定过热调节温度点为145℃。

(6)CS开路保护:内部集成了CS引脚的开路保护功能,当芯片的CS引脚开路,开关管会关断,进入自动重启保护模式。当错误条件消失,系统自动恢复正常工作状态。

(7)输出短路保护:具有输出短路保护功能。一旦输出短路,持续仅约500us后,芯片内部就会关断开关,并进入锁定模式,此时系统功耗极低,几乎没有发热,因此非常安全可靠。当短路状态消失后,需要母线电压完全掉电,并再次上电后,系统才会恢复正常工作状态。

需要说明的是,本实施例的PWM控制恒流单元40中的恒流控制芯片IC1的电压输入范围可以满足AC/DC 20.4V-264V之间,芯片内部采用了启动和供电技术,利用开环峰值电流模式控制方式,可以使输入电压在极宽的范围内实现精确的电流控制,恒流控制芯片IC1内部集成高压的MOSFET管M1,使得利用极少的外围器件即可实现超宽电压范围输入的要求。

于本实施例中,整流滤波单元30包括第三控制节点103、第四控制节点104、整流模块和滤波模块,整流模块和滤波模块连接于第三控制节点103和第四控制节点104之间。具体地,整流模块包括由相连接的第一子二极管31、第二子二极管32、第三子二极管33和第四子二极管34组成的桥式整流电路BD1,滤波模块包括第一电容C1,其中,第一电容C1耦接于第三控制节点103和第四控制节点104之间,第一子二极管31的负极端和第二子二极管32的正极端相连接的接点连接第一输入端L,第二子二极管32的负极端和第三子二极管33的负极端相连接的接点连接第三控制节点103,第三子二极管33的正极端和第四子二极管34的负极端相连接的接点连接第二输入端N,第四子二极管34的正极端和第一子二极管31的正极端相连接的接点连接第一电容C1的第四控制节点104。本实施例的整流滤波单元30利用桥式整流电路BD1将输入的交流电变换为有脉动的直流电,再用第一电容C1滤除其中的交流脉动成分,得到干净的直流电压,减小交流成分对后级电路的干扰。此外,由于桥式整流电路和滤波电路为现有常见技术,故在此不再详述其工作原理。本实施例中的整流滤波单元为桥式整流电路和电容的组合,但在其他实施例中,可根据需要相应地进行增加、减少或者替换。

于另一实施例中,驱动电路100还包括过电压保护单元20,过电压保护单元20接于输入单元10和整流滤波单元30之间。过电压保护单元20包括第一控制节点101、第二控制节点102、第一电阻R1、第二电阻R2和第一可变电阻RV1,第一可变电阻RV1耦接于第一控制节点101和第二控制节点102之间。其中,第一电阻R1的两端分别连接第一输入端L和第一控制节点101,第二电阻R2的两端分别连接第二输入端N和第二控制节点102。此外,如前述实施例中的,整流滤波单元30中第一子二极管31的负极端和第二子二极管32的正极端相连的接点耦接第一控制节点101,整流滤波单元30中的第三子二极管33的正极端和第四子二极管34的负极端相连的接点耦接第二控制节点102。较佳地,第一可变电阻RV1为压敏电阻。本实施例所述的过电压保护单元20有效地消除输入电压中的高能量浪涌电压,具有对瞬时过电压响应时间快、无续流、残压低等特点,起到了对后级电路过电压保护功能。

本发明实施例中,LED装置包括至少一个LED指示灯。

本发明还提供一种LED电路,包括上述所有实施例所述的驱动电路100以及连接到驱动电路100的LED装置200。

提供对本发明的先前描述是为使得本领域任何技术人员能够实践或使用本公开。对本发明的各种修改对本领域技术人员来说都将是显而易见的,且本文中所定义的普适原理可被应用到其他变体而不会脱离本公开的精神或范围。由此,本发明并非旨在被限定于说明书中所描述的示例和设计,而是应被授予与本文中所公开的原理和新颖性特征相一致的最广范围。

由以上技术方案可知,本发明提供的用于驱动LED装置的驱动电路及LED电路,创新性地设计了输出电压电流调整电路,利用与LED装置串联稳压二极管ZD1的方法,通过调节稳压管的参数可以提高驱动芯片输出电压值,从而解决芯片驱动LED装置较小导通电压的问题;同样的,利用与LED装置并联第五电阻R5的方法,既可以将驱动芯片输出电流提高又可以通过调节电阻阻值来限制流过LED灯上的电流,从而改变LED灯的发光亮度,满足多规格LED灯珠应用场景,实现了交、直流20.4V~264V的超宽输入电压范围的恒流工业LED指示灯驱动电路,同时解决了现有芯片驱动小电流和小电压下的工业LED灯的驱动能力不足问题。此外,本发明的PWM控制恒流单元中的恒流控制芯片IC1的电压输入范围可以满足AC/DC 20.4V-264V之间,芯片内部采用了启动和供电技术,利用开环峰值电流模式控制方式,可以使输入电压在极宽的范围内实现精确的电流控制,恒流控制芯片IC1内部集成高压的MOSFET管,使得利用极少的外围器件即可实现超宽电压范围输入的要求,既降低了产品设计成本又节省了产品结构设计空间。

虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明。本发明所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰。因此,本发明的保护范围当视权利要求书所界定者为准。

相关技术
  • 用于LED驱动电路的电荷控制方法及装置、LED驱动电路
  • 用于LED驱动电路的电荷控制装置及LED驱动电路
技术分类

06120113003398