掌桥专利:专业的专利平台
掌桥专利
首页

技术领域

本公开一般地涉及光刻技术领域,更具体地,涉及一种光刻装置和光刻系统。

背景技术

从1960年代初至今,半导体芯片(集成电路)生产技术一直沿着晶体管缩微的路径在发展,利用掩模版的光刻技术也一直是芯片生产中的核心技术。在光刻技术中,使用均匀的曝光光束照射掩模版来形成图案化的结构。然而,在当前的光刻技术中,一旦掩模版被制成,其中的图案就不容易再被更改。并且,如果掩模版中存在缺陷或者在掩模版的使用过程中产生了缺陷,也难以再对这些缺陷进行修复。此外,掩模版通常还具有很高的成本。上述这些因素都会导致光刻成本的升高。因此,存在对于新的光刻技术的需求。

发明内容

本公开的目的在于提供一种光刻装置和光刻系统。

根据本公开的第一方面,提供了一种光刻装置,所述光刻装置包括:信号生成模块,所述信号生成模块被配置为根据设计版图,如芯片设计版图等,生成一个或多个掩模版图案,并根据所述一个或多个掩模版图案中的每个掩模版图案分别生成相应的掩模版驱动信号;以及掩模版驱动模块,所述掩模版驱动模块与所述信号生成模块通信地连接,且所述掩模版驱动模块被配置为分别根据一组或多组掩模版驱动信号来控制掩模版上的各个像素区域的透光状态,以在所述掩模版上形成相应的掩模版图案。

在一些实施例中,掩模版驱动信号被配置为用于控制像素区域中的电解反应以改变所述像素区域的透光状态,且掩模版驱动信号包括被配置为分别施加到位于所述像素区域的两侧上的第一控制电极和第二控制电极的第一驱动信号和第二驱动信号。

在一些实施例中,掩模版驱动信号被配置为用于驱动空间光调制器产生调制光束,其中,所述调制光束具有与掩模版图案对应的空间结构且被配置为用于照射掩模版中的光致变色材料,以在所述掩模版中产生所述掩模版图案。

在一些实施例中,所述光刻装置还包括:第一光发生器,所述第一光发生器被配置为产生处于第二频带中的初始光束,所述初始光束具有在垂直于其行进方向的截面上的均匀的光强分布;以及空间光调制器,所述空间光调制器被配置为在掩模版驱动信号的作用下将所述初始光束转化为具有空间结构的调制光束。

在一些实施例中,掩模版驱动信号包括被配置为用于擦除所述掩模版上的掩模版图案的擦除信号。

在一些实施例中,所述掩模版驱动模块被配置为用于擦除所述掩模版上的掩模版图案。

在一些实施例中,所述光刻装置还包括:工件台,所述工件台被配置为承载待光刻的工件。

在一些实施例中,所述信号生成模块还被配置为生成分别与所述一组或多组掩模版驱动信号中的每组掩模版驱动信号对应的一个或多个工件定位驱动信号,工件定位驱动信号被配置为用于将待光刻的工件定位到预设位置。

在一些实施例中,所述光刻装置还包括:工件台驱动模块,所述工件台驱动模块与所述信号生成模块和所述工件台通信地连接,且所述工件台驱动模块被配置为分别根据所述一个或多个工件定位驱动信号驱动所述工件台移动到相应的预设位置。

在一些实施例中,所述光刻装置还包括:第二光发生器,所述第二光发生器被配置为产生处于第一频带中的曝光光束。

在一些实施例中,所述光刻装置还包括:投影模块,所述投影模块被配置为用于按照预设倍数将掩模版图案投影成像至待光刻的工件处。

在一些实施例中,所述光刻装置还包括:温控器,所述温控器包括温度保持单元,所述温度保持单元被配置为邻近于所述掩模版设置,以保持所述掩模版的温度处于预设温度范围内。

根据本公开的第二方面,提出了一种光刻系统,所述光刻系统包括:如上所述的光刻装置;以及掩模版,所述掩模版被包含在所述光刻装置中或者独立于所述光刻装置设置,所述掩模版包括多个像素区域,其中,所述多个像素区域中的至少一部分像素区域的针对曝光光束的透光状态被配置为能够改变,以形成能够变化的掩模版图案。

在一些实施例中,所述掩模版包括:电解反应层;第一控制电路层,所述第一控制电路层设于所述电解反应层的第一侧上,且所述第一控制电路层包括多个第一控制电极;以及第二控制电路层,所述第二控制电路层设于所述电解反应层的与第一侧相对的第二侧上,且所述第二控制电路层包括多个第二控制电极;其中,所述掩模版中的像素区域的针对曝光光束的透光状态被配置为由所述像素区域中包含的第一控制电极的至少一部分和第二控制电极的至少一部分之间的控制电压决定。

在一些实施例中,所述电解反应层包括被配置为处于沉积金属状态或溶解离子状态的金属元素,所述控制电压通过控制所述电解反应层中的金属的沉积量来控制所述像素区域的透光状态。

在一些实施例中,所述电解反应层包括:电解质层;第一电解材料层,所述第一电解材料层设于所述第一控制电路层与所述电解质层之间;以及第二电解材料层,所述第二电解材料层设于所述电解质层与所述第二控制电路层之间。

在一些实施例中,所述电解质层包括铜-铅电解质。

在一些实施例中,所述电解质层包括高氯酸铅、氯化铜、高氯酸铜和高氯酸锂。

在一些实施例中,所述电解质层包括铜-银电解质。

在一些实施例中,所述电解质层包括高氯酸铜、高氯酸银和氯化锂。

在一些实施例中,所述第一电解材料层和所述第二电解材料层中的一者包括导电金刚石、氧化铟锡或由铂纳米颗粒修饰的氧化铟锡。

在一些实施例中,所述第一电解材料层和所述第二电解材料层中的另一者包括铂。

在一些实施例中,所述电解反应层包括电致变色材料,所述控制电压通过控制所述电解反应层中的电致变色材料的离子结合状态来控制所述像素区域的透光状态。

在一些实施例中,所述电解反应层包括:电解质层;第一电解材料层,所述第一电解材料层设于所述第一控制电路层与所述电解质层之间;以及第二电解材料层,所述第二电解材料层设于所述电解质层与所述第二控制电路层之间。

在一些实施例中,在所述电解质层中能够溶解有锂离子和氢离子中的至少一者。

在一些实施例中,所述第一电解材料层和所述第二电解材料层中的一者包括电致变色材料。

在一些实施例中,所述第一电解材料层和所述第二电解材料层中的一者包括镁镍合金、镁钇合金、氧化铌或由氧化铟锡纳米颗粒修饰的氧化铌。

在一些实施例中,所述第一电解材料层和所述第二电解材料层中的另一者包括过渡金属氧化物。

在一些实施例中,所述第一电解材料层和所述第二电解材料层中的另一者包括氧化钨。

在一些实施例中,所述电解质层包括固体电解质;或所述电解质层包括液体电解质。

在一些实施例中,所述电解质层包括呈连续薄膜状的电解质材料;所述第一电解材料层包括呈连续薄膜状的第一电解材料;和/或所述第二电解材料层包括呈连续薄膜状的第二电解材料。

在一些实施例中,所述电解质层包括呈阵列状排布的多个电解质材料块,且所述掩模版中的每个像素区域包括一个或多个电解质材料块;所述第一电解材料层包括呈阵列状排布的多个第一电解材料块,且所述掩模版中的每个像素区域包括一个或多个第一电解材料块;和/或所述第二电解材料层包括呈阵列状排布的多个第二电解材料块,且所述掩模版中的每个像素区域包括一个或多个第二电解材料块。

在一些实施例中,所述多个第一控制电极中的每个第一控制电极分别经由相应的第一开关器件连接到控制电源的第一极;以及所述多个第二控制电极中的每个第二控制电极分别经由相应的第二开关器件连接到所述控制电源的第二极。

在一些实施例中,每个第一控制电极分别被配置为接收第一驱动信号,且每个第二控制电极分别被配置为接收第二驱动信号,以控制其中包含重叠的第一控制电极的至少一部分和第二控制电极的至少一部分的像素区域的透光状态。

在一些实施例中,所述第一控制电极为沿第一方向延伸的第一条状电极,且所述多个第一控制电极彼此电隔离地排列在所述第一控制电路层中;以及所述第二控制电极为沿垂直于第一方向的第二方向延伸的第二条状电极,且所述多个第二控制电极彼此电隔离地排列在所述第二控制电路层中。

在一些实施例中,所述掩模版中的每个像素区域包括一个第一控制电极的至少一部分和一个第二控制电极的至少一部分。

在一些实施例中,所述掩模版中的每个像素区域包括多于一个第一控制电极的至少一部分和多于一个第二控制电极的至少一部分。

在一些实施例中,所述第一控制电路层中的被第一控制电极所占据的区域面积与未被第一控制电极所占据的区域面积的比例为100%~1000%;和/或所述第二控制电路层中的被第二控制电极所占据的区域面积与未被第二控制电极所占据的区域面积的比例为100%~1000%。

在一些实施例中,所述第一控制电路层中的被第一控制电极所占据的区域面积与未被第一控制电极所占据的区域面积的比例等于所述第二控制电路层中的被第二控制电极所占据的区域面积与未被第二控制电极所占据的区域面积的比例。

在一些实施例中,所述第一控制电路层中的多个第一控制电极周期性地排列;和/或所述第二控制电路层中的多个第二控制电极周期性地排列。

在一些实施例中,所述第一控制电路层中的多个第一控制电极的排列周期为50nm~50μm;和/或所述第二控制电路层中的多个第二控制电极的排列周期为50nm~50μm。

在一些实施例中,所述第一控制电路层中的多个第一控制电极的排列周期等于所述第二控制电路层中的多个第二控制电极的排列周期。

在一些实施例中,所述第一控制电极包括氧化铟锡、铝掺杂的氧化锌、导电金刚石和导电氮化铝中的至少一者;和/或所述第二控制电极包括氧化铟锡、铝掺杂的氧化锌、导电金刚石和导电氮化铝中的至少一者。

在一些实施例中,所述第一控制电极的厚度为10nm~100nm;和/或所述第二控制电极的厚度为10nm~100nm。

在一些实施例中,所述第一控制电极的电阻率小于所述电解反应层的电阻率;以及所述第二控制电极的电阻率小于所述电解反应层的电阻率。

在一些实施例中,所述电解反应层、所述第一控制电路层以及所述第二控制电路层的总厚度在100μm以下。

在一些实施例中,所述掩模版还包括:基板,所述第一控制电路层、所述电解反应层和所述第二控制电路层依次沉积在所述基板上。

在一些实施例中,所述基板包括石英和氟化钙中的至少一者。

在一些实施例中,所述掩模版包括:基板,所述基板被配置为对曝光光束透光,其中,曝光光束处于第一频带中;以及光致变色层,所述光致变色层设于所述基板的一侧上且包括光致变色材料,所述光致变色层被配置为在具有空间结构的调制光束照射下产生对应的掩模版图案,其中,所述光致变色材料基于是否被调制光束中的调制光照射到而处于对曝光光束的非透光状态或透光状态,且调制光束处于与第一频带分隔开的第二频带中。

在一些实施例中,所述基板包括石英和氟化钙中的至少一者。

在一些实施例中,所述光致变色材料被配置为当被调制光束中的调制光照射到时,处于对曝光光束的非透光状态;并且所述光致变色材料被配置为当未被调制光束中的调制光照射到时,处于对曝光光束的透光状态。

在一些实施例中,所述光致变色材料被配置为当被调制光束中的调制光照射到时,处于对曝光光束的透光状态;并且所述光致变色材料被配置为当未被调制光束中的调制光照射到时,处于对曝光光束的非透光状态。

在一些实施例中,当所述光致变色材料处于透光状态时,对曝光光束的透光率为60%~99%。

在一些实施例中,当所述光致变色材料处于非透光状态时,对曝光光束的透光率为5%~30%。

在一些实施例中,所述第一频带所对应的波长包括193~405nm。

在一些实施例中,所述第一频带所对应的波长包括193nm、248nm、325nm、365nm和405nm中的至少一者。

在一些实施例中,所述第二频带所对应的波长包括500~580nm、或580~1100nm、或500~580nm的一部分或580~1100nm的一部分。

在一些实施例中,所述第二频带所对应的波长包括633nm。

在一些实施例中,所述光致变色层包括呈连续薄膜状的光致变色材料。

在一些实施例中,所述光致变色层的厚度为50~200nm或200~5000nm。

在一些实施例中,所述光致变色材料包括有机光致变色材料和无机光致变色材料中的至少一种。

在一些实施例中,所述光致变色材料包括1,2-二(5,5’-二甲基-2,2’-二苯硫基)全氟环戊-1-烯。

附图说明

构成说明书的一部分的附图描述了本公开的实施例,并且连同说明书一起用于解释本公开的原理。

参照附图,根据下面的详细描述,可以更加清楚地理解本公开,其中:

图1是根据本公开的一示例性实施例的光刻系统的结构示意图;

图2是根据本公开的另一示例性实施例的光刻系统的结构示意图;

图3是根据本公开的一示例性实施例的掩模版的结构示意图;

图4是根据本公开的一示例性实施例的掩模版的包含第一控制电路层和第二控制电路层的控制电路示意图;

图5是调节掩模版的像素区域的透光状态的控制电路的一状态示意图;

图6是在图5的控制电路的状态下掩模版的像素区域的透光状态的示意图;

图7是调节掩模版的像素区域的透光状态的控制电路的另一状态示意图;

图8是在图7的控制电路的状态下掩模版的像素区域的透光状态的示意图;

图9是根据本公开的另一示例性实施例的掩模版的结构示意图;

图10是被曝光光束和调制光束照射的图9的掩模版的示意图;

图11是被曝光光束和调制光束照射的图9的掩模版的截面示意图。

具体实施方式

以下将参照附图描述本公开,其中的附图示出了本公开的若干实施例。然而应当理解的是,本公开可以以多种不同的方式呈现出来,并不局限于下文描述的实施例;事实上,下文描述的实施例旨在使本公开的公开更为完整,并向本领域技术人员充分说明本公开的保护范围。还应当理解的是,本文公开的实施例能够以各种方式进行组合,从而提供更多额外的实施例。

应当理解的是,在所有附图中,相同的附图标记表示相同的元件。在附图中,为清楚起见,某些特征的尺寸可以进行变形。

应当理解的是,说明书中的用辞仅用于描述特定的实施例,并不旨在限定本公开。说明书使用的所有术语(包括技术术语和科学术语)除非另外定义,均具有本领域技术人员通常理解的含义。为简明和/或清楚起见,公知的功能或结构可以不再详细说明。

说明书使用的用辞“包括”、“包含”和“含有”表示存在所声称的特征,但并不排斥存在一个或多个其它特征。说明书使用的用辞“和/或”包括相关列出项中的一个或多个的任意和全部组合。说明书使用的用辞“在X和Y之间”和“在大约X和Y之间”应当解释为包括X和Y。本说明书使用的用辞“在大约X和Y之间”的意思是“在大约X和大约Y之间”,并且本说明书使用的用辞“从大约X至Y”的意思是“从大约X至大约Y”。

在说明书中,称一个元件位于另一元件“上”、“附接”至另一元件、“连接”至另一元件、“耦合”至另一元件、或“接触”另一元件等时,该元件可以直接位于另一元件上、附接至另一元件、连接至另一元件、联接至另一元件或接触另一元件,或者可以存在中间元件。相对照的是,称一个元件“直接”位于另一元件“上”、“直接附接”至另一元件、“直接连接”至另一元件、“直接耦合”至另一元件或、或“直接接触”另一元件时,将不存在中间元件。在说明书中,一个特征布置成与另一特征“相邻”,可以指一个特征具有与相邻特征重叠的部分或者位于相邻特征上方或下方的部分。

在说明书中,诸如“上”、“下”、“左”、“右”、“前”、“后”、“高”、“低”等的空间关系用辞可以说明一个特征与另一特征在附图中的关系。应当理解的是,空间关系用辞除了包含附图所示的方位之外,还包含装置在使用或操作中的不同方位。例如,在附图中的装置倒转时,原先描述为在其它特征“下方”的特征,此时可以描述为在其它特征的“上方”。装置还可以以其它方式定向(旋转90度或在其它方位),此时将相应地解释相对空间关系。

在芯片生产工艺中,通常使用基于掩模版的光刻技术来形成期望的芯片结构。随着光刻技术的发展,光刻精度已经在过去的几十年中从几十微米提高到了十数纳米。具体而言,为了形成期望的结构,可以根据所要加工的芯片的版图、按照相应的工艺步骤来预先制造一个或多个掩模版,每个掩模版上的图案可以对应于版图中的一个图层或者对应于能够在同一步骤中制备的多个图层。通常,掩模版可以包括能够使用于让抗刻蚀剂(光刻胶)的性质发生改变的曝光光束(例如,紫外光束等)透过的基板和沉积在基板上的、用来阻止上述曝光光束透过的镀膜。

目前,单张掩模版的成本大约在数万美元,而用于完整的芯片生产工艺的整套掩模版的成本可能高达数百万美元。并且,这样的掩模版一旦被制成,其结构就很难再被更改。在传统的应用场景中,包括手机芯片、存储器和中央处理器(CPU)等芯片的单批次批量通常在数百万甚至上亿的量级,因此可以很好地分摊制造掩模版的成本,从而使得基于掩模版的光刻工艺能够广泛地应用在这些芯片的制造生产中。然而,随着物联网、人工智能、个性化生命健康等产业的发展,越来越多地涉及小批量芯片的生产,这些芯片的数量可能只有几万个或甚至更少。如果预先制备掩模版、再基于掩模版来生产这些芯片,很难通过足够的芯片数量来分摊制造掩模版的成本,导致芯片成本的大幅升高。另外,如果采用激光直写或电子束曝光等方式来直接制造这些芯片,一方面产率很低,难以满足量产的需求,另一方面也可能受到最小线宽的限制,导致芯片的性能较低(例如,集成度较低,功耗较高等),且芯片的成本较高,阻碍了芯片的市场渗透。

此外,掩模版中存在的缺陷也可能导致生产芯片的成本的大幅增加。具体而言,如果掩模版中存在小的缺陷,则需要花费时间来进行缺陷的探测和修复;而如果掩模版中存在大的缺陷,则可能不得不废弃整张掩模版。

为了解决上述问题,满足针对未来产业需求的小批量芯片的生产,本公开提出了一种光刻装置和光刻系统。在这样的光刻装置和光刻系统中,在不改变基本的光刻技术路线的情况下,使用了可编程、可擦写以供重复使用的数字化光刻掩模版,能够实现实时地根据芯片版图来产生对应的一个或多个掩模版图案用于光刻曝光,从而大幅减少了生产与芯片对应的掩模版制造、检测所需要的时间,显著降低了芯片制造以及对使用中的掩模版进行的缺陷监测和修复的成本,扫清了小批量芯片向高集成度发展的障碍。

在本公开的一示例性实施例中,如图1和图2所示,光刻系统可以包括光刻装置和掩模版200。其中,光刻装置可以包括信号生成模块110和掩模版驱动模块120;掩模版200可以包括多个像素区域,且多个像素区域中的至少一部分像素区域的针对曝光光束的透光状态被配置为能够改变,以形成能够变化的掩模版图案。光刻装置可以用于控制掩模版200中的掩模版图案的变化,以实现包括可编程、可擦写的掩模版200的光刻系统。在一些实施例中,掩模版200可以被包含在光刻装置中,即作为光刻装置的一部分。在另一些实施例中,掩模版200也可以是独立于光刻装置设置的,在光刻过程中,将掩模版200放置在光刻装置中的适当位置处,以实现曝光。

如图1和图2所示,信号生成模块110可以被配置为根据版图生成一个或多个掩模版图案。具体而言,信号生成模块110可以按照工艺步骤,对所要加工的芯片的版图进行分析,将其分解为一个或多个掩模版图案,其中,每个掩模版图案可以对应于版图中的一个图层或者对应于版图中的能够在同一工艺步骤中制成的多个图层。

进一步地,信号生成模块110可以根据分解版图所得的一个或多个掩模版图案分别形成与各个掩模版图案相应的一组或多组掩模版驱动信号。根据可擦写的掩模版200的擦写原理不同,掩模版驱动信号可以有相应的不同形式。

在一些实施例中,掩模版驱动信号可以被配置为用于控制像素区域中的电解反应以改变像素区域的透光状态。其中,掩模版驱动信号可以包括被配置为分别施加到位于像素区域的两侧上的第一控制电极和第二控制电极的第一驱动信号和第二驱动信号,第一控制电极和第二控制电极之间的电解反应层上的电压变化可以用来改变相应的像素区域的透光状态,如后文中将详细阐述的。

在另一些实施例中,掩模版驱动信号可以被配置为用于驱动空间光调制器产生调制光束,其中调制光束可以具有与掩模版图案对应的空间结构且被配置为用于照射掩模版中的光致变色材料,以在掩模版中产生掩模版图案,如后文中将详细阐述的。

此外,掩模版驱动信号还可以包括被配置为用于擦除掩模版上的掩模版图案的擦除信号。在一些实施例中,擦除信号可以表现为掩模版驱动信号中的与擦除状态相对应的电平。例如,如后文中将详细阐述的,擦除信号可以是与用于形成掩模版中的非透光像素区域的电信号极性相反的电信号,或者是使调制光束关闭或偏转调制光束以使其不能照射到掩模版上的信号等。

如图1和图2所示,掩模版驱动模块120可以与信号生成模块110通信地连接,且掩模版驱动模块120可以被配置为分别根据一组或多组掩模版驱动信号来控制掩模版200上的各个像素区域的透光状态,以在掩模版200上形成相应的掩模版图案。在掩模版200中包括控制电极的情况下,掩模版驱动模块120可以直接与掩模版200中的控制电极电连接,以将相应的掩模版驱动信号传输到掩模版200的控制电极上。或者,当例如采用具有空间结构的调制光束来照射掩模版200以产生相应的掩模版图案时,掩模版驱动模块120可以与空间光调制器等设备电连接,以产生所需的调制光束。此外,在需要的情况下,掩模版驱动模块120还可以被配置为用于擦除掩模版上的掩模版图案,例如在信号生成模块110所产生的擦除信号的控制下来实现掩模版图案的擦除。

在掩模版200中,各个像素区域的透光状态可以通过电信号来控制。在一些实施例中,如图3所示,掩模版可以包括电解反应层210、第一控制电路层220和第二控制电路层230。

在一具体示例中,电解反应层210中可以包括金属元素,金属元素可以被配置为处于沉积金属状态或溶解离子状态。在一般情况下,当所沉积的金属的厚度达到几十纳米以上,例如在20~100nm或50~100nm时,就足以阻挡用来使抗刻蚀剂发生变化的曝光光束,换句话说,掩模版中的沉积了金属的相应区域将处于非透光状态。另外,当电解反应层210中的金属元素处于溶解离子状态时,沉积在掩模版的相应区域中的金属的量变少甚至变为没有,因而该区域可以处于透光状态,以使曝光光束通过,所通过的曝光光束可以曝光芯片的相应区域中的抗刻蚀剂,以帮助形成期望的芯片结构。

如图3所示,电解反应层210可以包括电解质层211、第一电解材料层212和第二电解材料层213。当金属元素处于溶解离子状态时,其可以在电解质层211中移动。通过施加电场,可以使金属离子在电解质层211中按照期望的方向移动,进而沉积到相应的第一电解材料层212或第二电解材料层213上,以形成掩模版中的非透光区域。此外,也可以通过施加反向电场使沉积在第一电解材料层212或第二电解材料层213上的金属溶解为电解质层211中的金属离子,以形成掩模版中的透光区域。

在一些实施例中,电解反应层210可以是基于双金属体系的,以具有较好的稳定性,使掩模版可以经历多次状态变化而不被损坏。例如,在基于双金属体系电解反应层的掩模版中,可以在5000次可逆电镀后,依然具有超过6的透光对比度(透光状态下的透光率/不透光状态下的透光率)。

例如,电解反应层210可以是基于铜-铅(Cu-Pb)电解体系的。具体地,电解质层211可以包括Cu-Pb电解质,例如包括高氯酸铅(Pb(ClO4)2)、氯化铜(CuCl2)、高氯酸铜(Cu(ClO4)2)和高氯酸锂(LiClO4)。

或者,电解反应层210可以是基于铜-银(Cu-Ag)电解体系的。具体地,电解质层211可以包括Cu-Ag电解质,例如包括高氯酸铜(Cu(ClO4)2)、高氯酸银(AgClO4)和氯化锂(LiCl)。

然而,可以理解的是,在其他实施例中,电解反应层210也可以是基于其他金属的沉积和溶解的,在此不作限制。

在本公开的另一具体示例中,电解反应层210可以包括电致变色材料,该电致变色材料的透光率可以随着其离子结合状态的变化而变化。当电致变色材料处于非透光状态时,其可以阻挡用来使抗刻蚀剂发生变化的曝光光束;而当电致变色材料处于透光状态时,可以使用来使抗刻蚀剂发生变化的曝光光束通过,所通过的曝光光束可以曝光芯片的相应区域中的抗刻蚀剂,以帮助形成期望的芯片结构。其中,电致变色材料可以与阳离子或阴离子结合,并在离子结合的状态下呈现非透光而在离子脱出的状态下呈现透光,或者在离子结合的状态下呈现透光而在离子脱出的状态下呈现非透光,在此不作限制。在下文中,将以电致变色材料与氢离子和/或锂离子的结合为例,具体阐述掩模版中的状态变化,但可以理解的是,也可以采用其他电致变色材料和离子体系来实现对掩模版中的透光状态的调节。

如图3所示,电解反应层210可以包括电解质层211、第一电解材料层212和第二电解材料层213。在电解质层211中能够溶解有例如锂离子和氢离子中的至少一者。通过施加电场,可以使锂离子和/或氢离子在电解质层211中按照期望的方向移动,进而与第一电解材料层212或第二电解材料层213中的电致变色材料结合,使电致变色材料处于非透光状态,相应地形成掩模版中的非透光区域。此外,也可以通过施加反向电场使与第一电解材料层212或第二电解材料层213结合的锂离子和/或氢离子被抽取出来而从第一电解材料层212或第二电解材料层213中脱出,使电致变色材料处于透光状态,相应地形成掩模版中的透光区域。

如图3所示,第一电解材料层212可以设于第一控制电路层220与电解质层211之间,而第二电解材料层213可以设于电解质层211与第二控制电路层230之间。在第一控制电路层220和第二控制电路层230的共同作用下,可以控制施加到电解反应层210中的各像素区域的电场,进而改变相应的像素区域的透光状态,如后文中将详细描述的。

在本公开的一些实施例中,掩模版中的电解质层211可以呈固态或液态,换句话说,电解质层211可以包括固体电解质或者液体电解质。在电解质层211为固体电解质的情况下,当移除了施加到掩模版上的电场之后,仍然可以很好地限制其中金属元素或者离子的移动,因而掩模版的透光区域和非透光区域也可以被很好地保持。而在电解质层211为液体电解质的情况下,当移除了施加到掩模版上的电场之后,掩模版的透光区域和非透光区域可能发生缓慢的变化,其稳定性相应变差(但可以理解的是,即使稳定性较差,在通常情况下也是可以满足光刻需求的)。然而同时,在电解质层211为液体电解质的情况下,在产生掩模版上的相应的透光区域和非透光区域的过程中,金属元素可以在液体电解质中更快地移动,从而更快地沉积在第一电解材料层212或第二电解材料层213上或从第一电解材料层212或第二电解材料层213上溶解,或者在产生掩模版上的相应的透光区域和非透光区域的过程中,离子可以在液体电解质中更快地移动,从而更快地与第一电解材料层212或第二电解材料层213中的电致变色材料结合,或者从第一电解材料层212或第二电解材料层213的电致变色材料中脱出,以更快地实现透光状态与非透光状态之间的转换。在实际应用中,可以根据需求来选择相应的电解质层。

在一些实施例中,可以使用对曝光光束透光且具有一定导电性的材料来形成电解反应层210中的第一电解材料层212和第二电解材料层213。

在基于可逆金属薄膜电镀来实现可编辑的掩模版图案的情况下,第一电解材料层212和第二电解材料层213中的一者可以包括导电金刚石、氧化铟锡(ITO)或由铂(Pt)纳米颗粒修饰的ITO。其中,导电金刚石对193~405nm波段内的紫外光是透明的,因此可以用在基于上述波段的紫外光曝光的掩模版中;而ITO对于360~405nm范围内的紫外光是透光的,对更小波长的紫外光具有一定的阻挡作用,因此可以用在基于360~405nm波段的紫外光曝光的掩模版中。进一步地,通过采用Pt纳米颗粒来修饰ITO,可以使金属更均匀地沉积在相应的电解材料层上,进而使掩模版中形成的各个非透光区域对光的阻挡更均匀。此外,第一电解材料层212和第二电解材料层213中的另一者可以包括铂(Pt),以形成对电极。当金属的厚度足够低(例如,10nm左右)时,可以有较好的透光性,以避免对曝光光束造成阻挡。

在基于离子在电致变色材料中的插入/抽取来实现可编辑的掩模版图案的情况下,第一电解材料层212和第二电解材料层213中的至少一者为电致变色材料。在一具体示例中,电致变色材料可以包括镁镍合金(Mg-Ni)、镁钇合金(Mg-Y)、例如氧化铌(NbOx)玻璃或由氧化铟锡(ITO)纳米颗粒修饰的氧化铌(NbOx)玻璃的金属氧化物等。第一电解材料层212和第二电解材料层213中的另一者可以包括过渡金属氧化物,例如氧化钨(WO3)等。其中,采用可逆的对Mg-Ni或Mg-Y的氢化,可以实现在365~405nm波段内的紫外光的透光状态的可逆变化,而采用ITO纳米颗粒修饰的NbOx薄膜材料,可以实现在约405nm附近的紫外光的透光状态的可逆变化。

在本公开的一些实施例中,电解反应层210可以呈连续薄膜状。具体而言,电解反应层210中的电解质层211可以包括呈连续薄膜状的电解质材料,第一电解材料层212可以包括呈连续薄膜状的第一电解材料,且第二电解材料层213可以包括呈连续薄膜状的第二电解材料。连续薄膜状的电解反应层210易于被制备在掩模版中,在制造掩模版的过程中也不存在与掩模版中的其他部件(例如,第一控制电路层220中的第一控制电极221和第二控制电路层230中的第二控制电极231)进行对准的问题,因此能够有效地降低掩模版的成本。此外,可以通过采用具有较大电阻率的材料来避免电解反应层210中相邻区域之间的电场干扰,从而能够独立地控制各个区域的透光状态。

然而,在另一些实施例中,为了进一步增强掩模版中各个像素区域之间的隔离性,避免相邻像素区域之间电场的干扰,使每个像素区域内的金属元素仅仅或基本上是被施加到该像素区域中的电场独立控制的,电解反应层210中的一层或多层也可以被设置为呈阵列状(例如,呈矩形阵列状)排布的多个块,且掩模版中的每个像素区域可以包括一个或多个相邻的块(例如,每个像素区域包括一个块,或者每个像素区域包括2x2共四个彼此相邻的块等)。具体而言,电解质层211可以包括呈阵列状排布的多个电解质材料块,且掩模版中的每个像素区域可以包括一个或多个电解质材料块;和/或第一电解材料层212可以包括呈阵列状排布的多个第一电解材料块,且掩模版中的每个像素区域可以包括一个或多个第一电解材料块;和/或第二电解材料层213可以包括呈阵列状排布的多个第二电解材料块,且掩模版中的每个像素区域可以包括一个或多个第二电解材料块。然而,在这种情况下,在制备掩模版的过程中,通常需要考虑电解反应层210内部各层或电解反应层210与掩模版中的其他部件(例如,第一控制电路层220中的第一控制电极221和第二控制电路层230中的第二控制电极231)之间的对准问题,因而可能导致掩模版成本的上升。

如图3、图4、图5和图7所示,为了控制掩模版中的各个像素区域的透光状态,可以采用类似于数码相机中的电荷耦合器件(CCD)驱动电路或显示器中的显示驱动电路的控制电路来实现。具体而言,第一控制电路层220可以设于电解反应层210的第一侧上,且第一控制电路层220可以包括多个第一控制电极221。类似地,第二控制电路层230可以设于电解反应层210的与第一侧相对的第二侧上,且第二控制电路层230可以包括多个第二控制电极231。第一控制电极221和第二控制电极231中的一者类似于CCD驱动电路或显示驱动电路中的扫描线,而另一者类似于CCD驱动电路或显示驱动电路中的数据线。其中,每个第一控制电极221的至少一部分可以在掩模版的厚度方向上与相应的一个第二控制电极231的至少一部分重叠,这样,掩模版的在第一控制电极221与第二控制电极231的交叉点区域就被该第一控制电极221与该第二控制电极231之间的电场所控制,即这个交叉点处的电解质层211中的金属元素或者离子可以在上述电场的作用下移动,其中金属可以沉积在第一电解材料层212或第二电解材料层213上或从第一电解材料层211或第二电解材料层213上脱离并溶解到电解质层211中,或者其中离子可以与第一电解材料层112或第二电解材料层113中的电致变色材料结合或从第一电解材料层111或第二电解材料层113中的电致变色材料脱出,进而改变该交叉点处的透光状态。换句话说,掩模版中的像素区域的透光状态可以被配置为由像素区域中包含的第一控制电极221的至少一部分和第二控制电极231的至少一部分之间的控制电压决定,或者说由像素区域中包含的第一控制电极221的至少一部分和第二控制电极231的至少一部分之间的控制电压的加载历史决定,第一控制电极221的这部分和第二控制电极231的这部分在掩模版的厚度方向上是重叠的,控制电压通过控制电解反应层210中的金属的沉积量或者通过控制电解反应层210中的电致变色材料的离子结合状态来控制像素区域的透光状态。

在一些实施例中,每个交叉点区域可以形成为一个像素区域(例如,图6和图8中所示的每个最小阴影区域可以被视为一个处于非透光状态下的像素区域)。换句话说,掩模版中的每个像素区域可以包括一个第一控制电极的至少一部分和一个第二控制电极的至少一部分(例如,包括彼此重叠的第一控制电极的一部分和第二控制电极的一部分)。或者,在另一些实施例中,可以由彼此相邻的多个交叉点区域共同形成一个像素区域(例如,如图6和图8所示,包括四个交叉点区域、且由虚线框表示的一个区域可以被视为一个处于非透光状态的像素区域)。换句话说,掩模版中的每个像素区域可以包括多于一个第一控制电极的至少一部分和多于一个第二控制电极的至少一部分(例如,包括两个第一控制电极中各个第一控制电极的一部分和两个第二控制电极中各个第二控制电极的一部分)。

在一些实施例中,如图4、图5和图7所示,多个第一控制电极(H1、H2、H3和H4)中的每个第一控制电极可以分别经由相应的第一开关器件(SH1、SH2、SH3和SH4)连接到控制电源的第一极(例如图中所示的阴极),而多个第二控制电极(V1、V2、V3和V4)中的每个第二控制电极可以分别经由相应的第二开关器件(SV1、SV2、SV3和SV4)连接到控制电源的第二极(例如图中所示的阳极)。这样,可以通过控制每个开关器件的断开或闭合状态来控制施加到每个控制电极上的电压,进而控制掩模版中的相应像素区域的透光状态。此外,如上文所述的,在电解反应层210中,即使所施加的外界电场被移除,相应区域中的金属元素的溶解或沉积状态、或者离子与电致变色材料的结合或分离状态仍然可以被保持,因此可以通过逐步控制一个或多个第一开关器件以及一个或多个第二开关器件的方式来控制掩模版中的每个像素区域的透光状态。其中,开关器件可以包括场效应晶体管等器件,在此不作限制。在一些实施例中,开关器件可以被共同设置在掩模版的控制电路层中。或者,在另一些实施例中,开关器件可以被设置在掩模版外,以避免对掩模版上各个像素区域的透光状态造成干扰。如下文所述的,在一些实施例中,也可以直接对各个控制电极施加相应的控制信号,而省去开关器件。

在一具体示例中,如图5至图8所示,如果期望在掩模版上形成图8所示的非透光区域(图中所示的阴影部分),那么可以分成两个步骤来完成。

首先,如图5所示,通过闭合开关器件SH1、SH2、SV1和SV2并断开开关器件SH3、SH4、SV3和SV4,使第一控制电极H1和第二控制电极V1的交叉区域中被施加有从第二控制电极V1指向第一控制电极H1的电场,相应地,该区域的电解质层211中的金属离子将向第一控制电极H1移动,进而沉积在该区域的第一电解材料层112上,或者该区域的电解质层211中的氢离子和/或锂离子将向第一控制电极H1移动,进而与在该区域的第一电解材料层212中的电致变色材料结合。这样,掩模版的第一控制电极H1和第二控制电极V1的交叉区域将处于非透光状态。类似地,第一控制电极H1与第二控制电极V2的交叉区域、第一控制电极H2与第二控制电极V1的交叉区域以及第一控制电极H2与第二控制电极V2的交叉区域都将呈现为非透光状态,如图6中所示的非透光区域201。而在掩模版的其他区域中,由于没有形成如上所述的电场,因此电解质层211中的金属元素可以以离子形式存在,或者电解质层211中的氢离子和/或锂离子未与电致变色材料结合,使得电致变色材料仍然保持在透光状态,进而使得掩模版的相应区域呈透光状态,如图6中所示的透光区域202。综上,可以形成具有如图6所示的图案的掩模版。

然后,如图7所示,通过闭合开关器件SH3、SH4、SV3和SV4并断开开关器件SH1、SH2、SV1和SV2,使第一控制电极H3和第二控制电极V3的交叉区域中被施加有从第二控制电极V3指向第一控制电极H3的电场,相应地,该区域的电解质层211中的金属离子将向第一控制电极H3移动,进而沉积在该区域的第一电解材料层212上,或者该区域的电解质层211中的氢离子和/或锂离子将向第一控制电极H3移动,进而与该区域的第一电解材料层212中的电致变色材料结合。这样,掩模版的第一控制电极H3和第二控制电极V3的交叉区域将处于非透光状态。类似地,第一控制电极H3与第二控制电极V4的交叉区域、第一控制电极H4与第二控制电极V3的交叉区域以及第一控制电极H4与第二控制电极V4的交叉区域都将呈现为非透光状态,如图8中所示的非透光区域201。而在掩模版的其他区域中,由于没有形成如上所述的电场,因此金属元素可以保持为其原有的状态,或者离子可以保持为其原有的形式,也就使得第一控制电极H1与第二控制电极V1的交叉区域、第一控制电极H1与第二控制电极V2的交叉区域、第一控制电极H2与第二控制电极V1的交叉区域以及第一控制电极H2与第二控制电极V2的交叉区域仍然保持为非透光状态(如图8中所示的非透光区域201),而剩余区域保持为透光状态,如图8中所示的透光区域202。综上,可以形成具有如图8所示的图案的掩模版。

在一些实施例中,为了实现对掩模版上的图案的自动控制,可以由上文所述的信号生成模块110基于所要形成的一个或多个掩模版图案产生施加到每个第一控制电极上的第一驱动信号和施加到每个第二控制电极上的第二驱动信号。第一驱动信号和第二驱动信号可以直接施加到第一控制电极和第二控制电极上,或者可以通过相应的开关器件(如图4、图5和图7所示)施加到第一控制电极和第二控制电极上。通过设置第一驱动信号和第二驱动信号在每个时间段中的电平状态,可以自动、连续地改变掩模版的其中包含重叠的第一控制电极的至少一部分和第二控制电极的至少一部分的像素区域的透光状态,在一些情况下可以省去开关器件,或者避免手动地改变各个开关器件的闭合或断开状态。

可以理解的是,在其他具体示例中,掩模版中可以包括更多或更少的第一控制电极和第二控制电极。例如,可以在掩模版上形成数目为1000~100000的第一控制电极和数目为1000~100000数目的第二控制电极,进而形成在1000x1000~100000x100000量级数目的像素区域,在此不作限制。此外,在一些实施例中,根据控制电源的第一极和第二极(阳极和阴极)的方向的不同,金属也可能被沉积在第二电解材料层231上以形成非透光区域,或者离子也可能与设置在第二电解材料层231中的电致变色材料结合以形成非透光区域,在此不作限制。进一步地,根据期望得到的掩模版图案,可以在形成掩模版图案的每一步骤中分别控制不同数量的、连接到不同的控制电极的开关器件的闭合或断开状态,在此不作限制。

另外,当需要擦除或改变掩模版上的图案,即改变掩模版上的一个或多个像素区域的透光状态,使该掩模版可以用于另一不同结构的制备时,可以将控制电源反向,即对调控制电源的第一极和第二极(阳极和阴极),并结合相应的开关器件的断开或闭合,使得沉积在非透光区域中的金属脱出并溶解到电解质层211中以离子形式存在,或者使得与电致变色材料结合的离子脱出并存在于电解质层211中,从而使得该区域转换为透光状态。

为了简化控制电路层的结构,使用尽可能少的开关器件或控制信号来实现对掩模版中的每个像素区域的透光状态的控制,如图3、图4、图5和图7所示,第一控制电极221可以为沿第一方向延伸的第一条状电极,且多个第一控制电极221可以彼此电隔离地排列在第一控制电路层220中,以使得能够单独控制每个第一控制电极221上施加的电压。类似地,第二控制电极231可以为沿垂直于第一方向的第二方向延伸的第二条状电极,且多个第二控制电极231可以彼此电隔离地排列在第二控制电路层230中,以使得能够单独控制每个第二控制电极231上施加的电压。且通过设置第一条状电极和第二条状电极,可以方便地形成第一控制电极221和第二控制电极231之间的交叉区域,而无需在制备掩模版的过程中进行复杂的对准。然而可以理解的是,在其他一些实施例中,也可以采用其他形式来布置控制电极231,只要能够独立地控制第一控制电极221和第二控制电极231的在掩模版厚度方向上的重叠部分上所施加的电场,就可以控制每个交叉区域的透光状态,在此不作限制。例如,当掩模版的面积较大时,可以在同一水平方向或竖直方向上设置两个或更多个第一条状电极或第二条状电极,以避免所施加的控制信号在电极的不同区域上的过大衰减等。

在一些实施例中,第一控制电路层220中的被第一控制电极221所占据的区域面积与未被第一控制电极221所占据的区域面积的比例可以为100%~1000%。类似地,第二控制电路层230中的被第二控制电极231所占据的区域面积与未被第二控制电极231所占据的区域面积的比例可以为100%~1000%。一方面,比例越大,控制电极在相应的控制电路层中所占的区域面积越大,因此当该区域被设置为非透明区域时,其阻挡曝光光束的效果可以更好,尤其是在由多个交叉点区域形成一个像素区域的情况下,像素区域中相邻电极之间的空隙更小,因而挡光性能也就更好。但是,由于在同一控制电路层中的控制电极之间的间距较小,可能导致制备控制电极阵列的难度升高,例如由于邻近效应等导致相邻的控制电极之间的间距比设计间距更小或甚至为零,导致相邻的控制电极的短路等情况。另一方面,比例越小,则有助于控制电极阵列的制备难度,但相应地,当同一控制电路层中的控制电极之间的间距较大时,对曝光光束的阻挡效果可能会变差,尤其是在由多个交叉点区域形成一个像素区域的情况下,当期望把该像素区域调整为非透光状态时,控制电极之间的空隙可能会导致一定程度的漏光。

在一些实施例中,第一控制电路层220中的被第一控制电极221所占据的区域面积与未被第一控制电极221所占据的区域面积的比例可以等于第二控制电路层230中的被第二控制电极231所占据的区域面积与未被第二控制电极231所占据的区域面积的比例。这样,每个交叉点区域在水平和竖直方向上的分布情况将是基本上相同的,且有助于简化掩模版的制备工艺。

在一些实施例中,第一控制电路层220中的多个第一控制电极221可以呈周期性地排列,类似地,第二控制电路层230中的多个第二控制电极231可以呈周期性地排列。这样,每个交叉点区域或者每个像素区域的大小可以是彼此相等的。进一步地,第一控制电路层220中的多个第一控制电极221的排列周期可以为50nm~50μm,类似地,第二控制电路层230中的多个第二控制电极231的排列周期可以为50nm~50μm。例如,在一具体示例中,第一控制电路层220中的多个第一控制电极121的排列周期可以为5μm,和/或第二控制电路层230中的多个第二控制电极131的排列周期可以为5μm。可以理解的是,控制电极的排列周期越小,掩模版所能达到的图案精度就可以越高,但相应地掩模版的制造工艺可能越难,制造成本可能越高。

在一些实施例中,第一控制电路层220中的多个第一控制电极221的排列周期可以等于第二控制电路层230中的多个第二控制电极231的排列周期。这样,每个交叉点区域在水平和竖直方向上的分布情况将是基本上相同的,且有助于简化掩模版的制备工艺。

为了避免控制电路层对掩模版的透光状态造成干扰,可以采用对曝光光束透明且具有一定导电性的材料来形成第一控制电极221和第二控制电极231。例如,在一些实施例中,第一控制电极221可以包括氧化铟锡(ITO)、铝掺杂的氧化锌、导电金刚石和导电氮化铝(AlN)中的至少一者。类似地,第二控制电极231可以包括氧化铟锡(ITO)、铝掺杂的氧化锌、导电金刚石和导电氮化铝(AlN)中的至少一者。在一些实施例中,第一控制电极220的厚度可以为10nm~100nm。类似地,第二控制电极230的厚度可以为10nm~100nm。此外,第一控制电极221的电阻率通常小于电解反应层210的电阻率,且第二控制电极231的电阻率通常也小于电解反应层210的电阻率,这样使得所需的电场可以基本上均匀地分布在控制电极对应的区域中,且避免相邻的交叉点区域或像素区域之间电场的干扰。另外,电解反应层210、第一控制电路层220和第二控制电路层230的总厚度可以在100μm以下,以避免厚度过大导致掩模版的透光状态和非透光状态之间的切换过慢。

此外,在本公开的一些实施例中,如图3所示,掩模版还可以包括基板240,其中第一控制电路层220、电解反应层210和第二控制电路层230可以依次沉积在基板240上。换句话说,基板240可以用作对其上各层的支撑。其中,基板240可以由对紫外光透明的石英玻璃或氟化钙玻璃等制成。

在本公开的另一示例性实施例中,可以通过光信号来控制掩模版200中的各个像素区域的透光状态。如图9所示,掩模版可以包括基板240和光致变色层250。

其中,基板240可以被配置为对用于光刻的曝光光束透光,以避免对光刻过程造成干扰。曝光光束可以处于第一频带中,通常对应于部分紫外光所处的频带。例如,第一频带所对应的波长可以包括193~405nm。在一些具体示例中,第一频带所对应的波长可以包括193nm、248nm、325nm、365nm和405nm中的至少一者。基板240可以由具有一定结构强度的材料制成,用于支撑设置在其上的掩模版的其它各层。如上文所述,基板240可以由石英玻璃或氟化钙玻璃等制成。

光致变色层250可以设于基板240的一侧上,且光致变色层250可以包括光致变色材料,并在具有空间结构的调制光束的照射下产生对应的掩模版图案。如图10和图11所示,具有空间结构的调制光束930具体是指在垂直于其行进方向的截面上具有非均匀的强度分布的光束。例如,在垂直于调制光束930的行进方向的截面上,部分区域的调制光强度可以为零,而其它区域可以具有非零的调制光强度。光致变色材料将基于是否被调制光束中的调制光照射到而处于对曝光光束的非透光状态或透光状态,相应地形成掩模版中的非透光区域和透光区域,进而产生期望的掩模版图案。

在一具体示例中,当光致变色材料与调制光束930的截面上的具有非零调制光强度的区域相对时,即光致变色材料被调制光束930中的调制光照射到时,这部分光致变色材料将吸收调制光而处于对曝光光束的非透光状态(例如,有机光致变色材料吸收作为退激发光的调制光而产生对作为曝光光束的紫外光的高吸收率,导致这部分有机光致变色材料处于对曝光光束的非透光状态),对应于图11中所示的光致变色材料的对曝光光束920的非透光区域201;并且,当光致变色材料与调制光束930的截面上的调制光强度为零的区域相对时,即光致变色材料未被调制光束930中的调制光照射到时,这部分光致变色材料将处于对曝光光束的透光状态,对应于图11中所示的光致变色材料的对曝光光束920的透光区域202。因此,可以通过控制调制光束的强度空间分布,或者说通过控制调制光束的空间结构,在光致变色层250中形成针对曝光光束920的透光区域202和非透光区域201,这些区域的组合可以形成在掩模版中的期望的掩模版图案。

当然,可以理解的是,在其它一些具体示例中,当光致变色材料与调制光束的截面上的具有非零调制光强度的区域相对时,即光致变色材料被调制光束中的调制光照射到时,这部分光致变色材料也可以处于对曝光光束的透光状态;而当光致变色材料与调制光束的截面上的调制光强度为零的区域相对时,即光致变色材料未被调制光束中的调制光照射到时,这部分光致变色材料可以处于对曝光光束的非透光状态。

此外,在通常情况下,只有在调制光照射在光致变色材料上时,其非透光状态才可以被保持,而一旦移除了调制光,光致变色材料将恢复至其默认状态,可以通过关闭或偏转调制光束来移除照射在掩模版上的调制光。相应地,在利用包括这样的光致变色材料的掩模版进行光刻时,需要在采用曝光光束对样品进行曝光的同时保持调制光束也照射在掩模版上,以维持掩模版中的透光区域和非透光区域不变,或者说保持掩模版图案不变,直至完成光刻。由于上述需求,需要避免调制光束930对曝光过程的干扰,即调制光束930不能使抗刻蚀剂(例如,光刻胶)的性质发生变化,这就要求调制光束930处于与曝光光束920的第一频带分隔开的第二频带内。在这里,分隔开的第一频带和第二频带是指第一频带中的任何频率都不同于第二频带中的任何频率。在一些实施例中,第二频带所对应的波长可以包括500~580nm、或580~1100nm、或500~580nm的一部分或580~1100nm的一部分。在一具体示例中,第二频带所对应的波长可以为633nm。

为了保证掩模版中的光致变色材料在处于透光状态时,能够使足够的曝光光束通过以用于对样品进行曝光,而在处于非透光状态时,足以阻挡曝光光束以避免对样品的曝光,光致变色材料在透光状态和非透光状态下的透光率应当满足一定的要求。在一具体示例中,当光致变色材料处于透光状态时,其对曝光光束的透光率可以为60%~99%;而当光致变色材料处于非透光状态时,其对曝光光束的透光率可以为5%~30%。

在一些实施例中,光致变色材料可以包括有机光致变色材料和无机光致变色材料中的至少一种。常见的有机光致变色材料可以包括呈液体状态的并四苯(tetracene)溶液、苄基苯肼(benzalphenylhydrazines)溶液、恶唑酮(osazones)溶液等,以及呈固体状态的2,3,4,4-四氯萘-1-(4H)-one(2,3,4,4-tetrachloronaphthalen-1-(4H)-one)、螺萘恶嗪(spironaphthoxazines)类有机材料、二芳基乙烯(diarylethene)类材料、偶氮苯(azobenzene)衍生物、1,2-二(5,5’-二甲基-2,2’-二苯硫基)全氟环戊-1-烯(1,2-bis(5,5‘-dimethyl-2,2‘-bithiophen-yl)perfluorocyclopent-1-ene)等,而无机光致变色材料可以包括多种过渡金属氧化物及其复合材料,例如氧化钨(WO

然而,考虑到在目前通常情况下的光刻应用中,能够使用的光致变色材料应当至少具有以下性质:(1)光致变色材料的透光状态与非透光状态可以在调制光束的控制下可逆地转换,以实现可擦写、可重复使用的掩模版,即在未被调制光束中的调制光照射到的情况下,光致变色材料对处于第一频带中的曝光光束具有足够高的透光率,且在被调制光束中的调制光照射到的情况下,其对处于第一频带中的曝光光束具有足够低的透光率,或者在未被调制光束中的调制光照射到的情况下,其对处于第一频带中的曝光光束具有足够低的透光率,且在被调制光束中的调制光照射到的情况下,其对处于第一频带中的曝光光束具有足够高的透光率;以及(2)用于可逆地切换光致变色材料的透光状态与非透光状态的调制光束所处的第二频带与曝光光束(紫外光)所处的第一频带分隔开,以避免对光刻过程造成干扰。基于上述考虑,在现有的利用紫外光作为曝光光束进行光刻的工艺中,可以采用1,2-二(5,5’-二甲基-2,2’-二苯硫基)全氟环戊-1-烯(1,2-bis(5,5‘-dimethyl-2,2‘-bithiophen-yl)perfluorocyclopent-1-ene)作为掩模版中的光致变色材料。然而,可以理解的是,当利用处于其它频带中的曝光光束或调制光束时,也可以选择与相应的频带对应的其它光致变色材料,在此不作限制。进一步地,可以选择具有较好的散热性和所需的调制光束强度较低的光致变色材料,以减少由于调制光束的照射所导致的掩模版温度的大幅上升,从而改善光刻的可靠性。

在通常情况下,光致变色层250可以包括呈连续薄膜状的光致变色材料,以便于通过层压、旋涂、喷射等沉积方式来进行掩模版的制备。为了使光致变色材料在处于非透光状态下时能够有效地阻挡曝光光束,光致变色层250的厚度可以在50~200nm或200~5000nm。在其它一些情况下,也可以根据需要形成图案化的光致变色层,并利用激光直写、电子束直写、基于另一掩模版的光刻等方式来形成上述图案化的光致变色层。或者,在另一些情况下,也可以根据需要采用呈液体状态的光致变色材料,此时在光致变色层250上方可以再设置一阻挡层,使液体的光致变色材料被限制在基板240和阻挡层之间,以保持掩模版的结构的稳定性质,从而保证曝光效果。

在一些实施例中,如图1和图2所示,光刻装置还可以包括光源模块130,以产生曝光光束和具有空间结构的调制光束中的至少一者。

通常,光刻装置中的光源模块130可以包括第二光发生器,该第二光发生器可以被配置为产生处于第一频带中的曝光光束。在光刻过程中,为了提高光刻精度,改善光刻图案的精确性,由第二光发生器产生的曝光光束可以是相对于掩模版的近场光束,即采用接近式曝光。在这种情况下,掩模版200被放置在光源模块130和待光刻的工件300之间的适当的位置,适当经由掩模版200照射在工件300上的曝光光束在工件300上形成与需要曝光的图形最接近的图案。

此外,在使用调制光束来形成掩模版200中的可擦写的掩模版图案的情况下,光源模块130还可以包括第一光发生器和空间光调制器。其中,第一光发生器可以被配置为产生处于第二频带中的初始光束,该初始光束具有在垂直于其行进方向的截面上的均匀的光强分布;而空间光调制器可以被配置为在信号生成模块110所生成的掩模版驱动信号的作用下将初始光束转化为具有与期望的掩模版图案相对应的空间结构的调制光束。在这种情况下,光源模块130可以与信号生成模块110通信地连接。此外,在一些实施例中,由调制光源产生的调制光束可以为相对于掩模版中的光致变色层的近场光束,以避免远场光束的光学衍射效应所造成的对精度的影响,改善掩模版图案的准确性。在一具体示例中,空间光调制器可以为光相位调制器。

在一些实施例中,空间光调制器可以实现数目为4160x2464的像素以及3.74μm的像素周期。采用这样的空间光调制器,利用波长为633nm的调制光束可以在掩模版上形成由尺寸为3~4μm的微小光斑构成的、周期为6~8μm的图案。使用这样的掩模版并结合四倍(4x)缩小投影光刻技术,可以加工出的最小线宽在1μm左右,且单次曝光的面积为1x1 cm

如上文所述,当采用光信号来控制掩模版中的掩模版图案时,通常需要在曝光过程中始终保持调制光束被照射在掩模版上,以维持掩模版图案。相应地,使用这样的掩模版进行光刻时可以遵循以下步骤:将具有空间结构的调制光束照射到掩模版上,以在掩模版中产生对应的掩模版图案;在产生掩模版图案之后,使曝光光束经由掩模版照射在待光刻的工件上,以对待光刻的工件进行曝光;在完成对待光刻的工件的曝光之后,关闭曝光光束;以及在关闭曝光光束之后,关闭调制光束。换句话说,在整个曝光过程中,应保持调制光束始终照射在待光刻的工件上,以维持稳定的掩模版图案。

在一些实施例中,如图2所示,光刻装置还可以包括投影模块140,该投影模块140可以被配置为用于按照预设倍数将掩模版图案投影成像至待光刻的工件处,以实现具有更高精度的光刻。其中,掩模版200可以被放置在光源模块130和投影模块140之间的适当位置处,以在待光刻的工件处形成与版图对应的投影成像。

为了承载待光刻的工件,如图2所示,光刻装置还可以包括工件台150。在一些实施例中,工件台150可以例如沿图中虚线箭头所示的方向移动,以将所承载的待光刻的工件移动到期望的位置。

进一步地,在一些实施例中,信号生成模块110还可以被配置为生成分别与一组或多组掩模版驱动信号中的每个掩模版驱动信号对应的一个或多个工件定位驱动信号,工件定位驱动信号可以被配置为用于将待光刻的工件300定位到预设位置。工件定位驱动信号可以被直接传送到工件台150以驱动其移动到相应的位置处。

在另一些实施例中,为了驱动工件台150,如图2所示,光刻装置还可以包括工件台驱动模块160,该工件台驱动模块160可以与信号生成模块110和工件台150通信地连接,且工件台驱动模块160可以被配置为分别根据一个或多个工件定位驱动信号驱动工件台移动到相应的预设位置。

当信号生成模块110生成一组或多组彼此关联的掩模版驱动信号和工件定位驱动信号时,在每次曝光过程中,可以调用相应的一组掩模版驱动信号和工件定位驱动信号,根据其中的掩模版驱动信号在掩模版200上形成相应的掩模版图案,并根据其中的工件定位驱动信号将工件台移动到相应的位置,当掩模版图案和工件台位置就绪后,可以进行光刻曝光。在曝光后,还可以对工件进行显影、镀膜或刻蚀等操作。在下一次进行光刻曝光的过程中,可以调用下一组掩模版驱动信号和工件定位驱动信号,并按照上述步骤类似地操作,直至完成整个芯片的制造。

另外,考虑到光刻系统的工作过程中待光刻的工件的温度可能发生变化,尤其是在使用调制光束来控制掩模版中的光致变色材料的透光状态或非透光状态的情况下,由于调制光束通常具有较大的光功率而容易导致待光刻的工件的温度大幅上升,因此,如图2所示,光刻装置还可以包括温控器170。该温控器170可以包括温度保持单元,该温度保持单元可以被配置为邻近于掩模版200设置,以保持掩模版200的温度处于预设温度范围内。该温控器170可以是液冷温控器、热电半导体温控器等,在此不作限制。在一般情况下,在曝光过程中所需的曝光光束的光强通常为10~10000mW/cm

本公开的光刻装置和光刻系统可以应用于科学研究、工艺研发和工业生产等领域中。其中,使用可以利用数字化文件重复编程的数字化光刻掩模版,基于芯片的设计版图,根据当前批次的芯片的生产工艺,将版图转换为一组或多组掩模版驱动信号,实现对掩模版上的掩模版图案的擦写,从而省去了现有的芯片生产工艺中制造固定不变的掩模版所需花费的大量时间,降低了制造成本,减少了对掩模版缺陷的监测所带来的问题,实现了小批量、高集成度、高性能的芯片的低成本制造。此外,结合投影曝光技术和LELE(双重光刻)等技术,本公开的光刻装置和光刻系统还可以满足14nm甚至更先进工艺节点的小批量芯片的生产需求。

虽然已经描述了本公开的示例性实施例,但是本领域技术人员应当理解的是,在本质上不脱离本公开的精神和范围的情况下能够对本公开的示范实施例进行多种变化和改变。因此,所有变化和改变均包含在权利要求所限定的本公开的保护范围内。本公开由附加的权利要求限定,并且这些权利要求的等同也包含在内。

技术分类

06120114584338