掌桥专利:专业的专利平台
掌桥专利
首页

各向异性导电防潮膜以及包含其的电光组件

文献发布时间:2023-06-19 12:02:28


各向异性导电防潮膜以及包含其的电光组件

技术领域

本发明涉及可结合在电光组件中的各向异性导电膜。更具体地,在一方面,本发明涉及可结合在电光装置或显示器中的具有改善的防潮性能的各向异性导电膜。

背景技术

作为应用于材料或者显示器的术语“电光”,其在此使用的是其在成像领域中的常规含义,指的是具有第一和第二显示状态的材料,该第一和第二显示状态的至少一个光学性质不同,通过向所述材料施加电场使该材料从其第一显示状态改变到第二显示状态。尽管光学性质通常是人眼可感知的颜色,但它可以是另一种光学性质,例如光透射、反射、发光,或者在用于机器阅读的显示器的情况下,在可见光范围之外的电磁波长的反射率的改变意义上的伪色。

各向异性导电粘合剂已经在微电子组件中应用多年。如在US 4,729,809中举例说明的,典型的方法包括用略低于电导率的渗流阈值的导电粒子加载可热固化的环氧树脂。然后将该制剂施加于半导体芯片和具有相应的电触点的电路板之间。在热和压力下,导电粒子被捕获在芯片和板的触点之间,以完成连接,而不会由于横向导电而引起短路。

除了次渗流阈值方法之外,已经使用了通过电场或磁场来定向导电粒子的各种方法以形成各向异性导电膜和粘合剂。这些包括使用导电纤维(US 4,170,677)、诸如氧化铁的磁性粒子(US 7,843,626)以及在电场中定向的炭黑(US 9,437,347)。

美国专利申请No.2017/0052421中公开了另一种提供各向异性导电膜的方法,该申请将导电膜结合在利用正和负电晕源分别书写或擦除黑色和白色电泳膜的直接书写系统中。这产生了可以以非接触方式寻址的显示器,而无需显示装置上的任何驱动电子设备。在包含微囊体的电泳材料上提供厚的各向异性导电层作为保护层,以防止对微囊体的机械损坏。需要各向异性电导率以允许来自电晕的离子穿过保护层到达电泳材料层。该电导率是通过将导电磁性粒子添加到紫外线可固化的树脂制剂来实现的。选择粒子的加载,以便在强磁场的暴露使粒子在垂直于保护层平面的方向上对齐,从而在Z方向上实现电导率,而在X或Y方向上没有任何显著的横向电导率。一旦对齐,基体树脂就用紫外线辐射固化,以硬化保护层并锁定粒子方向。

美国专利申请No.2017/0052421中公开的各向异性导电层的主要缺点之一是在高环境湿度下成像质量差。因此,需要具有改善的防潮性能的各向异性导电膜以保持显示器的图像质量。

发明内容

根据一个方面,一种电光组件,其包括被配置为在施加电场时切换光学状态的电光材料层和包括一种或多种防潮聚合物和导电材料的各向异性导电层,所述防潮聚合物具有小于5g/(m

鉴于以下描述,本发明的各种实施例的这些和其他方面将是显而易见的。

附图说明

附图描绘了根据本概念的实施方式,仅作为示例而非限制。在附图中,相同的附图标记表示相同或相似的元件。

图1是根据本发明的一个实施例的示意性横截面侧视图。

图2是根据本发明的另一个实施例的示意性横截面侧视图。

图3是根据本发明的又一实施例的示意性横截面侧视图。

具体实施方式

通常,本发明的各种实施例提供了一种具有固有的防潮性能的各向异性导电层及其形成方法。这通过在各向异性导电层的连续相中包含防潮聚合物来实现,该各向异性导电层在该层的制造期间被固化或冷却。这消除了对额外的屏障形成步骤的需要并且可以提供具有改善的机械完整性的屏障。此外,本发明的某些实施例可以排除对专门的辐射固化设备的需要并消除处理辐射可固化单体的危险。

图1和图2中示出了优选组件的示意图,并且下面提供了根据本发明的各种实施例的用于制造该组件的工艺。该组件包括基板、导电层、电光层和各向异性导电层。然后可以将该组件结合到诸如显示器的电光装置中。电光显示器通常包括电光材料层和布置在电光材料的相对侧上的至少两个其他层,这两层之一是电极层。在大多数这样的显示器中,这两个层都是电极层,并且电极层中的一个或两个被图案化以限定显示器的像素。例如,一个电极层可以被图案化成细长的行电极,而另一个被图案化成与行电极成直角延伸的细长的列电极,像素由行和列电极的交叉点限定。可替代地,并且更通常地,一个电极层具有单个连续电极的形式,而另一电极层被图案化成像素电极的矩阵,每个像素电极限定显示器的一个像素。在旨在与触控笔、打印头或类似的与显示器分离的可移动电极一起使用的另一类型的电光显示器(例如上述美国专利申请No.2017/0052421中公开的装置)中,仅与电光层相邻的层中的一个层包括电极,在电光层的相对侧上的层通常是旨在防止可移动电极损坏电光层的保护层。

现在将参考图1和图2仅以说明的方式描述根据本发明的一个实施例的组件的实施例,图1和图2是穿过组件的示意性截面图。图1中所示的组件(总体标记为100)包括基板110、电极层120、电光层130和各向异性导电层180。

在一些实施例中,如果组件100将被结合到其中基板110旨在作为显示器的观察侧的显示器中,则基板110和电极层120可以是透光的。在其他实施例中,如果各向异性导电层180旨在用作显示器的观察表面,则该各向异性导电层180可以是透光的。在又一实施例中,如果组件100将被被结合到双侧显示器中,则所有三个层,基板110、电极层120和各向异性导电层180都可以是透光的。在本文的整个说明书和权利要求中使用的术语“透光的”是指这样指定的层透射足够的光,以使观察者能够透过该层观察电光介质的显示状态的变化,这通常将通过导电层和相邻基板观察;在电光介质显示不可见波长的反射率变化的情况下,术语“透光的”当然应该被解释为涉及相关不可见波长的透射。

基板110优选是柔性的,在这种意义上,基板可以被手动地缠绕在(例如)直径10英寸(254mm)的滚筒上而不会永久变形。基板通常是聚合物膜,并且通常将具有约1至约25密耳(25至634μm),优选地约2至约10密耳(51至254μm)的范围的厚度。基板110的下表面(在图1中)可以形成最终显示器的观察表面,最终显示器可以具有一个或多个附加层(未示出),例如吸收紫外线辐射的保护层、防止氧气或湿气进入最终显示器的阻挡层、以及改善显示器的光学性能的防反射涂层。如果基板110不必是透光的,则可以使用本领域技术人员已知的任何兼容的柔性材料。

涂布在基板110的上表面上的是导电电极层120,其可以用作最终显示装置中的公共电极。如前所述,电极层120可以以例如铝或ITO的金属或金属氧化物薄透光层的形式提供,或者可以是导电聚合物。涂布有铝或ITO的聚对苯二甲酸乙二酯(PET)膜可商购获得,例如购自特拉华州威尔明顿市的杜邦公司(E.I.du Pont de Nemours&Company)的“镀铝Mylar”(“Mylar”是注册商标),并且这样的商业材料可以用作本发明的各种实施例中的基板110和电极120层,并且具有良好的结果。

然后可以将电光材料层130施加到电极层120的相对于基板110的相对的表面上。在本发明的各种实施例中可以结合各种类型的电光材料,例如固态电光材料。

从材料具有固态外表面的意义上来讲,某些电光材料是固态的,尽管材料可能而且经常确实具有内部填充液体或气体的空间。为了方便起见,使用固态电光材料的显示器在下文中可以被称为“固态电光显示器”。因此,术语“固态电光显示器”包括旋转双色构件显示器、封装的电泳显示器、微单元电泳显示器和封装的液晶显示器。

术语“双稳态的”和“双稳定性”在此使用的是其在本领域中的常规含义,指的是包括具有第一和第二显示状态的显示元件的显示器,所述第一和第二显示状态的至少一个光学性质不同,从而在利用有限持续时间的寻址脉冲驱动任何给定元件以呈现其第一或第二显示状态之后,在该寻址脉冲终止后,该状态将持续的时间是用于改变该显示元件的状态所需的寻址脉冲的最小持续时间的至少几倍(例如至少4倍)。在美国专利No.7,170,670中示出,支持灰度的一些基于粒子的电泳显示器不仅可以稳定于其极端的黑色和白色状态,还可以稳定于其中间的灰色状态,以及一些其它类型的电光显示器也是如此。这种类型的显示器被恰当地称为是“多稳态的”而非双稳态的,但是为了方便,在此可使用术语“双稳态的”以同时涵盖双稳态的和多稳态的显示器。

如在美国专利No.5,808,783;5,777,782;5,760,761;6,054,071;6,055,091;6,097,531;6,128,124;6,137,467以及6,147,791中描述了一种包含旋转双色构件类型材料的显示器(尽管这种类型的显示器通常被称为“旋转双色球”显示器,但术语“旋转双色构件”优选为更精确,因为在以上提到的一些专利中,旋转构件不是球形的)。这种显示器使用许多小的主体(通常球形或圆柱形的)和内部偶极子,所述主体包括具有不同光学特性的两个或更多个部分。这些主体悬浮在基质内的填充有液体的液泡内,液泡填充有液体以使得主体自由旋转。显示器的外观通过以下而改变:将电场施加至显示器,由此将主体旋转至各个位置并改变通过观察表面看到的主体的部分。这种类型的电光介质通常是双稳态的。

另一类型的电光显示器可以使用电致变色介质,例如以纳米致变色(nanochromic)膜形式的电致变色介质,该膜包括至少部分由半导体金属氧化物形成的电极和附着到电极的能够可逆颜色改变的多个染料分子;参见例如O'Regan,B.等,Nature1991,353,737;以及Wood,D.,Information Display,18(3),24(2002年3月)。还参见Bach,U.等,Adv.Mater.,2002,14(11),845。这种类型的纳米致变色膜例如在美国专利No.6,301,038;6,870,657和6,950,220中也有描述。这种类型的介质也通常是双稳态的。

另一类型的电光显示器是由飞利浦开发的电润湿显示器,其在Hayes,R.A.等,“Video-Speed Electronic Paper Based on Electrowetting”,Nature,425,383-385(2003)中描述。在美国专利No.7,420,549中示出这样的电润湿显示器可被制造成双稳态的。

可以结合在本发明的各种实施例中的优选类型的电光材料是基于粒子的电泳显示器,其中多个带电粒子在电场的影响下移动通过流体。与液晶显示器相比,电泳显示器可以具有良好的亮度和对比度、宽视角、状态双稳定性以及低功耗的属性。

电泳介质需要流体的存在。在大多数现有技术的电泳介质中,该流体是液体,但是电泳介质可以使用气态流体来产生;参见例如Kitamura,T.等,“Electronic tonermovement for electronic paper-like display”,IDW Japan,2001,Paper HCS 1-1,和Yamaguchi,Y.等,“Toner display using insulative particles chargedtriboelectrically”,IDW Japan,2001,Paper AMD4-4)。也参见美国专利No.7,321,459和7,236,291。

被转让给麻省理工学院(MIT)、伊英克公司、伊英克加利福尼亚有限责任公司和相关公司或以它们的名义的许多专利和申请描述了用于封装的和微单元电泳以及其他电光介质的各种技术。封装的电泳介质包括许多小囊体,每一个小囊体本身包括内相以及包围内相的囊壁,其中所述内相含有在流体介质中的可电泳移动的粒子。典型地,这些囊体本身保持在聚合粘结剂中以形成位于两个电极之间的连贯层。在微单元电泳显示器中,带电粒子和流体不封装在微囊体内,而是保持在形成于载体介质(通常是聚合物薄膜)内的多个腔体内。在这些专利和申请中描述的技术包括:

(a)电泳粒子、流体和流体添加剂;参见例如美国专利No.7,002,728和7,679,814;

(b)囊体、粘结剂和封装工艺;参见例如美国专利No.6,922,276和7,411,719;

(c)微单元结构、壁材料和形成微单元的方法;参见例如美国专利No.7,072,095和9,279,906;

(d)用于填充和密封微单元的方法;参见例如美国专利No.7,144,942和7,715,088;

(e)包含电光材料的膜和子组件;参见例如美国专利No.6,982,178和7,839,564;

(f)用于显示器中的背板、粘合剂层和其他辅助层以及方法;参见例如美国专利No.7,116,318和7,535,624;

(g)颜色形成和颜色调节;参见例如美国专利No.7,075,502和7,839,564;

(h)用于驱动显示器的方法;参见例如美国专利No.7,012,600和7,453,445;

(i)显示器的应用;参见例如美国专利No.7,312,784和8,009,348;

(j)非电泳显示器,如在美国专利No.6,241,921和美国专利申请公开No.2015/0277160中所述;以及除显示器以外的封装和微单元技术的应用;参见例如美国专利申请公开No.2015/0005720和2016/0012710。

许多前述专利和申请认识到在封装的电泳介质中围绕离散的微囊体的壁可以由连续相替代,由此产生所谓的聚合物分散型的电泳显示器,其中电泳介质包括多个离散的电泳流体的液滴和聚合物材料的连续相,并且在这种聚合物分散型的电泳显示器内的离散的电泳流体的液滴可以被认为是囊体或微囊体,即使没有离散的囊体薄膜与每个单独的液滴相关联;参见例如前述的美国专利No.6,866,760。因此,为了本申请的目的,这样的聚合物分散型的电泳介质被认为是封装的电泳介质的子类。

封装的电泳显示器通常不受传统电泳装置的聚集和沉降故障模式的困扰并提供更多的有益效果,例如在多种柔性和刚性基板上印刷或涂布显示器的能力。(词语“印刷”的使用旨在包括印刷和涂布的所有形式,包括但不限于:诸如修补模具涂布、狭缝或挤压涂布、滑动或层叠涂布、幕式涂布的预先计量式涂布;诸如罗拉刮刀涂布、正向和反向辊式涂布的辊式涂布;凹面涂布;浸渍涂布;喷涂;弯月面涂布;旋转涂布;刷涂;气刀涂布;丝网印刷工艺;静电印刷工艺;热印刷工艺;喷墨印刷工艺;电泳沉积(参见美国专利No.7,339,715);以及其他类似的技术。)因此,所产生的显示器可以是柔性的。另外,因为显示介质可以(使用多种方法)被印刷,所以显示器本身可以被便宜地制造。

各种类型的电光介质可用于本发明的组件中。再次参考图1的优选实施例,电光层130是封装的电泳介质并且包括微囊体/液滴140,每个微囊体/液滴包括在烃基流体165中的带负电的白色粒子150和带正电的黑色粒子160。微囊体/液滴140保持在聚合物粘结剂170内。电光层130可以通常通过狭缝涂布沉积在导电电极层120上,这两层电接触。在图2的替代实施例中,电光层230可替代地包括包含多个密封的微单元的聚合物片240,并且每个密封的微单元填充有白色粒子150和黑色粒子160的分散体。

当在电光层130/230上施加电场时,白色粒子150移动到正电极,而黑色粒子160移动到负电极,使得取决于导电层120相对于各向异性导电层180的区域是正的还是负的,电光层130对于通过基板110和/或各向异性导电层180观察显示器的观察者呈现白色或黑色。

在根据本发明的实施例的第一工艺中,可以通过首先用包括导电材料、一种或多种防潮聚合物以及多种可固化单体和/或低聚物的流体涂布电光材料层130/230的顶部而在电光介质层130/230上提供各向异性导电层180。在涂布电光材料层130/230的顶部表面之后,可以向流体施加电场和/或磁场以使导电材料在总体上垂直于电光材料层的平面的方向上对齐。在最后的步骤中,在施加电场或磁场期间,多种单体和/或低聚物聚合,使得在停止施加电场或磁场时导电材料将保持其对齐位置。

一种或多种单体可以使用本领域技术人员已知的任何方法聚合,但优选是紫外线固化。可用于本发明的各种实施例中的单体的示例包括但不限于氨基甲酸酯、丙烯酸酯、甲基丙烯酸酯、硅树脂、环氧树脂、碳酸酯、酰胺、亚胺、内酯、脂肪烃、烯烃、芳香烃以及其组合。例如,可以使用任何前述单体的低聚物。优选地,在涂布步骤之前,将单体和/或低聚物与导电材料和一种或多种防潮聚合物均匀混合,以使单体和/或低聚物在聚合时形成连续的基质。在一些实施例中,存在的防潮聚合物可以不超过流体的重量的约(按给定次序优选递增)99、90、80、70、60和50wt.%,并且不小于流体的重量的约(按给定次序优选递增)45、35、25、20、15和10wt.%。

优选的是,该一种或多种防潮聚合物的水蒸气透过率(WVTR)小于或等于5g/(m

可结合到各向异性导电层中的导电材料包括但不限于导电粒子,例如碳粒子、镍粒子、铁粒子、银粒子、铜粒子、电镀聚合物球、电镀玻璃球、氧化铟锡粒子、或纳米相氧化铟锡粒子。可替代地,可以使用导电聚合物,例如聚乙炔、聚苯胺、聚吡咯、聚(3,4-乙撑二氧噻吩)(PEDOT)或聚噻吩。优选的是,为各向异性导电层选择的量和材料导致该层在z轴方向(即垂直于各向异性导电层的平面)上的电导率比在平行于该层的平面的方向(即x-y方向)上的电导率大至少约两个数量级。例如,在本发明的一个实施例中,各向异性导电层在x-y方向上的电导率可以小于或等于约10

在根据本发明的实施例的第二更优选的工艺中,可以通过用高于其熔点的包含导电材料和一种或多种防潮聚合物的热塑性流体涂布电光材料层130/230的顶部,而在电光介质层130/230上提供各向异性导电层180。在涂布电光材料层130/230的顶部表面之后,可以向热塑性流体施加电场和/或磁场以使导电材料在垂直于电光材料层130/230的平面的方向上对齐。在最后的步骤中,在施加电场或磁场期间,热塑性流体被冷却,使得在移除电场或磁场时导电材料将保持其对齐位置。

第二工艺是更优选的,因为它不一定需要存在任何潜在危险的可固化单体,而且热塑性流体的粘度可以更容易地随温度控制以促进流体的涂布和导电粒子的对齐。

在本发明的又一个实施例中,可以分两个步骤提供组件,第一步骤包括提供前平面层压板(FPL),以及第二步骤包括将各向异性导电层施加到FPL。

例如,参考图3,FPL 300可以包括许多与图1和图2所示的组件相同的层。FPL 300可以包括具有电极层120的基板110,在该电极层120上施加电光介质层130。然而,FPL 300可以不同,因为在该第一步骤中,电光介质130优选地涂布有液体形式的层压粘合剂380(方便地通过狭缝涂布),至释放片390上,干燥(或以其他方式固化)粘合剂以形成固态层,然后将粘合剂和释放片层压到电光层130上,这可以方便地使用热辊层压来实现。可替代地,但不太理想的是,层压粘合剂可以施加在电光层130上,并在那里在用释放片390覆盖之前干燥或以其他方式固化。在又一个示例中,可以在电光介质130和电极层120之间加入薄层粘合剂,并且释放片390可以直接施加到电光介质130而没有中间的粘合剂层。层压粘合剂优选为各向异性粘合剂并且可以例如根据美国专利No.7,843,626中公开的程序制备。

释放片390方便地是7密耳(177μm)的薄膜;根据所使用的电光介质的性质,可能需要用例如硅树脂的脱模剂涂布该薄膜。在形成组件的第二步骤中,在将各向异性导电层施加到FPL 300之前,可以从层压粘合剂380剥离或以其他方式移除释放片390(如图3中所示)。

在本发明的另一实施例中,电光介质可以设置有双释放膜,例如美国专利No.7,561,324中描述的“双释放片”。在一种形式中,固态电光介质层可以夹在两个粘合剂层(优选地各向异性粘合剂)之间,粘合剂层中的一个或两个被释放片覆盖。在另一种形式中,固态电光介质层可以夹在两个释放片之间。两种形式的双释放膜均可用于与已经描述的从前面板层压板组装电光显示器的工艺大体相似的工艺中。通常,在第一层压步骤中,在将电光介质层压到前电极层之前移除一个释放片以形成前子组件,然后在第二步骤中,可以在施加各向异性导电层之前移除第二释放片(如果存在)。

如前所述,各向异性导电层可用作显示器的保护层,并且因此可结合到非接触式显示器中,该非接触式显示器不需要任何与各向异性导电层接触的驱动电极以提供改善的防潮性能。可替代地,可以将优选地各向异性粘合剂的另一可选层和可选的释放片施加到各向异性导电层的暴露表面,使得如果存在释放片,可以稍后移除释放片并且在有效使得各向异性粘合剂层粘附到驱动电子设备的条件下,最上面的各向异性粘合剂层与例如背板的驱动电子设备接触。

对于本领域技术人员将显而易见的是,在不脱离本发明的范围的情况下,可以在上述本发明的特定实施例中进行许多改变和修改。因此,整个前述描述应以说明性而非限制性的意义来解释。

所有上述美国专利和公开申请的全部内容通过引用包含于此。

相关技术
  • 各向异性导电防潮膜以及包含其的电光组件
  • 各向异性导电膜的组成物、各向异性导电膜以及使用所述各向异性导电膜的连接结构
技术分类

06120113143023