掌桥专利:专业的专利平台
掌桥专利
首页

一种n型共轭聚合物共混物及其制备方法与应用

文献发布时间:2023-06-19 19:28:50


一种n型共轭聚合物共混物及其制备方法与应用

技术领域

本发明属于有机半导体材料的技术领域,具体涉及一种n型共轭聚合物共混物及其制备方法和应用。

背景技术

共轭聚合物的结构中包含了由离域的π电子组成的共轭体系,因而体现出独特的半导体或导体性质。自从导电聚乙炔的出现使得塑料的绝缘性和导电性之间的界限被打破,有机共轭聚合物在电子器件中展现出广泛的应用前景。目前,共轭聚合物在有机太阳电池(OPV)、有机发光二极管(OLED)、有机场效应晶体管(OFET)以及有机热电(OTE)等领域已取得一系列令人瞩目的成果。

高的导电率作为有机导电高分子性能的一项重要指标,成为科学家的广泛研究对象。在获得高导电有机材料的探索上,多种结构被开发出来,如聚苯胺、聚噻吩、聚吡咯等。其中最具有代表性的材料聚3,4-乙烯二氧噻吩:聚苯乙烯磺酸(PEDOT:PSS),作为目前已经得到商业化应用的材料之一,由于具有高导电率以及可印刷加工的特点,在电子器件中取得巨大的成功,年产值突破百亿元。

尽管在共轭聚合物中已经取得非常大的进展,目前高性能的导电材料均表现出p型传输的性质,n型导电材料的性能仍然大大落后,尤其是具备高导电的有机n型共轭聚合物,则缺少相对应的合成策略。受限于n型有机半导体材料电子迁移率低、空气稳定性差,以及需要较长绝缘性烷基链以实现溶液加工等因素,发展具备高电导率以及合成简单、成本低廉、可溶液加工的n型有机半导体材料是目前研究的热点。

文献(TowardHigh Performance n-Type Thermoelectric Materials byRational Modification of BDPPV Backbones.J.Am.Chem.Soc.2015,137,6979)报道了基于苯并二呋喃二酮的聚合物BDPPV,经过掺杂剂的优化,可以实现最高14S/cm的电导率;文献(High Conductivity and Electron-Transfer Validation in an n-Type Fluoride-Anion-Doped Polymer for Thermoelectrics in Air.Adv.Mater.2017,29,1606928)报道了利用四丁基氟化铵掺杂基于苯并二呋喃二酮的聚合物,并获得空气稳定性较好的n型热电材料;另外,文献(Rigid Coplanar Polymers for Stable n-Type Polymer Thermoelectrics.Angew.Chem.Int.Ed.2019,58,11390)报道了利用酸催化羟醛缩合反应聚合,在避免使用贵金属催化剂的同时,获得了空气稳定同时具备高电导率的聚合物LPPV。文献(Athermally activated and highly miscible dopant for n-type organicthermoelectrics.Nat.Commun.2020,11,3292.)报道了通过构筑新的掺杂剂提升掺杂剂与聚合物主链相容性以提高n型共轭聚合物的电导率,但最高值仍未超过50S/cm。文献(Persistent conjugated backbone and disordered lamellar packing impartpolymers with efficient n-doping and high conductivities.Adv.Mater.2021,33,2005946.)报道了通过对聚合物平面性和掺杂剂相容性的协同调节,获得电导率接近100S/cm的n型共轭聚合物。目前,虽然通过对聚合物和掺杂剂的调节使得n型共轭聚合物的电导率得到进一步提升,但相比于p型共轭聚合物超过1000S/cm的性能仍有较大差距。同时目前大多数n型导电共轭聚合物的制备需要首先构筑聚合物主链,然后使用外加掺杂剂(如N-DMBI等)进行后掺杂以获得高导电率,整体步骤较长且稳定性较差,成本高。

综上,如何开发一类结构简单、合成简易、成本低廉且可溶液加工的n型高导电共轭聚合物,并经过适用商业化的制备方法直接合成;同时应用于有机光电领域,并且实现理想的光电效果,是亟需解决的问题。

发明内容

为了克服现有技术的缺点和不足,本发明的目的在于提供一种不同对离子修饰的含对离子的n型共轭聚合物及其制备方法。本发明的方法中所采用的原料为具有活泼亚甲基的芳香式二酮类物质,在氧化剂和/或离子交换助剂存在的条件下,聚合反应直接得到含对离子的n型共轭聚合物。所述反应无需贵金属催化,且对反应气氛不敏感,工艺简单,成本低廉,适用于商业化应用。通过本发明的方法所获得的含对离子的n型共轭聚合物在一般的有机溶剂中具有良好的溶解性,可以实现溶液加工。同时,该含对离子的n型共轭聚合物应用于有机光电器件中,可以实现优异的光电效果。

本发明术语“芳环”,是指拥有共轭平面环体系,原子间成键是被离域π电子云覆盖的环状结构。如苯环及其衍生物。

本发明术语“芳杂环”,是指拥有共轭平面环体系,原子间成键是被离域π电子云覆盖的;且构成环的原子除碳原子外,还至少含有一个杂原子(如N、O、S等)的环状结构。如噻吩、呋喃、吡咯等。

本发明术语“稠合芳环”,是指拥有共轭平面环体系,原子间成键是被离域π电子云覆盖的两个或多个芳香环稠合(即共用环边)而成的结构。如萘、蒽及其衍生物。

本发明术语“稠合芳杂环”,是指拥有共轭平面环体系,原子间成键是被离域π电子云覆盖的两个或多个芳香环稠合而成的结构,并且至少一个环中的构成原子除碳原子外,还至少含有一个杂原子(如N、O、S等),如喹啉、吲哚及其衍生物。

本发明的目的通过以下技术方案实现:

一种n型共轭聚合物共混物,所述n型共轭聚合物共混物包括含对离子的n型共轭聚合物,和/或n型共轭聚合物,

其中,

所述含对离子的n型共轭聚合物包括一种或多种聚合单元1,

所述聚合单元1具有如下结构(I):

所述n型共轭聚合物包括一种或多种聚合单元2,

所述聚合单元2具有如下结构(II):

每个所述聚合单元1或聚合单元2中,

X独立地选自O、S、Se、Te或N-R

所述R

所述烷基衍生物或亚烷基衍生物上的一个或多个碳,被氧原子、氨基、砜基、羰基、芳基、烯基、炔基、酯基、氰基、硝基的一个或多个取代;

和/或

所述烷基衍生物或亚烷基衍生物上的一个或多个氢,被卤素、羟基、氨基、羧基、氰基、硝基、芳基、烯烃基、炔烃基的一个或多个取代;

其中,m、n、k为正整数;

所述M为所述含对离子的n型共轭聚合物或n型共轭聚合物结构中的共轭部分,所述M的结构选自芳环、芳杂环、稠合芳环、稠合芳杂环的一种;

所述Y为所述含对离子的n型共轭聚合物或n型共轭聚合物结构中的对离子,所述对离子选自有机阳离子或无机阳离子中的一种;

所述n型共轭聚合物共混物由原料(III)制备而成,所述原料(III)具有以下结构:

和/或其烯醇式转变形式;所述烯醇式转变形式为

和/或/>

所述烯醇式转变形式,是由于原料(III)与其他物质(如极性溶剂、酸或碱)间相互作用的结果。

本发明技术方案中,由原料(III)制备而成的产物,是同时含有离子态的n型共轭聚合物(具有结构式(I)),以及中性的n型共轭聚合物(具有结构式(II))的共混物,并且含对离子的n型共轭聚合物与n型共轭聚合物之间,存在动态的相互转化。这主要是因为当体系中存在游离的氢正离子时,所述n型共轭聚合物的共混物中,存在以下共振转变:

进一步地,以Y为氢正离子时进行说明,所述体系中含有离子态的n型共轭聚合物可转变为以下共振式的共混物,即所述含对离子的n型共轭聚合物与n型共轭聚合物之间,存在动态的相互转化,所述含对离子的n型共轭聚合物和n型共轭聚合物的物质的量之比为0.1-10:

进一步地,所述含对离子的n型共轭聚合物与n型共轭聚合物之间可通过相互作用进一步自组装成以下超分子,该超分子结构可以促进分子内/分子间电荷转移,形成具有超高导电性的n型共轭聚合物共混物:

进一步地,所述含对离子的n型共轭聚合物具有多种共振形式。以M为苯环结构且主链中负电荷数目为1(m=1)时为例,包括但不限于以下共振形式:

为方便起见,本发明的内容中均以第一种共振形式进行表达。

进一步地,所述含对离子的n型共轭聚合物结构中的共轭部分M的结构选自以下结构:

其中,所述X

所述R

所述烷基衍生物或亚烷基衍生物上的一个或多个碳,被氧原子、氨基、砜基、羰基、芳基、烯基、炔基、酯基、氰基、硝基的一个或多个取代;

和/或

所述烷基衍生物或亚烷基衍生物上的一个或多个氢,被卤素、羟基、氨基、羧基、氰基、硝基、芳基、烯烃基、炔烃基的一个或多个取代。

上述M的结构的可选对象中,芳环中的虚线

进一步地,所述含对离子的n型共轭聚合物结构中的对离子部分Y的结构,选自以下结构的一种:

H

或者选自胺盐型阳离子表面活性剂、季铵盐型阳离子表面活性剂、杂环型阳离子表面活性剂、啰盐、锍盐、碘啰和

进一步地,(1)当所述含对离子的n型共轭聚合物为均聚物时,所述含对离子的n型共轭聚合物的结构选自如下结构的一种:

(2)当所述含对离子的n型共轭聚合物为共聚物时,

所述含对离子的n型共轭聚合物的各个聚合单元1的结构,独立地选自如下结构:

其中

所述R

所述烷基衍生物或亚烷基衍生物上的一个或多个碳,被氧原子、氨基、砜基、羰基、芳基、烯基、炔基、酯基、氰基、硝基的一个或多个取代;

和/或

所述烷基衍生物或亚烷基衍生物上的一个或多个氢,被卤素、羟基、氨基、羧基、氰基、硝基、芳基、烯烃基、炔烃基的一个或多个取代;

其中,m、n、k为正整数;

所述M为所述含对离子的n型共轭聚合物结构中的共轭部分,所述M的结构选自芳环、芳杂环、稠合芳环、稠合芳杂环的一种;

所述Y为所述含对离子的n型共轭聚合物的对离子部分,所述对离子选自有机阳离子以及无机阳离子中的一种。

进一步地,(1)当所述n型共轭聚合物为均聚物时,所述n型共轭聚合物的结构选自如下结构的一种:

(2)当所述n型共轭聚合物为共聚物时,

所述n型共轭聚合物的各个聚合单元2的结构,独立地选自如下结构:

所述n1-n5独立地为正整数。

本发明的另一个目的,在于提供上述含对离子的n型共轭聚合物的制备方法,其制备方法为:

(1)当所述含对离子的n型共轭聚合物和/或n型共轭聚合物为均聚物时,所述n型共轭聚合物共混物的制备方法包括如下步骤:

将所述原料(III)和氧化剂和/或离子交换助剂混合于溶剂中,加热反应;得到所述的均聚物;

(2)当所述含对离子的n型共轭聚合物和/或n型共轭聚合物为共聚物时,所述n型共轭聚合物共混物的制备方法包括如下步骤:

将所述原料(III)的两种或以上,和氧化剂和/或离子交换助剂混合于溶剂中,加热反应,得到所述的共聚物。

所述含对离子的n型共轭聚合物和/或n型共轭聚合物的制备方法,既可以通过如上述所述在反应中直接加入离子交换助剂实现,也可以通过先制备含其中一种含对离子的n型共轭聚合物和/或n型共轭聚合物,再通过后离子交换的形式得到其他的含对离子的n型共轭聚合物和/或n型共轭聚合物。

进一步地,所述氧化剂选自有机类氧化剂、无机类氧化剂的一种或多种。

进一步地,所述氧化剂选自氧气、过氧化物、金属卤化物、过硫酸盐、过硼酸盐、次卤酸盐、亚卤酸盐、醌类化合物、过苯甲酸类化合物的一种或多种。

具体地,上述氧化剂可以但不限于为:如氧气、过氧化氢、过氧化钠、过氧化钾、过氧化钙、过氧化锌、过氧化铜、硝酸铁、硝酸锌、硝酸镍、硝酸铝、硝酸镁、硝酸铵、氟化铁、氯化铁、溴化铁、碘化铁、高氯酸钠、高氯酸钾、高溴酸钠、高溴酸钾、高碘酸钠、高碘酸钾、过氯酸钾、过氯酸钠、过溴酸钾、过溴酸钠、过氯酸镁、过硫酸钠、过硫酸钾、过硫酸镁、过硫酸锌、过硫酸铁、过硫酸铜、过硫酸钙、过硼酸钾、过硼酸锌、过硼酸镁、过硼酸钙、次氟酸钠、次氟酸钾、次氯酸钠、次氯酸钾、次氯酸铁、次氯酸铜、次溴酸钠、次溴酸钾、次碘酸钠、次碘酸钾、亚氯酸钠、亚氯酸钾、亚氯酸铁、亚溴酸钠、亚溴酸钾、亚碘酸钠、亚碘酸钾、苯醌及其衍生物、萘醌及其衍生物、蒽醌及其衍生物、菲醌及其衍生物、过苯甲酸及其衍生物的一种;以及上述任意物质的两种或多种,以任意比例混合后的混合物。

进一步地,所述溶剂选自溶剂1,或溶剂2,或溶剂1和溶剂2的混合物;

所述溶剂1选自水、腈类溶剂、芳香族类溶剂、脂环烃类溶剂、脂环烃类溶剂、卤化烃类溶剂、醇类溶剂、醚类溶剂、酯类溶剂、砜类溶剂、酮类溶剂、酰胺类溶剂的一种或多种的混合物;

所述溶剂2为所述溶剂1的氘代溶剂。

具体地,上述溶剂1,优选为本领域常见极性溶剂,可以但不限于为:如四氢呋喃、甲基四氢呋喃、二氯甲烷、氯仿、乙酸乙酯、乙酸丙酯、乙酸丁酯、丙酸乙酯、丙酸丙酯、丙酸丁酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸丙酯、甲苯、二甲苯、三甲苯、氯苯、二氯苯、三氯苯、甲醇、乙醇、丙醇、乙二醇、异丁醇、丙二醇、乙腈、甲酸、乙酸、丙酸、三氟乙酸、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、二甲基乙酰胺、丙酮、丁酮、环己酮、甲基丁酮、甲醚、乙醚、丙醚、吡啶、苯酚、N-甲基吡咯烷酮、乙二醇单甲醚、三甘醇单甲醚、三乙胺、四甲基乙二胺、三辛胺、苯胺、六甲基磷酸三胺的一种;以及上述任意物质的两种或多种,以任意比例混合后的混合物。

具体地,上述溶剂2,为上述溶剂1所相对应的氘代溶剂,例如,溶剂2可以但不限于为:氘代氯仿、氘代氯苯、氘代乙醇等。

优选地,所述溶剂选自溶剂1。

为方便起见,本发明的内容中均以含有离子态的n型共轭聚合物(具有结构式(I)),以及中性的n型共轭聚合物(具有结构式(II))的共混物进行表述。

本发明的另一个目的是提供上述含对离子的n型共轭聚合物共混物在有机光电器件中的应用。

本发明其有益效果在于:

1.本发明所得的n型共轭聚合物共混物原料,为具有活泼亚甲基的芳香式二酮类物质,在氧化剂存在的条件下,聚合反应直接得到。所述反应无需贵金属催化,且对反应气氛不敏感,工艺简单,成本低廉,适合大规模商业化应用;所得产物溶解性优异,适用于溶液加工型的有机光电器件中。

2.本发明所得的n型共轭聚合物共混物,其可以通过原位反应以及共振转化自组装形成具有强聚集的n型导电材料,电导率最高可超过2000S/cm。

3.本发明所得的n型共轭聚合物共混物,可作为热电材料,在不使用额外掺杂剂的情况下,在空气环境下获得接近100μW m

4.本发明所得的n型共轭聚合物共混物,通过对不同对离子的调节,可以实现n型共轭聚合物在热电功率上的系统调节。

附图说明

图1示出了实施例1中的产物在薄膜状态下的吸收光谱图。

图2为实施例1中的产物的凝胶渗透色谱测试图。

图3为实施例1中的产物的X射线光电子能谱图,其中,图3(a)为氧元素的XPS谱图(氧1s峰),(b)为总谱图。

图4为测试例1中的产物的四探针电导率测试示意图。

图5示出了测试例1中的实施例1中产物的四探针电导率测试电压与电流数据图,(a)为四探针中的电流测量图,(b)为四探针中的电压测量图。

图6为实施例1中的产物的Seebeck系数测试图。

图7为有机电化学晶体管器件示意图。

图8为实施例1中的产物在有机电化学晶体管器件的跨导测试图。

具体实施方式

为了更清楚地说明本发明的技术方案,列举如下实施例。实施例中所出现的原料、反应和后处理手段,除非特别声明,均为市面上常见原料,以及本领域技术人员所熟知的技术手段。

本发明实施例中的原料之一,3,7-二氢苯并[1,2-b:4,5-b']二呋喃-2,6-二酮,按照文献(A BDOPV-Based Donor–Acceptor Polymer for High-Performance n-Type andOxygen-Doped Ambipolar Field-Effect Transistors.Adv.Mater.2013,25(45),6589)进行制备;

实施例中的氧化剂采用杜醌或者辅酶Q10或者三氯化铁,采购自上海毕得医药科技股份有限公司。

实施例1:一种n型共轭聚合物共混物的制备方法

3,7-二氢苯并[1,2-b:4,5-b']二呋喃-2,6-二酮(1mmol),和氧化剂杜醌(1.5mmol),溶于2ml的二甲基亚砜(DMSO)中,经真空脱气后,充入氮气进行保护。在氮气氛围、100℃下搅拌反应4h。然后将所得粗产物用DMSO稀释至约10mg/ml后,利用0.45μm孔径的聚四氟乙烯滤头过滤,所得滤液采用旋转蒸发仪浓缩,利用透析袋(截断分子量=10kDa)在DMSO溶液中透析7天,得到产物n型共轭聚合物共混物。其中,式Ⅰ和式Ⅱ可如上述说明通过共振互相转化,m/(n1+n2)约为0.86。比例的测试方法采用X射线光电子能谱进行拟合得到,下同)。经以DMSO为流动相的凝胶渗透色谱测试,分子量Mn=428.2kDa,PDI=1.22。

图1为实施例1中的产物在薄膜状态下的吸收光谱图,其吸收边超过2400nm,说明了聚合物中极化子的存在,证明混合物体系中存在可在共轭主链自由移动的负电荷;图2为实施例1中的产物的凝胶渗透色谱测试图,说明了聚合物以及超分子化合物的产生。

图3为实施例1中的产物的X射线光电子能谱图,其中,图3(a)为氧元素的XPS谱图(氧1s峰),(b)为总谱图。因此,可以利用图3(a)-(b)中,氧元素的不同峰之间的半定量比例,计算m与n1,n2间的关系,从而通过该方法,确定式Ⅰ和式Ⅱ的相对含量。

实施例2:一种n型共轭聚合物共混物的制备方法

3,7-二氢苯并[1,2-b:4,5-b']二呋喃-2,6-二酮(1mmol),和氧化剂三氯化铁(2mmol),溶于2ml的N,N-二甲基甲酰胺(DMF)中,经真空脱气后,充入氮气进行保护。在氮气氛围、100℃下搅拌反应2h。所得产物n型共轭聚合物共混物逐渐从反应体系中析出,冷却至室温后加入乙醇50mL。充分搅拌后过滤,并用去离子水、乙醇、四氢呋喃洗涤,所得产物n型共轭聚合物共混物为式(I)、式(II)、式(Ⅲ)和式(IV)的混合物。所得产物由于铁离子耦合,不溶于有机溶剂,将固体进行表征。

其中,2(k1+k3)+3(k2+k5)+(k4+k6)=m1+m2+m3+m4+m5+m6。

且(k4+k6):(k1+k3):(k2+k5)约为8:1:0.2;

(m1+m2+m3+m4+m5+m6):(n1+n2+n3+n4+n5+n6+n7)约为0.9。

实施例3:一种n型共轭聚合物共混物的制备方法

(1)将苯并二噻吩(23mmol)溶解于无水四氢呋喃中(300ml)后,降温至-78℃,在90min内缓慢加入正丁基锂(2.5M的正己烷溶液,25.8ml,64.4mmol),于-78℃下搅拌3h后升温至0℃,加入硼酸三正丁酯(60mmol),搅拌1h后逐渐升到室温25℃,继续搅拌8h。利用旋转蒸发仪浓缩溶液至200ml,加入0.5M盐酸200ml,过滤得到粗产物。将粗产物利用四氢呋喃/正己烷沉淀出产物,并用冰甲苯洗涤,干燥固体(产率=61%),用于下一步反应。

(2)将上一步所的固体(7.5mmol)溶解于在四氢呋喃(100ml)中,于0℃下加入2.5ml过氧化氢水溶液(30wt%),于室温下搅拌6h。利用旋转蒸发仪除去溶剂后,利用硅胶填充层析色谱柱(200-300目),以乙酸乙酯:石油醚=4:1为洗脱剂提纯产物,得到固体用正己烷和甲醇洗涤,得到3,7-二氢苯并[1,2-b:4,5-b']二噻吩-2,6-二酮(产率=53%)。

(3)3,7-二氢苯并[1,2-b:4,5-b']二噻吩-2,6-二酮(1mmol),和杜醌(2mmol),溶于2ml的DMSO中,经真空脱气后,充入氮气进行保护。在氮气氛围、120℃下搅拌10h,将溶液稀释至约10mg/ml后,利用0.45μm孔径的聚四氟乙烯滤头过滤。将溶液利用旋转蒸发仪浓缩,利用透析袋(截断分子量=10kDa)在DMSO溶液中透析3天,得到产物n型共轭聚合物共混物。所得产物n型共轭聚合物共混物为式(I)和式(II)的混合物。其中,式Ⅰ和式Ⅱ可如上述说明通过共振互相转化,m/(n1+n2)约为0.42。经以DMSO为流动相的凝胶渗透色谱测试,分子量Mn=12kDa,PDI=1.31。

实施例4:一种n型共轭聚合物共混物的制备方法

取实施例1中获得的产物的DMSO溶液20mL(浓度为15mg/mL),用20mL的DMSO稀释后向其中加入四丁基溴化铵2g,于室温下搅拌14天。其部分离子交换产物在反应期间逐渐析出。向反应体系中加入乙醇50mL,充分搅拌后过滤。所得粉末用乙醇、四氢呋喃洗涤。

其中,k1+k2+k3+k4=m1+m2+m3+m4=m,

n3+n4+n5+n6+n7+n8+n9=n1+n2。

(k2+k4)/(k1+k3)约为0.2。

实施例5:一种n型共轭聚合物共混物的制备方法

取实施例1中获得的产物的DMSO溶液40μL(浓度为15mg/mL)滴加于10mm×10mm的玻璃基底上,经干燥后获得薄膜。将薄膜浸泡于饱和NaCl的水溶液中12小时后用去离子水洗涤薄膜,并经干燥后得到离子交换产物n型共轭聚合物共混物的薄膜,直接进行后续表征。

其中,k1+k2+k3+k4=m1+m2+m3+m4=m,

n3+n4+n5+n6+n7+n8+n9=n1+n2。

(k2+k4)/(k1+k3)约为0.04。

实施例6:一种n型共轭聚合物共混物的制备方法

在氮气保护下,取3,7-二氢苯并[1,2-b:4,5-b']二呋喃-2,6-二酮(1mmol)溶解于5mL三氯甲烷中,加入2mmol三乙胺,于室温下搅拌,待溶液变为墨绿色后,加入氧化剂杜醌(1.5mmol)。在氮气氛围、100℃下搅拌反应24h,过滤得到粗产物。然后将所得粗产物用四氢呋喃洗涤后,溶解于20mLDMSO中,利用0.45μm孔径的聚四氟乙烯滤头过滤,所得滤液利用透析袋(截断分子量=10kDa)在DMSO溶液中透析7天,得到产物n型共轭聚合物共混物。其中,式Ⅰ和式Ⅱ可如上述说明通过共振互相转化,m/(n1+n2)约为0.62。经以DMSO为流动相的凝胶渗透色谱测试,分子量Mn=11kDa,PDI=1.72。

测试例1

将实施例1所得的n型共轭聚合物共混物的DMSO溶液,利用旋涂成膜法在玻璃基底上制备薄膜,并经真空干燥后,利用四足探针法测量薄膜电导率。图4示出了实施例1的产物的四探针电导率测试示意图。具体步骤为:

将石英玻璃片依次用丙酮、微米级半导体专用洗涤剂、去离子水、异丙醇作清洗溶剂在超声清洗仪洗涤,洗涤完后用氮气吹干表面,并用红外灯烘干,之后置于恒温烘箱中备用。使用前,将玻璃片在等离子体刻蚀仪中以等离子体轰击10min。

完成玻璃片的准备后,将其放在加热台上,110℃加热后转移至旋转匀胶仪(KW-4A)上,用以上制备的实施例1的产物高速旋涂(共轭聚合物溶液的质量浓度为15mg/ml),并同时用台阶仪实测监控膜的厚度。成膜完成后,利用四足探针电导率测试仪测试其电压和电流曲线,测试原理图如图4所示,电压V和电流I如图5(a)-(b)所示,并利用薄膜厚度d以及修正系数计算电导率σ,计算公式为:

σ=I/(C×V×d)(其中C由仪器内置的探头校准参数以及试样尺寸共同决定)。

将实施例2和实施例4所得的产物的粉末,利用压片法制备直径15mm,厚度为1mm的薄片,利用四足探针法测量薄膜电导率。

将实施例5离子交换后所得的产物的薄膜直接利用四足探针法测量薄膜电导率,结果如下:

表1 实施例1、实施例2、实施例4和实施例5的产物的电导率测试

从表1可知,本发明制备的n型共轭聚合物共混物具有高的导电率,且通过不同对离子的调节可实现导电率的调控。

在此,以实施例1的n型共轭聚合物共混物进行说明:本发明制备的n型共轭聚合物共混物可以共振出氢质子以及主链上的负电荷,同时在固体状态下,由于超分子作用的形成,氢质子被约束在分子间,从而减弱了其对负电荷的束缚,使得负电荷可以在共轭主链上自由移动,实现了高的n型电导率。

测试例2

对实施例中所得的n型共轭聚合物共混物进行热电测试。

材料的热电性能常用热电优值(ZT)来描述,具体公式如下:

ZT=S

其中S代表Seebeck系数,σ代表电导率,κ代表热导率,T代表器件工作时的温度。对于有机材料而言,其热导率远低于无机材料,因此常用功率因子(PF)来描述有机材料的热电性能,其中PF=S

在该测试例中我们以上述所制备的n型共轭聚合物共混物为例,所述样品制备过程与测试例1中所用流程相同,测试其Seebeck系数,表征其热电性能。

将器件两端放置于温度梯度场中,图5(a)示出了实施例2中的产物的热电压差变化趋势图,图5(b)示出了实施例2中的产物的热电压差随温度的变化趋势拟合图。通过器件两端温差的变化测试对应的温差电动势,进而测得Seebeck系数。从图5(a)-(b)上可以看出,本发明实施例的聚合物在微弱的温差下,展示出产物的Seebeck效应,并产生超过30μV/K的温差电动势。

图6示出了实施例1的产物的电导率-Seebeck系数-功率因子性能图,其中功率因子由PF=S

相关数据在表2中示出。

表2 实施例1、实施例2和实施例4的n型共轭聚合物共混物的Seebeck系数

测试例3

对实施例1中所得的n型共轭聚合物共混物进行有机电化学晶体管器件测试。有机电化学晶体管器件如图7所示。

上述有机电化学晶体管的制造工艺如下:首先用丙酮和异丙醇依次洗涤玻璃基地,然后用氮气吹干表面。利用溅射方式在玻璃基底上沉积一层铬/金(10nm/100nm)基板构建源极和漏极、之后钝化基底表面,并旋涂实施例1中的n型共轭聚合物DMSO溶液作为有机电化学晶体管中的活性层材料,并在100℃下在氮气下烘烤10min,薄膜厚度约为70nm,沟道面积为1mm×1mm。在空气中使用Ag/AgCl电极作为栅电极,使用0.1M氯化钠溶液为电解液,Keithley 4200对有机电化学晶体管性能进行表征,记录源极和栅极之间的电压Vgs以及漏极和栅极间的电流Ids。

上述有机电化学晶体管器件测试性能如图8所示,基于n型共轭聚合物共混物的有机电化学晶体管器件具有接近11mS的跨导,具有良好的电化学响应,在有机生物传感领域具有重要应用前景。

以上测试例说明本发明中的n型共轭聚合物共混物在有机光电器件中作为高导电材料有着广泛的应用前景。

对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。

此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

相关技术
  • 一种D-A型共轭聚合物及其制备方法和应用
  • 一种薄壁型高CTI值阻燃聚碳酸酯共混物及其制备方法
  • 一种二臂苯乙烯-共轭二烯的聚合物组合物以及制备和在沥青改性中的应用
  • 一种聚合物太阳能电池共混活性层中的共轭聚合物电子给体材料及其制备方法
  • 偶联剂和星线共混的共轭二烯烃聚合物及其制备方法和应用
技术分类

06120115922544