掌桥专利:专业的专利平台
掌桥专利
首页

基于注入锁定倍频的相干微波光子雷达探测方法及系统

文献发布时间:2023-06-19 12:13:22


基于注入锁定倍频的相干微波光子雷达探测方法及系统

技术领域

本发明涉及一种雷达探测方法,尤其涉及一种基于光注入锁定倍频与相干接收的微波光子雷达探测方法及系统。

背景技术

实时高精度雷达广泛应用于军事、民用领域,多功能全频谱探测是现代雷达技术的发展的主要方向之一。为了覆盖广域频谱空间,这就需要雷达工作波段灵活可调,信号可实时高精度处理分析。受限于目前电子技术瓶颈限制,射频放大、匹配、传输链路在承载宽带信号的产生、采样、处理等功能时,存在潜在的幅度/相位非线性效应,限制了雷达向高频宽带发展(参见[S. Kim, N. Myung, " Wideband linear frequency modulatedwaveform compensation using system predistortion and phase coefficientsextraction method,"

发明内容

本发明所要解决的技术问题在于:克服现有技术不足,基于光注入锁定机理,利用分布反馈式激光器对高阶扫频边带分别进行滤波放大,得到倍频因子灵活可调的宽带雷达发射信号;并基于相干接收技术,实现宽带回波信号的实时正交去斜。系统灵活可调,抗干扰性能优异。

本发明具体采用以下技术方案解决上述技术问题:

利用频率为

优选地,所述从激光器为分布反馈式激光器,可对靠近它工作频率的调制边带进行滤波放大作用。从激光器的自由工作频率需满足一定条件,其中频率靠近边带

其中,

其中参数与上述关于第一从激光器的工作频率约束公式中参数有相同的定义,为第二从激光器的相关参数。具体地,

进一步地,通过控制两个从激光器的自由工作波长、光注入功率,输出功率等参数,可以对调制光信号的不同边带进行选择性锁定放大,从而实现雷达发射信号相对基带线性调频信号不同的倍频因子

根据相同的发明思路还可以得到以下技术方案:

一种基于注入锁定倍频的相干微波光子雷达探测系统,包括:

主激光器,用于生成光载波信号

信号源,用于生成频率为

第一电光调制器,用于将基带线性调频信号对光载波信号进行调制获得包含高阶调制边带

第一光耦合器,用于将调制光信号分为两路;

两个从激光器,分别用于接收第一光耦合器输出的两路调制光信号,将调制光信号特定边带进行滤波锁定放大得到第一放大锁定边带信号

第三光耦合器,用于将第二放大锁定边带信号

第二光耦合器,用于将第一放大锁定边带信号

光电探测器,用于对雷达探测光信号进行光电转换,得到倍频雷达发射信号;

功率放大器及发射天线,用于对倍频雷达发射信号进行功率放大以及信号发射;

接收天线及低噪声放大器,用于接收雷达回波信号并进行低噪声放大;

第二电光调制器,用于将雷达回波信号对第三光耦合器输出的一路作为接收光信号的放大锁定边带信号进行调制,得到雷达接收光信号,并送给90度光耦合器;

90度光耦合器,用于对输入的雷达探测光信号与雷达接收光信号在光域引入90度相位差,输出四路复合光信号;

两个平衡光电探测器,用于对90度光耦合器输出的四路光信号分别进行光电探测,得到携带目标信息的两路正交中频信号;

信号采集处理模块,用于两路正交中频信号进行模数转换,并进行雷达数字信号处理,提取出目标信息。

进一步地,所述第一电光调制器、第二电光调制器分别为马赫-曾德尔调制器、强度调制器或相位调制器。

进一步地,还包括控制单元,所述控制单元发出控制信号使第一从激光器与第二从激光器分别工作在设定锁定高阶边带的工作状态,得到设定的倍频因子

进一步地,还包括两个光环形器,其中第一光环形器的第一端口与第一光耦合器的输出端连接,第二端口与第一从激光器的输入端连接,第三端口与第二光耦合器的输入端连接,用于将第一光耦合器输出的调制光信号注入第一从激光器,并将第一从激光器输出的放大锁定边带信号送给第二光耦合器;第二光环形器的第一端口与第一光耦合器的另一输出端连接,第二端口与第二从激光器的输入端连接,第三端口与第三光耦合器的输入端连接,用于将第一光耦合器输出的另一路调制光信号注入第二从激光器,并将第二从激光器输出的放大锁定边带信号送给第三光耦合器。

相比现有技术,本发明技术方案具有以下有益效果:

1)本发明信号产生部分,基于光注入锁定分别滤波放大调制光信号的不同高阶边带,可实现不同倍频因子的宽带雷达探测信号产生,且倍频因子可通过调节从激光器的工作参数实现灵活调节,从而使雷达系统在不同工作波段间灵活转换。

2)本发明信号接收部分,以一个放大锁定边带信号为光载波对雷达回波信号实现接收,结合光参考信号,在光电域实现宽带雷达回波信号的实时正交去调频处理,可有效抑制噪声及镜频干扰信号,并且可以避免电域幅度/相位一致性问题带来的信号性能恶化问题。

3)本发明信号产生部分,调制光信号的高阶边带继承了基带线性扫频信号的高线性度等优点,且不同边带之间相位关系固定,从激光器对不同边带进行滤波放大后依然继承了注入信号的特性,从而可以保证倍频雷达探测信号的线性度、信噪比等性能。

附图说明

图1为本发明微波光子雷达系统原理示意图;

图2为图1所示微波光子雷达系统中对应节点处产生的信号频谱及信号示意图;

其中,A对应为调制光信号频谱分布,B对应为第一从激光器1工作频率及其输出的放大锁定边带信号频谱分布,C对应为第二从激光器2工作频率及其输出的放大锁定边带信号频谱分布,D对应为两个放大锁定边带光信号合为一路雷达探测光信号的频谱分布,E对应为雷达接收光信号部分区域的频谱分布,F对应为输入平衡探测器的雷达探测光信号与雷达接收光信号的光谱图,G对应为中频信号复数形式的频谱。

具体实施方式

针对现有技术的不足,本发明的思路是基于光注入锁定不同高阶边带信号产生宽带、高频段、可调谐的线性调频雷达发射信号,通过光子相干接收方法实现宽带回波信号相干接收。本方案雷达工作参数灵活可调,信号处理实时高效,抗杂散能力强。

本发明的一种基于注入锁定倍频的相干微波光子雷达探测系统,如图1所示,包括:1个主激光器、1个信号源、2个电光调制器、2个光环形器、2个从激光器、3个光耦合器(OC)、1个控制单元、1个高频光电探测器(PD)、1个90度光耦合器、2个平衡光电探测器(BPD)、1个电功率放大器(EA)、1个低噪声放大器(LNA)、1个发射天线(TA)、1个接收天线(RA)、1个信号采集处理模块。

需要说明的是,所述电光调制器可采用多种调制器类型,优选地,本实施例选择强度调制器方案。

本发明的相干微波光子雷达探测系统,首先主激光器输出频率为

选择其中一个锁定边带光信号(以第二放大锁定边带为例)通过第三光耦合器分为两路,选择其中一路锁定边带光信号作为接收光信号对雷达回波信号接收,另一路与第一放大锁定边带光信号通过第二光耦合器合为一路雷达探测光信号,其频谱图如图2的D所示,时域信号可以表示为:

其中,A

A

即携带目标信息中频信号的两个正交分量

A为中频信号的幅度,将该中频信号模数转换后,基于雷达信号处理算法即可得到目标距离、速度、散射特性等信息,其频谱如图2的G所示。

本方案在雷达系统发射部分引入光注入锁定技术,通过改变被注入激光器的波长等参数可滤波放大不同高阶调制边带信号,实现倍频因子灵活可调的宽带雷达信号产生;并基于光子相干接收方案,在保证系统可实现倍频工作能力的基础上,可对宽带接收信号实时相干接收,得到复数中频信号。相比实数中频信号不仅多一个维度的信息,且具有更强的抵抗镜频干扰的能力。接收机信噪比整体也可大大提升。

最后,需要注意的是,以上列举的仅是本发明的具体实施例。本发明不限于以上实施例,还可以有很多变形。本领域的普通技术人员能从本发明公开的内容中直接导出或联想到的所有变形,均应认为是本发明的保护范围。

相关技术
  • 基于注入锁定倍频的相干微波光子雷达探测方法及系统
  • 基于注入锁定倍频的相干微波光子雷达探测方法及系统
技术分类

06120113213843