掌桥专利:专业的专利平台
掌桥专利
首页

一种储能电站运行监测管理系统

文献发布时间:2023-06-19 19:28:50


一种储能电站运行监测管理系统

技术领域

本发明涉及储能电站运行监测技术领域,涉及到一种储能电站运行监测管理系统。

背景技术

风力、太阳能等清洁的储能电站已开始大范围应用,但由于太阳能和风能间歇性及不连续性,需要应用储能电池来提高能源工业的连续性和稳定性。即将不连续的不稳定的可再生能源,先存储到电池中,等需要用的时候再从电池中释放出来。

储能电池是一个能量的载体,并且现在用在储能技术上的电池,能量密度也很高,这些电池在使用过程中,由于使用不当和自身安全性能的下降,会有一定的安全隐患,可能发生热失控,造成安全事故,因此,储能电池组在运行时,须对其运行安全状态进行监测,以预防电池热失控的发生。

目前,对储能电池组运行安全监测方式主要是通过监测电池运行过程中的电压、温度等外部参数,来预测电池组的安全状态。但这种方式有明显的不足:(1)电池组安全隐患一般都存在于电池内部,其热失控也是由电芯内部反应引起的,只通过电池组外部整体参数的监测无法直接准确地分析电池组内部局部变化,使得储能电池组的安全状态判断具有较大的局限性,从而对存在局部热失控的电芯不能及时处理,导致储能电池组安全状态管理滞后,进一步造成储能电池组起火和爆炸事故频发,使得储能电站形成毁灭性的破坏,进而带来巨大的经济损失、环境污染和社会影响。

(2)储能电池组使用过程中,易随着季节的更替导致储能电池的周围环境温度发生变化,周围环境温度的变化导致储能电池组的热特性以及储能性能存在波动,从而存在储能电池组的安全性能稳定性降低的缺陷,严重影响储能电站的运行安全性和供电可靠性。

发明内容

为解决上述技术问题,本发明是通过以下技术方案实现的:一种储能电站运行监测管理系统,包括:储能电池局部监测模块,用于对储能电池划分模块划分后的目标储能电池组中各电芯进行表观监测和热成像监测,得到各电芯在监测时间段的表观数据和温度分布数据。

局部热失控分析模块,用于基于构建的电池组热失控模型,对各电芯的局部热失控性能进行分析,得到各电芯的局部热性能安全系数。

储能电池整体监测模块,用于依据目标储能电池组在监测时间段的环境温度,获取目标储能电池组在监测时间段的整体监测数据。

储能电池热特性评估模块,用于分析目标储能电池组在监测时间段的整体状态安全系数,进而评估目标储能电池组的综合热特性评估指数。

电池预计使用寿命分析模块,用于提取目标储能电池组的历史热特性数据,分析目标储能电池组的预计使用寿命。

电站运行管理模块,用于将目标储能电池组的预计使用寿命进行显示。

储能电站数据库,用于存储各次历史电池热失控现象的关联数据和失控电芯对应的临界鼓包体积,并存储目标储能电池组的历史热特性数据和标准使用寿命。

优选地,所述表观数据包括各时间点的鼓包体积;温度分布数据包括各时间点对应各图片区域的温度。

所述整体监测数据包括各时间点的平均温度、平均能见度和平均有害气体浓度。

优选地,所述电池组热失控模型构建方式为:从储能电站数据库中提取各次历史电池热失控现象的关联数据,其中关联数据为失控电芯在失控阶段中各历史时间点的最高温度、鼓包体积、周围环境能见度和周围有害气体浓度,分析失控电芯在失控阶段中各历史时间点的温度变化程度系数

优选地,所述对各电芯的局部热失控性能进行分析,具体分析为:提取各电芯在监测时间段内各时间点的鼓包体积,将其记为

提取各电芯在监测时间段内各时间点对应各图片区域的温度,筛选最高温度作为各电芯在监测时间段内各时间点的监测温度,将其记为

分析各电芯的局部热性能安全系数

优选地,所述各电芯在监测时间段内鼓包体积对应热失控影响补偿因子分析方法为:从储能电站数据库中提取各次历史电池热失控现象中失控电芯对应的临界鼓包体积,筛选最小的临界鼓包体积作为失控电芯的参考临界鼓包体积,将其记为

优选地,所述目标储能电池组在监测时间段的整体状态安全系数分析方式

优选地,所述目标储能电池组的综合热特性评估指数评估公式为

优选地,所述目标储能电池组的预计使用寿命分析包括:从储能电站数据库中提取目标储能电池组的历史热特性数据,其中历史热特性数据包括局部热失控次数、整体热失控次数和综合热特性失衡次数,进而分析目标储能电池组的使用寿命影响因子,记为

从目标储能电站后台获取目标储能电池组的建立时间,得到目标储能电池组的已使用寿命

优选地,所述目标储能电池组的使用寿命影响因子分析方式为:根据各电芯的局部热性能安全系数、目标储能电池组在监测时间段的整体状态安全系数以及目标储能电池组的综合热特性评估指数,得到目标储能电池组的实时局部热失控次数、实时整体热失控次数和实时综合热特性失衡次数,分别记为

分析目标储能电池组的使用寿命影响因子

与现有技术相比,本发明具有以下优点:1、本发明基于构建的电池组热失控模型,对各电芯的局部热失控性能进行分析,得到各电芯的局部热性能安全系数,从而打破现有技术对储能电池组的安全状态判断的局限性,进一步对存在局部热失控的电芯能够及时处理,有效避免储能电池组安全状态管理滞后的问题,进而降低储能电池组起火和爆炸事故的频发率,减少储能电站毁灭性破坏带来的经济损失和环境污染,在极大程度上消除社会影响。

2、本发明根据储能电站对应各次历史电池热失控现象的关联数据,构建电池组热失控模型,这样不仅可以在电池组热失控模型支持下顺利完成电芯的局部热失控性能分析,而且可以提高储能电池组的综合热特性评估速率,改善储能电池组的安全状态的分析灵活性。

3、本发明依据目标储能电池组在监测时间段的环境温度,分析目标储能电池组在监测时间段的整体状态安全系数,从而有效降低储能电池组的热特性以及储能性能的分析偏差,进而保障储能电池组的安全性能稳定性,进一步提高储能电站的运行安全性和供电可靠性。

4、本发明依据目标储能电池组的历史热特性数据,并结合目标储能电池组的当前监测数据,分析目标储能电池组的预计使用寿命,从而能够时刻掌握储能电池组的寿命使用情况,有效降低了因储能电池寿命异常出现突发性事件的发生次数,进一步保障储能电站的连续性和稳定性。

附图说明

为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。

图1为本发明的系统模块连接图。

图2为当

图3为当

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。

请参阅图1所示,本发明提供一种储能电站运行监测管理系统,具体模块分布如下:储能电池划分模块、储能电池局部监测模块、局部热失控分析模块、储能电池整体监测模块、储能电池热特性评估模块、电池预计使用寿命分析模块、电站运行管理模块和储能电站数据库。其中模块之间的连接关系为:储能电池划分模块与储能电池局部监测模块连接,局部热失控分析模块分别与储能电池局部监测模块、储能电站数据库以及储能电池热特性评估模块连接,储能电池热特性评估模块与储能电池整体监测模块连接,电池预计使用寿命分析模块分别与储能电池热特性评估模块、储能电站数据库和电站运行管理模块连接。

所述储能电池划分模块,用于将目标储能电站对应的待监测储能电池组记为目标储能电池组,并将目标储能电池组分成各电芯。

所述储能电池局部监测模块,用于对储能电池划分模块划分后的目标储能电池组中各电芯进行表观监测和热成像监测,得到各电芯在监测时间段的表观数据和温度分布数据。

需要说明的是,所述表观数据包括各时间点的鼓包体积;温度分布数据包括各时间点对应各图片区域的温度。

作为一种示例,所述通过目标储能电池组内安装的高清摄像头对各电芯进行表观监测,得到各电芯在监测时间段内各时间点的表观图像,从而获得各电芯在监测时间段内各时间点的表观轮廓体积,将其与设定的储能电池组对应的标准电芯表观轮廓体积进行作差,得到各电芯在监测时间段内各时间点的鼓包体积,将其作为各电芯在监测时间段的表观数据。

所述通过目标储能电池组内安装的红外热成像对各电芯进行热成像监测,得到各电芯在监测时间段内各时间点的热成像图片,并按照相同颜色区域进行划分,得到各电芯在监测时间段内各时间点对应各图片区域,进而提取各电芯在监测时间段内各时间点对应各图片区域的颜色色度,将其与设定的各颜色色度对应的温度进行比对,筛选各电芯在监测时间段内各时间点对应各图片区域的温度,将其作为各电芯在监测时间段的温度分布数据。

所述局部热失控分析模块,用于基于构建的电池组热失控模型,对各电芯的局部热失控性能进行分析,得到各电芯的局部热性能安全系数。

作为一种示例,所述电池组热失控模型构建方式为:从储能电站数据库中提取各次历史电池热失控现象的关联数据,其中关联数据为失控电芯在失控阶段中各历史时间点的最高温度、鼓包体积、周围环境能见度和周围有害气体浓度,分析失控电芯在失控阶段中各历史时间点的温度变化程度系数

需要说明的是,所述失控电芯在失控阶段的温度曲线图是以时间点对应的间隔时长为横轴,以各历史时间点的参考温度为纵轴构建的温度曲线图。

需要解释的是,所述历史时间点对应的间隔时长与时间点对应的间隔时长一致。

在本实施例中,本发明根据储能电站对应各次历史电池热失控现象的关联数据,构建电池组热失控模型,这样不仅可以在电池组热失控模型支持下顺利完成电芯的局部热失控性能分析,而且可以提高储能电池组的综合热特性评估速率,改善储能电池组的安全状态的分析灵活性。

进一步地,所述确定失控电芯在失控阶段中各历史时间点的参考温度,具体方式为:将失控电芯在失控阶段中各历史时间点的温度变化程度系数与设定温度变化程度系数阈值进行对比,若

进一步地,所述失控电芯在失控阶段中各历史时间点的参考鼓包体积、参考环境能见度和参考有害气体浓度的确定方式与参考温度确定方式一致。

作为一种示例,所述对各电芯的局部热失控性能进行分析,具体分析为:提取各电芯在监测时间段内各时间点的鼓包体积,将其记为

进一步地,所述各电芯在监测时间段内鼓包体积对应热失控影响补偿因子分析方法为:从储能电站数据库中提取各次历史电池热失控现象中失控电芯对应的临界鼓包体积,筛选最小的临界鼓包体积作为失控电芯的参考临界鼓包体积,将其记为

请参阅图2中(1)所示,当该电芯在监测时间段的鼓包体积曲线图与失控电芯在失控阶段的鼓包体积曲线图存在一个交点时,则

请参阅图2中(2)所示,当该电芯在监测时间段的鼓包体积曲线图与失控电芯在失控阶段的鼓包体积曲线图有两个交点时,则

请参阅图3中所示,若

提取各电芯在监测时间段内各时间点对应各图片区域的温度,筛选最高温度作为各电芯在监测时间段内各时间点的监测温度,将其记为

分析各电芯的局部热性能安全系数

在本实施例中,本发明基于构建的电池组热失控模型,对各电芯的局部热失控性能进行分析,得到各电芯的局部热性能安全系数,从而打破现有技术对储能电池组的安全状态判断的局限性,进一步对存在局部热失控的电芯能够及时处理,有效避免储能电池组安全状态管理滞后的问题,进而降低储能电池组起火和爆炸事故的频发率,减少储能电站毁灭性破坏带来的经济损失和环境污染,在极大程度上消除社会影响。

所述储能电池整体监测模块,用于依据目标储能电池组在监测时间段的环境温度,获取目标储能电池组在监测时间段的整体监测数据。

需要说明的是,所述整体监测数据包括各时间点的平均温度、平均能见度和平均有害气体浓度。

进一步地,所述通过温度传感器监测目标储能电池组在监测时间段内各时间点的环境温度,将各时间点的环境温度对比,筛选最大环境温度作为目标储能电池组在监测时间段的环境温度。

进一步地,所述目标储能电池组在监测时间段的整体监测数据获取方式为:将若干监测点随机布设在目标储能电池组内部,将温度传感器、能见度观测仪和有害气体浓度检测仪分别安装在若干监测点上,分别监测目标储能电池组在监测时间段内各时间点对应各监测点的温度、能见度和有害气体浓度,并利用均值计算得到目标储能电池组在监测时间段内各时间点的平均温度、平均能见度和平均有害气体浓度。

所述储能电池热特性评估模块,用于分析目标储能电池组在监测时间段的整体状态安全系数,进而评估目标储能电池组的综合热特性评估指数。

作为一种示例,所述目标储能电池组在监测时间段的整体状态安全系数分析方式

进一步地,所述目标储能电池组的综合热特性评估指数评估公式为

在本实施例中,本发明依据目标储能电池组在监测时间段的环境温度,分析目标储能电池组在监测时间段的整体状态安全系数,从而有效降低储能电池组的热特性以及储能性能的分析偏差,进而保障储能电池组的安全性能稳定性,进一步提高储能电站的运行安全性和供电可靠性。

所述电池预计使用寿命分析模块,用于提取目标储能电池组的历史热特性数据,分析目标储能电池组的预计使用寿命。

作为一种示例,所述目标储能电池组的预计使用寿命分析包括:从储能电站数据库中提取目标储能电池组的历史热特性数据,其中历史热特性数据包括局部热失控次数、整体热失控次数和综合热特性失衡次数,进而分析目标储能电池组的使用寿命影响因子,记为

从目标储能电站后台获取目标储能电池组的建立时间,得到目标储能电池组的已使用寿命

进一步地,所述目标储能电池组的使用寿命影响因子分析方式为:根据各电芯的局部热性能安全系数、目标储能电池组在监测时间段的整体状态安全系数以及目标储能电池组的综合热特性评估指数,得到目标储能电池组的实时局部热失控次数、实时整体热失控次数和实时综合热特性失衡次数,分别记为

分析目标储能电池组的使用寿命影响因子

需要说明的是,所述目标储能电池组的实时局部热失控次数、实时整体热失控次数和实时综合热特性失衡次数获得方式为:将各电芯的局部热性能安全系数与预设的电池局部热性能安全系数阈值进行对比,若某电芯的局部热性能安全系数小于预设的电池局部热性能安全系数阈值,则该电芯处于局部热失控状态,统计局部热失控状态的电芯数量,作为目标储能电池组的当前局部热失控次数,并将其与目标储能电池组的局部热失控次数相加,得到目标储能电池组的实时局部热失控次数,若各电芯的局部热性能安全系数均大于或等于预设的电池局部热性能安全系数阈值,则将目标储能电池组的局部热失控次数作为其对应的实时局部热失控次数。

将目标储能电池组在监测时间段的整体状态安全系数与预设的电池整体状态安全系数阈值进行对比,若小于预设的整体状态安全系数阈值,则分析目标储能电池组的实时整体热失控次数,实时整体热失控次数=整体热失控次数+1,反之,则将目标储能电池组的整体热失控次数作为其对应的实时整体热失控次数。

同理根据目标储能电池组的实时整体热失控次数获得方式,得到目标储能电池组的实时综合热特性失衡次数。

在本实施例中,本发明依据目标储能电池组的历史热特性数据,并结合目标储能电池组的当前监测数据,分析目标储能电池组的预计使用寿命,从而能够时刻掌握储能电池组的寿命使用情况,有效降低了因储能电池寿命异常出现突发性事件的发生次数,进一步保障储能电站的连续性和稳定性。

所述电站运行管理模块,用于将目标储能电池组的预计使用寿命进行显示。

所述储能电站数据库,用于存储各次历史电池热失控现象的关联数据和失控电芯对应的临界鼓包体积,并存储目标储能电池组的历史热特性数据和标准使用寿命。

以上内容仅仅是对本发明的构思所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明的构思或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

相关技术
  • 储能电站运行监测模型的训练方法及储能电站的监控系统
  • 储能电站运行监测模型的训练方法及储能电站的监控系统
技术分类

06120115920790