掌桥专利:专业的专利平台
掌桥专利
首页

本申请要求于2019年12月20日提交的标题为“CALIBRATION SYSTEM FOR ANEXTREME ULTRAVIOLET LIGHT SOURCE”的美国申请号62/951,397和2019年12月20日提交的标题为“ANCHORING A PLURALITY OF CONTROL/METROLOGY DEVICES TO A SINGLELOCATION OF THE VESSEL AND UNIFIED COORDINATE SYSTEM FOR CALIBRATION ANDCONTROL OF THE SAME”的美国申请号62/951,846的优先权,这两者通过引用整体并入本文。

本申请还要求于2020年3月11日提交的标题为“CALIBRATION SYSTEM FOR ANEX

技术领域

所公开的主题涉及激光产生的等离子体极紫外光源内的校准系统和方法。

背景技术

极紫外(EUV)光(例如,具有约50nm或更小的波长的电磁辐射(有时也被称为软X射线),并且包括大约13nm波长的光)可以被用于光刻过程以在衬底(例如硅晶片)中产生极小的特征。

产生EUV光的方法包括但不一定限于将包括具有在EUV范围内的发射线的元素(例如氙、锂或锡)的材料转换到等离子状态中。在一种此类方法中,所需的等离子体通常被称为激光产生的等离子体(“LPP”),其可以利用可以被称为驱动激光的经放大光束通过辐射目标材料(例如以材料的微滴、板、带、流或簇的形式)来产生。对于此过程,等离子体通常在密封容器(例如真空室)中产生,并使用各种类型的量测装备来进行监测。

光刻装置是一种将期望图案施加到衬底上(通常施加到衬底的目标部分上)的机器。可以在例如集成电路(IC)的制造中使用光刻装置。在这种情况下,可互换地被称为掩模或掩模版的图案化装置可以被用来生成要在被形成的IC的各个层上形成的电路图案。该图案可以被转移到衬底(例如,硅晶片)上的目标部分(例如,包括部分的、一个或若干管芯)上。图案的转移通常经由成像到在衬底上所提供的辐射敏感材料层(例如抗蚀剂)上。一般来说,单个衬底将包含被连续图案化的相邻目标部分的网络。传统的光刻装置包括所谓的步进器和所谓的扫描仪,在步进器中通过将整个图案一次曝光到目标部分上来辐射每个目标部分,在扫描仪中通过在给定方向(“扫描”方向)上通过辐射射束扫描图案同时平行或反平行于该扫描方向同步地扫描目标部分来辐射每个目标部分。还可以通过将图案压印到衬底上来将图案从图案化装置转移到衬底上。

极紫外(EUV)光(例如,具有约50纳米(nm)或更小波长的电磁辐射(有时也被称为软X射线),并且包括波长为大约13nm的光)可以被用于光刻装置中或与光刻装置一起使用,以在衬底(例如硅晶片)中产生极小的特征。产生EUV光的方法包括但不一定限于将包括具有在EUV范围内的发射线的元素(例如氙(Xe)、锂(Li)或锡(Sn))的材料转换为等离子态。例如,在一种被称为激光产生的等离子体(LPP)的此类方法中,可以利用可以被称为驱动激光的经放大光束通过辐射目标材料来产生等离子体,该目标材料在LPP源的上下文中可互换地被称为燃料(例如以材料的微滴、板、带、流或簇的形式)。对于此过程,等离子体通常在密封容器(例如真空室)中产生,并且使用各种类型的量测装备进行监测。

发明内容

在一些总体方面,用于极紫外(EUV)光源的量测系统包括光束量测装置、目标量测装置和控制装置。光束量测装置被配置为:感测经放大光束的一个或多个方面,并且基于感测到的一个或多个方面来对经放大光束进行调整。目标量测装置被配置为:在目标与经放大光束相互作用之后,测量被修改目标的一个或多个属性,并且确定被修改目标达到参考校准状态的时刻。控制装置与光束量测装置和目标量测装置通信。控制装置被配置为:从目标量测装置接收参考校准状态和达到参考校准状态的时刻;基于接收到的参考校准状态和达到参考校准状态的时刻,确定经放大光束的光束校准状态;以及向光束量测装置提供光束校准状态。

实现方式可以包括以下特征中的一个或多个。例如,控制装置可以被配置为:将光束校准状态确定为经放大光束在参考校准状态时的状态。光束量测装置可以包括接收被反射的经放大光束的至少一个传感器,该被反射的经放大光束包括经放大光束的已与目标相互作用的至少一部分的反射。控制装置可以被配置为:向光束量测装置指示光束校准状态。控制装置可以被配置为:基于光束校准状态,分析来自光束量测装置的传感器的输出。

控制装置可以与被配置为产生经放大光束的光源和被配置为将经放大光束朝向目标空间引导的转向装置中的一者或多者通信。控制装置可以被配置为:基于对来自传感器的输出的分析,向光源和转向装置中的一者或多者发送指令,以由此调整经放大光束。控制装置可以被配置为通过发送与经放大光束的脉冲的触发或定时以及经放大光束的脉冲的能量中的一者或多者相关的指令来向光源发送一个或多个指令。

目标量测装置可以包括目标量测设备,该目标量测设备被配置为测量被修改目标的一个或多个属性。例如,目标量测装置可以测量被修改目标的尺寸中的一项或多项,诸如沿着被修改目标的长范围的直径;被修改目标的角度或取向,诸如被修改目标的轴Z

目标量测装置可能无法直接感测经放大光束。

参考校准状态可以指示:经放大光束的聚焦区域涵盖目标并且目标居中在经放大光束的聚焦区域中。

光束量测装置可以被配置为:感测被引导到目标空间或从目标空间反射的经放大光束的一个或多个方面。

所确定的经放大光束的光束校准状态可以包括经放大光束的能量、值、位置或形状。

控制装置可以被配置为:估计被修改目标的扩展率,以确定是否应当基于所估计的扩展率来调整经放大光束的一个或多个方面;以及向光源和转向设备中的一者或多者发送指令,以由此基于该确定来调整经放大光束的一个或多个方面。

光束量测装置可以被配置为:根据光束校准状态,感测经放大光束的一个或多个方面。

在其他总体方面,一种方法包括:将经放大光束朝向目标空间引导以使得经放大光束与目标空间中的目标相互作用;调整经放大光束的一个或多个特征;在目标与目标空间中的经放大光束相互作用之后测量被修改目标的一个或多个属性;基于被修改目标的测量到的属性,确定被修改目标何时处于参考校准状态;以及将经放大光束的产生参考校准状态的一个或多个特征指派给光束校准状态。

实现方式可以包括以下特征中的一个或多个。例如,该方法还可以包括:根据光束校准状态,控制经放大光束的方面。可以通过以下来控制经放大光束的方面:根据光束校准状态,感测经放大光束的一个或多个方面;以及基于感测到的一个或多个方面,调整经放大光束。可以通过感测被反射的经放大光束来根据光束校准状态感测经放大光束的一个或多个方面,该被反射的经放大光束包括经放大光束的已与目标相互作用的至少一部分的反射。

可以通过沿着两个不同成像平面检测被修改目标的至少两个图像来测量被修改目标的一个或多个属性。确定被修改目标何时处于参考校准状态可以包括:当被修改目标沿着从成像平面投射的两个平面中的每个平面具有期望范围时,将参考校准状态指派为被修改目标的状态。

确定被修改目标何时处于参考校准状态可以包括:确定经放大光束的聚焦区域涵盖目标空间中的目标并且目标居中在经放大光束的聚焦区域中。

确定被修改目标何时处于参考校准状态可以包括:确定被修改目标何时关于界定目标空间的至少一个轴对称。

可以通过调整经放大光束的方向和聚焦区域中的一者或多者来调整经放大光束的一个或多个特征。

确定被修改目标何时处于参考校准状态可以与感测经放大光束的一个或多个方面无关。可以通过测量被修改目标相对于第一图像平面的取向以及测量被修改目标相对于与第一图像平面正交的第二图像平面的取向来测量被修改目标的一个或多个属性。

在其他总体方面,极紫外(EUV)光系统包括:光源、转向系统、光束量测装置、目标量测装置和控制装置。光源被配置为产生经放大光束。转向系统被配置为将经放大光束朝向目标空间转向并聚焦。光束量测装置被配置为:感测目标空间中的经放大光束的一个或多个方面,并且基于感测到的一个或多个方面来调整经放大光束。目标量测装置被配置为:在目标已与经放大光束相互作用之后测量被修改目标的一个或多个属性,并且确定被修改目标达到参考校准状态的时刻。控制装置与光束量测装置和目标量测装置通信。控制装置被配置为:从目标量测装置接收参考校准状态和达到参考校准状态的时刻;基于接收到的参考校准状态和达到参考校准状态的时刻,确定经放大光束的光束校准状态;以及向光束量测装置提供光束校准状态。

实现方式可以包括以下特征中的一个或多个。例如,目标量测装置可以包括两个图像传感器,每个图像传感器被布置为感测被修改目标在不同成像平面处的图像。图像传感器可以被固定到壁,该壁界定目标空间所在的围场。不同成像平面可以彼此分开20°至120°。

本公开描述了用于使用多个控制或量测设备以机械方式参考照射源上的参考点生成辐射并使用统一坐标系在照射源中用于校准和控制的系统、装置、计算机程序产品和方法的各个方面。

在一些方面,本公开描述了一种辐射源,该辐射源包括燃料目标生成器,该燃料目标生成器被配置为生成燃料目标并且朝向等离子体形成区域发射燃料目标。辐射源还可以包括激光系统,该激光系统被配置为用激光束撞击燃料目标,以用于在等离子体形成区域处生成等离子体。辐射源还可以包括收集器,该收集器被配置为收集由等离子体发射的辐射。辐射源还可以包括激光转向器,该激光转向器被配置为监测激光束并将其朝向等离子体形成区域转向。辐射源还可以包括燃料目标转向器,该燃料目标转向器被配置为监测燃料目标并将其朝向等离子体形成区域转向。收集器、激光转向器和燃料目标转向器中的至少两者可以以机械方式参考辐射源上的参考点。

在其他方面,本公开描述了一种系统,该系统包括燃料目标生成器,该燃料目标生成器被配置生成燃料目标并且朝向等离子体形成区域发射燃料目标。该系统还可以包括激光系统,该激光系统被配置为用激光束撞击燃料目标,以用于在等离子体形成区域处生成等离子体。该系统还可以包括收集器,该收集器被配置为收集由等离子体发射的辐射。该系统还可以包括激光转向器,该激光转向器被配置为监测激光射束并将其朝向等离子体形成区域转向。该系统还可以包括燃料目标转向器,该燃料目标转向器被配置为监测燃料目标和并且将其朝向等离子体形成区域转向。该系统还可以包括燃料目标成像系统。该系统还可以包括控制器,该控制器被配置为使用燃料目标成像系统来生成用于激光转向器和燃料目标转向器的统一坐标系。

在又一其他方面,本公开描述了一种包括激光转向器的装置,该激光转向器被配置为监测激光束并将其朝向等离子体形成区域转向。该装置还可以包括燃料目标转向器,该燃料目标转向器被配置为监测燃料目标并将其朝向等离子体形成区域转向。该装置还可以包括燃料目标成像系统,该燃料目标成像系统被配置为检测激光束与燃料目标之间的重叠。该装置还可以包括控制器,该控制器被配置为:基于检测到的激光束与燃料目标之间的重叠,生成用于激光转向器和燃料目标转向器的统一坐标系。

下面参照附图详细描述另外的特征以及各个方面的结构和操作。注意,本公开不限于本文描述的特定方面。这些方面在本文中仅出于说明性目的而被呈现。基于本文包含的教导,附加方面对于(多个)相关领域的技术人员将是显而易见的。

附图说明

图1A是当极紫外(EUV)光源处于离线模式时与极紫外(EUV)光源的一个或多个方面相互作用的量测系统的框图,该量测系统包括第一量测装置和第二量测器具;

图1B是当EUV光源处于在线和操作模式时与EUV光源相互作用的量测系统的框图;

图2A是图1A和图1B的量测系统的实现方式的框图,其中第一量测装置是光束量测装置,而第二量测装置是与被修改目标相互作用的目标量测装置,以及示出了被修改目标沿着被修改目标的Y

图2B是图2A的被修改目标沿着被修改目标的Z

图3是示出为了形成图2A和图2B的被修改目标而在光束量测装置和目标之间的相互作用的示意图示,以及在目标量测装置和被修改目标之间的相互作用;

图4是图2A的光束量测装置的实现方式的框图;

图5是图2A的光束量测装置的另一实现方式的框图;

图6是图4和图5的光束量测装置的感测装置的实现方式的框图;

图7是图2A的目标量测装置的实现方式的框图;

图8是量测系统和EUV光源的实现方式的框图;

图9是由图1A、图2A和图8中任一个的量测系统执行的过程的流程图;

图10A-图10C示出了通过光束量测装置的射束调整系统内的一个或多个光学元件的调整而沿着EUV光源的-X方向由图1A、图2A、图4、图5和图8中任一个的光束量测装置产生的经放大光束的扫描;

图11A-图11C示出了通过光束量测装置的射束调整系统内的一个或多个光学元件的调整而沿着EUV光源的Z方向由图1A、图2A、图4、图5和图8中任一个的光束量测装置产生的经放大光束的扫描;和

图12是图2A的目标量测装置的另一实现方式的透视图。

图13A是根据本公开的一些方面的示例反射光刻装置的示意图示。

图13B是根据本公开的一些方面的示例透射光刻装置的示意图示。

图14是根据本公开的一些方面的图13A中所示的反射光刻装置的更详细示意图示。

图15是根据本公开的一些方面的示例光刻单元的示意图示。

图16是根据本公开的一些方面的示例反射光刻装置的示例辐射源的示意图示。

图17是根据本公开的一些方面的机械连接到示例辐射源的示例封闭结构的示例组件的示意图示。

图18图示了根据本公开的一些方面的用于生成EUV辐射的示例工艺流程图。

图19图示了根据本公开的一些方面的用于校准燃料目标转向器和激光转向器的示例架构图。

图20A和图20B图示了根据本公开的一些方面的用于将燃料目标对准收集器的主焦点的示例过程。

图21A和图21B图示了根据本公开的一些方面的用于将预脉冲激光射束对准燃料目标的示例过程。

图22A和图22B图示了根据本公开的一些方面的用于将预脉冲激光射束的焦点对准燃料目标的示例过程。

图23A和图23B图示了根据本公开的一些方面的用于将主脉冲激光射束对准修改后的燃料目标的示例过程。

图24是用于实现本公开的一些方面或其(多个)部分的示例方法的流程图。

图25是用于实现本公开的一些方面或其(多个)部分的示例计算机系统。

本公开的特征将在以下结合附图的详细描述中变得更加明显,其中相同的参考标记自始至终标识对应的元件。在附图中,除非另有说明,否则相似的参考标号通常指示相同的、功能相似的和/或结构相似的元件。此外,一般来说,参考标号的最左边的(多个)数字标识第一次出现该参考标号的附图。除非另有说明,否则在整个公开中提供的附图不应被解释为按比例绘制的附图。

具体实施方式

参考图1A,在EUV光源150处于“离线”模式时,即在EUV光源150的设置和校准期间,量测系统100与极紫外(EUV)光源150的一个或多个方面相互作用。量测系统100还与EUV光源150在在线模式(如图1B中所示)期间相互作用,在在线模式中EUV光源150供应光束155,该光束155能够由诸如光刻曝光装置的输出装置160使用。

在离线模式(图1A)期间,量测系统100可以被用来初始设置EUV光源150或从停机时间恢复EUV光源150以服务于EUV光源150内的一个或多个组件。量测系统100使得能够更快速和更准确地设置和校准EUV光源150,从而减少设置和校准所需的时间,并减少EUV光源150处于离线模式的时间量,并且因此不产生可以由输出装置160在在线模式下使用的光束155。在离线模式(图1A)中,EUV光源150可以产生EUV光束155。在离线模式期间产生的EUV光束155可能不具有供输出装置160使用所需的规格或质量。

可以在EUV光源150的在线操作期间使用量测系统100,如图1B中所示,以监测和控制EUV光源150内的组件,来确保光束155的有效产生以供输出装置160使用。另外可以在图1A中所示的离线模式之前、之后或期间执行其他过程,这样的过程是EUV光源150在在线模式(图1B)下的操作所需要的。

首先参考图1A,量测系统100包括第一量测装置105、第二量测装置130以及与第一量测装置105和第二量测装置130通信的控制装置140。控制装置140接收在EUV光源150的离线操作期间获得的参考校准状态130-CS,这种参考校准状态130-CS由第二量测装置130提供。控制装置140基于对参考校准状态130-CS的分析来确定第一量测装置105的校准状态105-CS并将校准状态105-CS提供给第一量测装置105。

通常,量测装置的校准状态CS是标准化状态或事件,该标准化状态或事件使得量测装置能够通过确定测量结果如何偏离标准化状态来量化那些测量结果。校准状态CS可以提供对测量结果的标准尺度,量测装置所获得的未来测量结果与该标准尺度相关。

在离线模式(图1A)中的校准期间,第二量测装置130检测与EUV光源150的一个或多个第二方面相关联的第二信息130-i。第一量测装置105检测与EUV光源150的一个或多个第一方面相关联的第一信息105-i。第二方面是第一方面的“下游”,这意味着在EUV光源150的操作期间,第二方面存在或出现在比第一方面晚的时间,并且第二方面至少部分地取决于第一方面。因此,无论第一方面何时改变,第二方面都会改变。

仅基于从第一量测装置105获得的信息来准确地校准第一量测装置105可能是一个挑战。这是因为,虽然第一量测装置105能够检测与一个或多个第一方面相关联的第一信息105i,但是该第一信息105i不提供可以提供对第一量测装置105的校准状态的洞察的信息。相反,量测系统100使用由第二量测装置130根据与第二方面相关联的第二信息130-i所确定的参考校准状态130-CS,以便校准第一量测装置105。这是因为与第二方面相关的第二信息130-i可以被用来确定关于第一方面的信息,因为第二方面至少部分地取决于第一方面,如上面所讨论的。第二量测装置130在EUV光源150的校准期间提供更准确的检测,并且与第二方面相关联的第二信息130-i被用来首先校准并然后维持对第一量测装置105的校准。另外,通过使用第二信息130-i来校准第一量测装置105,量测系统100能够以更快速和准确的方式执行对第一量测装置105的校准,使得能够更快地校准EUV光源150。因此,EUV光源150处于离线模式并因此停止服务的时间大大减少。

此外,一旦第一量测装置105被校准,则可以在EUV光源150的在线操作期间(图1B)使用第一量测装置105的校准状态105-CS。例如,第二量测装置130可以在EUV光源150的在线操作期间操作,并且可以在EUV光源150的在线操作期间分析第二信息130-i并向控制装置140输出指令。控制装置140可以指使EUV光源150的其他组件以及第一量测装置105进行调整,以确保第一方面在EUV光源150的在线操作的合适操作范围内。

控制装置140包括电子处理器104和电子存储设备109。处理器104可以是任何类型的电子处理器并且可以是多于一个的电子处理器。处理器104可以包括适合于执行计算机程序的一个或多个处理器(诸如通用或专用微处理器)以及任何类型的数字计算机的任何一个或多个处理器。通常,处理器从只读存储器或随机存取存储器或两者接收指令和数据。电子存储装置109存储指令(可以作为计算机程序),该指令当被执行时使处理器104与量测系统100的其他组件(诸如第一量测装置105和第二量测装置130)通信。电子存储装置109可以包括易失性存储器,诸如RAM。电子存储装置109可以包括非易失性和易失性部分或组件。此外,如下文更详细讨论的,第一量测装置105和第二量测装置130中的每一者可以包括它们自己的专用控制器,每个专用控制器包括它们自己的电子处理器和电子存储设备。此外,控制装置140可以包括各种单独的模块,并且每个模块可以专用于特定任务。此外,这些模块可以在物理上彼此分离或与量测系统100的其他部分集成。

量测系统100的实现200在图2A中被示出。在EUV光源150的校准期间,经放大光束210与目标215相互作用,目标215沿着EUV光源150内的路径行进。目标215的路径通常(但非排他地)沿着-X轴延伸,-X轴是在EUV光源150内定义的笛卡尔坐标系(X,Y,Z)的一部分。在目标215与经放大光束210相互作用之后,由目标215形成被修改目标235。经放大光束210和目标215之间的相互作用使目标215修改它的形状以及它的移动,从而形成被修改目标235。被修改目标235随着它沿着X、Y、Z空间移动而变形和几何扩展,这种移动通常沿着-X轴,但是也可能沿着Y轴和Z轴之一或两者。在一些实现方式中,在与经放大光束210相互作用之前,目标215具有类似于微滴的形状,而在与经放大光束210相互作用之后,被修改目标235具有至少沿着它的轴之一而扩展的盘形状。以这种方式,被修改目标235最终类似于诸如煎饼之类的形状,因为它沿着由两个轴X

接下来,通过使被修改目标235与第二经放大光束236相互作用,将被修改目标235转换为等离子体(其发射产生光束155的EUV光)。这种相互作用发生在等离子体形成区域265处。经放大光束210可以被称为预脉冲光束,而第二经放大光束236可以被称为主脉冲光束。

在量测系统200中,第一量测装置105是光束量测装置205,第二量测装置130是目标量测装置230,并且控制装置140是控制装置240。

光束量测装置205被配置为检测或感测与经放大光束210的一个或多个第一方面相关的第一信息。光束量测装置205被配置为改变经放大光束210的一个或多个第一方面。一般来说,在在线模式期间(其中EUV光源150操作以产生光束155),光束量测装置205检测到的第一信息被分析,并且基于分析(经由光束量测装置205)对经放大光束210进行调整以确保经放大光束210与目标215有效地相互作用,如下面更详细讨论的。

在离线模式期间,光束量测装置205在控制装置240的控制下以已知的方式改变经放大光束210的一个或多个第一方面。

目标量测装置230被配置为检测或感测与被修改目标235的一个或多个第二方面相关的第二信息。例如,检测到的第二信息包括与被修改目标235的一个或多个几何或物理属性相关的信息。替代地或附加地,第二信息可以包括与目标分配系统(诸如目标装置856,在下面参考图8讨论)的操作条件相关的信息。目标分配系统的操作条件可以包括:目标分配系统中的喷嘴的指向方向信息,被提供给目标分配系统的致动信号的激励幅度、频率和相位,以及被提供给目标分配系统的其他测量结果或控制输入。例如,此类操作条件可以被用于识别目标分配系统的校准状态(例如,与观察到的条件与期望观察到的条件相匹配的时刻(例如,T

目标量测装置230检测第二信息,同时控制装置240指使光束量测装置205改变经放大光束210的一个或多个第一方面。目标量测装置230分析检测到的第二信息并确定被修改目标235达到参考校准状态230-CS的时刻(T

参考校准状态230-CS可以被认为是被修改目标235与EUV光源150的XY平面对准的时刻;这意味着角度R

因此,在EUV源的各种实现方式中提高、维持或优化转换效率的一种方式是确保被修改目标235在它与第二经放大光束236相互作用的时刻是平坦的并且平行于XY平面。

控制装置240被配置为从目标量测装置230接收关于参考校准状态230-CS的信息。控制装置240分析被修改目标235达到参考校准状态230-CS时的时刻T

参考图3,在一个实现方式中,被修改目标235在时刻T

参考校准状态230-CS提供关于产生参考校准状态230CS的经放大光束210的状态的指示。在该示例中,参考校准状态230-CS可以被用来识别并因此利用产生参考校准状态230-CS的经放大光束210的位置和形状。类似地,参考校准状态230-CS可以被用来识别并因此利用产生参考校准状态230-CS的目标分配系统的操作条件。例如,参考校准状态230-CS可以被理解为指示经放大光束210的聚焦区域311涵盖目标215并且目标215通常在时间T

在其他实现方式中,参考校准状态230-CS可以指示其他光束校准状态,诸如例如经放大光束的能量、值、位置或形状。

接下来,在讨论量测系统200的操作之前讨论量测系统200的各种组件。

通常,光束量测装置205包括与经放大光束210相互作用、产生、调整、引导、感测或分析经放大光束210的一组组件。在一些实现方式中,并且参考图4,光束量测装置205是光束量测装置405,其被配置为感测被引向目标415或从目标415反射的辐射经放大光束410的一个或多个方面。为此,光束量测装置405包括感测装置406,其被配置为接收被反射的经放大光束407。被反射的经放大光束407包括辐射经放大光束的410已与目标415相互作用的至少一部分的反射。

光束量测装置405被配置为根据光束校准状态205-CS感测辐射经放大光束410的一个或多个方面。光束量测装置405在EUV光源150的在线操作期间维持辐射经放大光束410在X、Y、Z三个维度上以及相对于目标415的位置。具体地,感测装置406接收并测量被反射的经放大光束407的属性。从感测装置406输出的测得属性被光束量测装置405内的控制器408用来在多个维度确定和监测辐射经放大光束410的各方面(诸如位置和形状)。

光束量测装置405从光源418接收辐射经放大光束410。光源418包括至少一个增益介质以及激发增益介质以产生辐射经放大光束410的能量源。辐射经放大光束410构成时间上彼此分离的多个光脉冲。在其他实现方式中,从光源418输出的射束可以是连续波(CW)射束。光源418例如可以是固态激光器(例如,Nd:YAG激光器、掺铒光纤(Er:玻璃)激光器或掺钕YAG(Nd:YAG)激光器(以1070nm和50W功率操作))。

光束量测装置405包括射束调整系统412,射束调整系统412被配置为:接收来自光源418的辐射经放大光束410,并且将辐射经放大光束410朝向预期存在目标415的第一目标区域或空间416重新定向、转向和聚焦。射束调整系统412包括与射束调整系统412内的一个或多个光学元件物理通信的致动系统413,使得一个或多个光学元件可以被物理地改动,以由此调整辐射经放大光束410的方向、转向和/或聚焦。

光源418还可以被配置为产生朝向预期存在被修改目标435的第二目标空间416_2而引导的第二经放大光束436。在一些实现方式中,第二经放大光束436可以从来自由光源418的一个增益介质所产生的单个光束的辐射经放大光束410中分离出来。在其他实现方式中,第二经放大光束436由光源418的第二增益介质产生。在任一实现方式中,第二经放大光束436的至少一部分可以被引导通过射束调整系统412的至少部分。

控制器408与感测装置406以及致动系统413通信。控制器408也可以与光源418通信。控制器408包括电子处理器402和电子存储设备403。处理器402可以是任何类型的电子处理器并且可以是多于一个的电子处理器。处理器402可以包括适合于执行计算机程序的一个或多个处理器(诸如通用或专用微处理器)以及任何类型的数字计算机的任何一个或多个处理器。通常,处理器从只读存储器或随机存取存储器或两者接收指令和数据。电子存储设备403存储指令(可以作为计算机程序),该指令当被执行时使处理器402与光束量测装置405或控制器408的其他组件通信。电子存储设备403可以包括易失性存储器,诸如RAM。电子存储设备403可以包括非易失性和易失性部分或组件。

致动系统413包括一个或多个致动器,该一个或多个致动器被物理地耦合到射束调整系统412内的一个或多个元件。致动系统413内的致动器接收来自控制器408的信号,并且作为响应,使射束调整系统412内的一个或多个致动元件被物理改动,例如移动、改变位置和/或旋转。由于射束调整系统412内的一个或多个元件的改变,辐射经放大光束410的聚焦区域411的位置在X、Y、Z体积中被调整。

控制器408在离线模式期间与控制装置240通信并且从控制装置240接收光束校准状态205-CS。控制器408将光束校准状态205-CS存储在存储器内。特别地,光束校准状态205-CS与光束量测装置405内的组件的状态相关联,这样的状态产生具有与目标415重叠的聚焦区域411的辐射经放大光束410。光束校准状态205-CS由感测装置406访问,感测装置406将其内部校准状态设置为对应于光束校准状态205-CS。

目标415包括处于流体状态的目标材料,这样的目标材料是当处于等离子体状态时发射EUV光的任何材料。例如,构成目标415的目标材料可以包括水、锡、锂和/或氙。辐射经放大光束410撞击目标415并且其至少一部分被反射以生成被反射的经放大光束407,同时其一些被目标415吸收以由此修改目标415的形状并形成被修改目标435。被反射的经放大光束407在与辐射经放大光束410行进所沿的方向相反的-Z方向上远离目标区域416传播。被反射的经放大光束407行进通过射束调整系统412的全部或部分并进入感测装置406。如上面所讨论的,被修改目标435的形状取决于辐射经放大光束410与目标415之间的相互作用。另外,最佳目标扩展率(被修改目标435沿其范围E

为此,感测装置406被配置为:感测或检测指示辐射经放大光束410的位置和/或聚焦区域411的位置的信息,并且将该信息提供给控制器408。作为一个示例,控制器408可以分析通过感测设备406而得到的测量结果,控制器408可以确定聚焦区域411与目标区域416不重合。在这种情况下,控制器408可以指使致动系统413调整射束调整系统412内的一个或多个元件,以由此沿着Z轴移动辐射经放大光束410的聚焦区域411的位置。在一些实现方式中,为了沿着Z轴移动辐射经放大光束410的聚焦区域411,射束调整系统412内的曲面镜被平移和/或旋转。通过调整曲面镜或射束调整系统412内的另一个元件,聚焦区域411可以附加地或替代地沿着X轴和Y轴之一或二者移动。

控制器408还被配置为至少部分地基于对来自感测装置406的输出的分析来向光源418发送指令,以由此调整辐射经放大光束410。例如,控制器408可以被配置为向光源418发送一个或多个指令以改变经放大光束410的脉冲的触发或定时以及经放大光束410的脉冲的能量中的一者或多者。

参考图5,在一些实现方式中,射束调整系统412是射束调整系统512,射束调整系统512包括光输入/输出耦合器514,以用于将来自光源418的辐射经放大光束410输入耦合到朝向目标区域416的路径上并且用于将被反射的经放大光束407输出耦合到感测装置406。输入/输出耦合器514可以包括部分反射光学元件,部分反射光学元件被配置为:将辐射经放大光束410反射到朝向目标区域416的路径上,同时还在其从目标区域416朝向感测装置406的途中发射被反射的经放大光束407。

射束调整系统512包括射束传送系统517和聚焦系统519,每个都由致动系统513的相应致动器517A、519A来控制,致动器513接收来自控制器408的指令。

射束传送系统517是光学和/或机械元件的集合,该集合接收辐射经放大光束510并根据需要将辐射经放大光束510朝向聚焦系统519转向。射束传送系统517还可以包括射束扩展系统,该射束扩展系统光学地扩展辐射经放大光束510。射束扩展系统的示例可以在2009年12月15日提交的标题为“Beam Transport System for Extreme UltravioletLight Source”的美国专利号8,173,985中找到,其通过引用整体并入本文。

聚焦系统519包括至少一个聚焦光学器件519F,该至少一个聚焦光学器件519F接收辐射经放大光束510并将光束510聚焦到目标区域416内的聚焦区域511。聚焦光学器件519F可以是折射式光学器件(诸如透镜)、反射式光学元件(诸如曲面镜)或包括折射和反射式光学组件的光学元件集合。聚焦系统519还可以包括附加的光学组件,诸如转弯镜,该附加的光学组件可以被用来相对于通过聚焦光学器件519F的经放大光束而定位聚焦光学器件519F。致动器519A被配置为根据需要物理地调整(诸如平移和/或旋转)聚焦光学器件519F和任何附加的光学组件,以确保光束510被正确地聚焦,使得聚焦区域511与目标区域416内的目标415重叠。

参考图6,在一些实现方式中,感测装置406是包括传感器620、传感器622和光学元件组624的感测装置606。被反射的经放大光束407被引导至光学元件组624,该光学元件组624中的至少一个光学元件将被反射的经放大光束407作为光束607-1而朝向传感器620引导(包括聚焦),并且该光学元件组624中的至少一个光学元件将被反射的经放大光束407作为光束607-2而朝向传感器622引导(包括聚焦)。传感器620、622可以以不同采样率采集数据,并因此提供关于在不同时间尺度上发生的物理效应的信息。

在一些实现方式中,传感器620可以具有至少与光源418产生辐射经放大光束410的脉冲的重复率一样高的数据采集率,并且传感器620可以具有比传感器622的数据采集率更高的数据采集率。例如,传感器620可以具有至少50千赫兹(kHz)、至少60kHz或大约63kHz的数据采集率。如此高的采集率使得传感器620能够被控制器408用来监测光束量测装置405内的高频干扰或发生,诸如射束调整系统412内的反射镜振动或目标415的轨迹的变化(这要求快速改变辐射经放大光束410的位置)。传感器622可以具有低于1kHz或低于100赫兹(Hz)的数据采集率。

来自传感器620的数据可以被用来产生包括被反射的经放大光束407的表示的图像。如图所示,传感器620可以是象限传感器,该象限传感器包括以方形阵列而布置的多个独立感测元件621a、621b、621c、621d。为了测量射束407在传感器620上的位置,测量在每个感测元件621a、621b、621c、621d处感测到的能量的量。为了确保被反射的经放大光束407的位置被准确地测量,射束407在传感器620处的直径大于感测元件621a、621b、621c、621d中的任一感测元件的直径但是小于由感测元件621a、621b、621c、621d所界定的方形阵列的直径。

传感器622可以是对在被反射的经放大光束407中包括的波长敏感的任何传感器。此外,将反射的经放大光束407作为光束607-2朝向传感器622引导的组624中的至少一个光学元件可以包括散光光学元件,每当聚焦区域411沿着Z轴移动时,该散光光学元件修改光束607-2的波前的焦点并且改变由传感器622感测的表示的椭圆率。

因此,感测装置606提供被反射的经放大光束407的位置和/或形状的若干测量结果,其中之一(传感器620)可以被用来沿着X轴和Y轴相对于目标区域416定位辐射经放大光束410,X轴和Y轴是沿着横向于辐射经放大光束410的方向或传播的维度,并且其中另一个(传感器622)可以被用来沿着Z轴相对于目标区域定位聚焦区域411416,Z轴与辐射经放大光束410的方向对准。

关于感测装置606的细节在2015年4月7日公布的、标题为“Beam PositionControl for an Extreme Ultraviolet Light Source”的美国专利号9,000,405中被提供,其通过引用整体并入本文。

被存储以供感测装置606访问的光束校准状态205-CS为辐射经放大光束410提供校准状态。即,校准状态可以被认为是辐射经放大光束410在X、Y、Z坐标系中的(0,0,0)处的状态。感测装置606通过将其接收/感测的数据与校准状态205-CS进行比较来操作。在这种情况下,由于光束校准状态205-CS是由量测系统200来确定的,在这种情况下是通过分析来自目标量测装置230的参考校准状态230-CS,它能够确定当辐射经放大光束210的目标区域311与目标215重叠时的实际时刻以使得目标215居中在目标区域311内,所以光束量测装置205/405知道如何解释在感测装置606处接收到的数据。

参考图7,目标量测装置230是包括两个或更多二维记录设备731、732的目标量测装置730,二维记录设备731、732相对于被修改目标735来进行布置,以使得它们的成像平面不彼此平行。此外,它们相应的成像平面可以从X、Y、Z坐标系的任何平面偏移。例如,记录设备731、732的成像平面不平行于以下任何平面:XY、XZ或YZ。记录设备731、732的成像平面可以被布置为使得它们彼此分开20°至120°。每个记录设备731、732包括图像传感器,并且每个图像传感器因此被布置为感测不同成像平面中的图像。通过在两个不同的成像平面中成像,目标量测装置230可以在所有三个维度X、Y和Z中确定被修改目标735的形状或几何形状和范围。

在另外的实现方式中,目标量测装置730还包括探测模块733,探测模块733被设计为产生与被修改目标735相互作用的一个或多个诊断光束。这些诊断光束的波长与辐射经放大光束710的波长不同,以使得由于诊断光束和被修改目标735之间的相互作用而被记录设备731、732检测到的任何光可以与经放大光束710的光区分开来。

记录设备731、732可以被配置为记录或感测由于被修改目标735与一个或多个诊断光束之间的相互作用而产生的光的一个或多个二维表示。例如,由于被修改目标735与一个或多个诊断光束之间的相互作用而产生的光可以是在被修改目标735周围穿过或通过的光,使得在记录设备731、732处被记录的二维表示是被修改目标735遮蔽诊断光束的一部分的阴影。在这样的实现方式中,记录设备731、732被布置在被修改目标735的一侧上,被修改目标735的这一侧与诊断光束接近被修改目标735的一侧相对。作为另一个示例,由于被修改目标735与一个或多个诊断光束之间的相互作用而产生的光可以是来自诊断光束的光,该是从被修改目标735被散射或反射的。

在一些实现方式中,二维记录设备731、732中的每一个是捕获光的二维表示的相机。因此,例如,二维记录设备包括数千或数百万个照片位点(或像素)的二维阵列,这样的阵列界定了成像平面。光被引导到每个像素的感光区上,在那里它被转换成电子,这些电子被收集成电压信号,并且这些信号的阵列形成二维图像。记录设备731、732可以是高速相机,高速相机足够快以在下一个被修改目标进入由记录设备像731、732所涵盖的成像区域之前检测、记录和输出针对被修改目标735检测到的光的二维图像。在一些实现方式中,每个相机的帧速率可以大于或等于产生目标715的速率以实现数据的快速分析。如果以50kHz的速率产生目标715,那么每个相机的帧速率可以大于50kHz。在其他实现方式中,每个相机的帧速率小于产生目标715的速率;在这种情况下,控制装置140基于对参考校准状态130-CS的分析来确定校准状态105-CS可能需要更长的时间。

在一些实现方式中,每个相机是互补金属氧化物半导体(CMOS),而在其他实现方式中,每个相机是电荷耦合器件(CCD)或红外相机。相机可以具有纳秒(ns)量级的曝光时间,例如在20-200ns之间,或在30-50ns之间,或者甚至更大并且高达约300μs。相机可以具有大约1696x1710像素的示例性分辨率、在微米量级的像素尺寸(例如大约5μm或大约8μm)。相机的增益可以在0-12dB之间的任何地方,或者大约1.0dB。

在一些实现方式中,记录设备731的成像平面是由两个轴所界定的平面:与Z轴对准的第一轴和作为位于XY平面中的轴(XY-731)的第二轴。并且,记录设备732的成像平面是由两个轴所界定的平面:与Z轴对准的第一轴和作为位于XY平面中的轴(XY-732)的第二轴,其中XY-732轴与XY-731轴不同。

目标量测装置730包括控制器734,控制器734与记录设备731、732通信并且被配置为从每个记录设备731、732接收二维表示。控制器734还与探测模块733通信。控制器734(在目标量测装置730内)和控制器408(在光束量测装置405内)之一或二者可以被集成在量测系统100的控制装置140内。此外,目标量测装置730可以包括其他光学元件,诸如成像透镜、反射镜等,在图7中未示出。

虽然目标量测装置730被配置为感测或检测与被修改目标735相关联的各方面,但是目标量测装置730不能直接感测辐射经放大光束710。因此,经放大光束710实际上对记录设备731、732而言是不可见的。

参考图8,量测系统100的实现800被合并到EUV光源850中,当处于在线模式时,EUV光源850将EUV光束855供应给输出装置860,该输出装置86可以是光刻曝光装置(其也被称为扫描仪)。EUV光源850包括真空室851(或容器),真空室851界定了第一目标空间(诸如图4中所示的第一目标空间416)和第二目标空间(例如图4所示的第二目标空间416_2),每个目标815在该第一目标空间处与经放大光束810相互作用,每个被修改目标835在该第二目标空间处与第二经放大光束836相互作用。

EUV光源850包括相对于第二目标空间而布置的EUV光收集器852。EUV光收集器852收集从等离子体854发射的EUV光853,该等离子体854是在被修改目标835与第二经放大光束836相互作用时产生的。EUV光收集器将收集的EUV光853作为EUV光束855朝向输出装置860重新定向。EUV光收集器852可以是反射式光学设备,诸如能够反射具有EUV波长的光(也就是说,EUV光853)以形成所产生的EUV光束855的曲面镜,收集器852界定了目标空间内的主焦点和腔室851出口处的次焦点。

EUV光源850包括目标装置856,目标装置856形成被引导到第一目标空间以与经放大光束810相互作用的目标流815。目标815由目标材料形成,该目标材料在处于等离子状态中时产生EUV光853。第一目标空间例如是目标815被转换成等离子体状态的地点。目标装置856包括界定了中空内部的储存器857,该中空内部被配置为容纳流体目标材料。目标装置856包括喷嘴结构858,该喷嘴结构858具有在一端处与储存器857的内部流体连通的开口(或孔口)859。处于流体状态的目标材料在压力P(以及其他可能的力,诸如重力)的作用下,从储存器857的内部流动并通过开口859以形成目标流815。从开口859喷出的目标815的轨迹通常沿-X方向延伸,尽管目标815的轨迹可能包括沿垂直于-X方向的平面的分量(即,Y和Z分量)。

每个被修改目标835通过其与由光束量测装置805产生的第二经放大光束836中的脉冲相互作用而至少部分地或大部分被转换成等离子体,这种相互作用发生在第二目标空间中。每个目标815是目标混合物,该目标混合物包括目标材料和可选的杂质,诸如非目标颗粒。目标815例如可以是液体或熔融金属的微滴、液体流的一部分、固体颗粒或团簇、被包含在液体微滴内的固体颗粒、目标材料的泡沫、或在液体流的一部分内包含的固体颗粒。目标815可以包括例如水、锡、锂、氙气或任何在被转换为等离子体状态时具有在EUV范围内的发射线的材料。例如,目标815可以包括元素锡,该元素锡可以被使用作为纯锡(Sn);作为诸如SnBr4、SnBr2、SnH4之类的锡化合物;作为诸如锡-镓合金、锡-铟合金、锡-铟-镓合金之类的锡合金或这些合金的任何组合。

EUV光源850可以包括与控制装置840以及EUV光源850的其他组件(诸如目标装置856)通信的控制器861。替代地,控制装置840可以是控制器861的一部分。

EUV光源850的X、Y、Z坐标系可以基于真空室851的一个方面来固定或确定。例如,腔室851可以由一组壁来界定,并且在腔室851的一个或多个壁上或在腔室851的空间内的三个点可以为X、Y、Z坐标系提供参考。可以将目标量测装置830的一个或多个组件固定到腔室851的一个或多个壁。例如,二维记录设备731、732都可以被固定到一个或多个腔室851的壁,并且在X、Y、Z坐标系中相应的记录设备731、732的成像平面之间的相对位置是完全已知的。

EUV光源850还可以包括未示出的其他量测装置。例如,EUV光源850可以包括粗略目标转向相机和精细目标转向相机,这些相机被定位为在目标815朝向第一目标空间行进时观察目标,这样的转向相机与控制器861通信。控制器861可以分析来自这些转向相机的数据以确定目标815在Y和Z方向中的一个或多个方向上的位置。作为另一个示例,EUV光源850可以包括目标量测模块,以用于控制光束量测装置805(并且具体地,装置805内的光源)产生光束810和/或第二经放大光束836的脉冲的时间。更进一步地,EUV光源850可以包括一组传感器,这组传感器被布置和配置为检测或感测EUV光853;关于EUV光853的此类信息可以由控制器861分析以用于在对EUV光源850的控制或其他方面中使用。

参考图9,校准过程970由量测系统200在离线模式下执行。过程970可以由控制装置240的各个方面或光束量测装置205和目标量测装置230内的控制器来执行。

光束量测装置205将经放大光束210朝向第一目标空间引导,以使得经放大光束210与目标215相互作用(971)。光束量测装置205调整经放大光束210的一个或多个特征(972)。目标量测装置230测量被修改目标235的一个或多个属性,被修改目标235是由目标215与目标空间中的经放大光束210的相互作用产生的(973)。接下来,目标量测装置230基于被修改目标235的测量到的属性来确定被修改目标235处于参考校准状态230-CS的时刻(T

最初,光束量测装置205将经放大光束210朝向第一目标空间引导,以使得经放大光束210与目标215相互作用(971)。例如,并且参考图4,控制器408可以指使光源418产生经放大光束410,并且控制器408可以指使致动系统413设置致动器以使得将经放大光束410朝向第一目标空间416引导。

接下来,光束量测装置205调整经放大光束210的一个或多个特征(972)。例如,并且参考图4,控制器408可以指使致动系统413调整经放大光束410的特征,诸如控制经放大光束410的聚焦区域411的特征(X,Y,Z坐标系上的方向和/或位置)。致动系统413可以调整射束调整系统412的最后一个光学元件,该最后一个光学元件包括最终聚焦镜,该最终聚焦镜是对经放大光束410进行重新定向和聚焦的曲面镜。致动系统413可以通过一组可能值逐步调整特征,使得通过一定范围的可能值探测经放大光束410的方面或特征。例如,并且参考图10A-图10C,通过调整射束调整系统412内的一个或多个光学元件,沿着-X方向扫描经放大光束410。虽然在图10A-图10C中仅示出了三个不同的步骤,但是可以使用更多的扫描步骤。

目标量测装置230测量被修改目标235的一个或多个属性,被修改目标235是由目标215与目标空间中的经放大光束210的相互作用产生的(973)。例如,并且参考图7,在经放大光束410跨该组值而被扫描时记录设备731、732记录被修改目标735的二维表示。

如上面所讨论的,虽然记录设备731、732被配置并且能够测量与被修改目标735相关的方面,但是这种测量独立于与经放大光束710相关联的任何感测;即,由目标量测装置230执行的分析不依赖于关于经放大光束710所感测到的信息。

目标量测装置230基于被修改目标235的测量到的属性来确定被修改目标235处于参考校准状态230-CS的时刻(T

由记录设备731、732记录的被修改目标735的二维表示提供了足够的信息以使得控制器734能够确定被修改目标735相对于第一图像平面的取向以及被修改目标735相对于与第一图像平面正交的第二图像平面的取向。此外,由记录设备731、732记录的被修改目标735的二维表示提供了与被修改目标735在X、Y和Z方向上的位置有关的信息、以及可以被用来(例如,通过比较在两个不同时刻拍摄的两个或更多图像之间的扩展的被修改目标735的位置、形状或尺寸)确定被修改目标735的扩展率的信息。

控制器734可以在被修改目标735沿着来自记录设备731、732的成像平面的两个投影平面(诸如XZ平面和YZ平面)中的每个投影平面具有期望范围的时刻确定被修改目标735达到参考校准状态230-CS。例如,期望范围(对于参考校准状态230-CS)可以是沿着平面中的一个平面的最大值和沿着平面中的另一个平面的最小值。在该示例中,参考校准状态230-CS指示经放大光束410的聚焦区域411涵盖目标空间中的目标415,并且目标415在X、Y、Z空间中居中在经放大光束410的聚焦区域411中。

被修改目标435的参考校准状态230-CS可以是被修改目标435的分布关于界定目标空间的至少一个轴X、Y或Z而对称的状态。

控制装置240将产生参考校准状态230-CS的经放大光束210的一个或多个特征指派给光束校准状态205-CS(975)。例如,参考图10A-图10C,控制装置240确定与形成经放大光束410的光束量测装置405相关的方面,经放大光束410导致如图10B中所示的被修改目标435的参考校准状态。例如,控制装置240可以访问致动系统413的设置和/或光源418内的设置。

一旦控制装置240已经将特征指派给光束校准状态205-CS,控制装置240就将该光束校准状态提供给光束量测装置205,光束量测装置205可以将光束校准状态205-CS存储在其控制器(诸如量测装置405的控制器408)的存储器内。

另外,在此时,可以执行附加步骤来校准EUV光源150的其他方面。然而,一旦EUV光源150完成校准和设置,则EUV光源150可以在在线模式下开始操作来产生光束155以供输出装置160使用。在此时,光束量测装置205可以根据光束校准状态205-CS来控制经放大光束210的方面。例如,参考图4,控制器408可以基于被存储的光束校准状态205-CS来分析来自感测装置406的输出。特别地,如上面所讨论的,感测装置406检测或感测被反射的经放大光束407,该被反射的经放大光束407包括辐射经放大光束410的已与目标415相互作用的至少一部分的反射。

另外,控制装置240可以被配置为估计被修改目标235的扩展率,以由此确定是否应该基于所估计的扩展率来调整经放大光束210的一个或多个方面。控制装置240可以向光束量测装置205发送指令以基于该确定来指使对经放大光束210的一个或多个方面的调整。例如,参考图4,控制装置240可以向控制器408发送指令以调整光源418和/或射束调整系统412的一个或多个方面,以由此调整经放大光束410的一个或多个方面。

如上面所讨论的,光束量测装置205在步骤972调整经放大光束210的一个或多个特征。在图10A-图10C的示例中,通过调整射束调整系统412内的一个或多个光学元件,沿着-X方向扫描经放大光束410。在诸如图11A-图11C中所示的其他实现方式中,沿着Z方向扫描经放大光束410。例如,参考图4,控制器408可以指使致动系统413调整经放大光束410的特征,诸如控制沿着Z方向的经放大光束410的聚焦区域411(X、Y、Z坐标系中的方向和/或位置)的特征。致动系统413可以调整射束调整系统412的最后一个光学元件,该最后一个光学元件包括最终聚焦镜,该最终聚焦镜是对经放大光束410进行重新定向和聚焦的曲面镜。在该示例中,被修改目标435的范围E

参考图12,示出了目标量测装置1230的实现方式。在该实现方式中,目标1215由目标装置1256产生并且通常沿着-X方向朝向目标空间行进,在该目标空间处它们将与沿着Z方向(其在图12的页面外)被引导的一个或多个光束(诸如光束810、836)相互作用。目标量测装置1230包括相对于被修改目标1235(其由于目标1215与至少一个光束之间的相互作用而产生)而布置的两个或更多二维记录设备1231、1232。在该实现方式中,记录设备1231、1232的成像平面彼此不平行并且偏离X、Y、Z坐标系中的任何平面。在该示例中,记录设备1231、1232的成像平面彼此偏移大约90°并且位于由Z方向和位于XY平面中的方向所界定的平面中。除了每个记录设备1231、1232包括图像传感器之外,每个记录设备1231、1232还包括用于收集被引导至相应图像传感器的光的相应成像光学器件组1231o、1232o。

目标量测装置1230还包括探测模块1233,探测模块1233包括第一背光模块1233A和第二背光模块1233B,每个都被设计为产生与被修改目标1235相互作用的一个或多个诊断光束。将来自第一和第二背光模块1233A、1233B的诊断光束分别朝向记录设备1231、1232引导。

常规的EUV光源需要复杂且耗时的校准过程来对准EUV光源内的组件。例如,参考图8,需要对准光束量测装置805内的光源(诸如光源418,其可以是装置405内的CO

此外,常规的EUV光源缺乏统一的坐标系。例如,用于CO

与这些常规系统相比,本公开提供了量测和控制设备,该量测和控制设备可以机械地参考由光源容器(诸如光源SO的示例封闭结构1751,如图13A、图13B、图14、图16和图17中所示)上的或被其涵盖的单个地点。在一些方面,量测和控制设备中的每一者的硬件可以相对于此单个地点来机器加工。例如,收集器系统(诸如例如图17的收集器系统1762,可以包括如图16中所示的收集器1652和保持器框架)可以包括三个参考点。当被安装到光源容器1751中时,这三个参考点可以基于单个地点而与光源容器1751对准。

用于量测和控制设备的接口(诸如例如安装支撑结构和锚点)也可以被机器加工以实现相对于该单个地点的对准。例如,针对光束量测装置405,特别是针对射束调整系统412和驱动系统413,存在一个接口,它调整光束410的方向、转向和聚焦(其可以被称为激光转向器(诸如图17的激光转向器1713)。存在一个用于对燃料目标进行转向的接口(被称为燃料目标转向器(诸如图17的燃料目标转向器1763)。存在一个用于等离子体生成器的接口,它被配置为监测等离子体(诸如图17的等离子体生成器1764)。

在一些方面,本公开提供了使用燃料目标转向器来确定预脉冲光束(诸如光束210、410、810)的校准地点。在一些方面,本公开提供了将激光转向器、燃料目标转向器和等离子体生成器关于等离子体形成区域(诸如图16中的等离子体形成区域1665)来机械地定位在1毫米(mm)以内、关于等离子体形成区域1665来机械地定位在在0.1mm内、关于等离子体形成区域1665来机械地定位在10微米(微米)内、关于等离子体形成区域1665来机械地定位在在1微米内、或者关于等离子形成区域1665的中心来机械地定位在任何其他合适的距离、或者任何其他合适的位置容差。在一些方面,等离子体形成区域1665可以是大约50微米宽到大约几毫米宽,并且光源418(也被称为激光系统(诸如图16的激光系统1618)可以被定位为大约距等离子体形成区域1665为0.25米至1.5米。因此,一个或多个光束(例如,由激光系统1618发射的一个或多个光束1610、1636)到等离子体形成区域1665的入射角可以为约0.02毫弧度(mrad)、约0.03mrad、约0.07mrad、约0.2mrad、约0.5mrad、约1mrad、约10mrad或任何其他合适的角度容差。不同系统中可能使用各种容差,例如取决于元件与等离子体形成区域1665之间的距离、燃料目标1615的尺寸(例如,大约1微米、10微米、30微米、75微米、150微米)、光束1610、1636的横截面积(例如,几微米至几毫米)、以及对等离子形成区域1665进行成像或以其他方式进行监测的量测系统的视场。

与这些常规系统进一步形成对比的是,本公开提供了用于激光转向器、燃料目标转向器和等离子体生成器的统一坐标系。在一些方面,本公开提供了一种燃料目标成像系统,该系统包括双微滴形成相机(DFC)系统,诸如目标量测装置730,目标量测装置730包括两个或更多二维记录设备731、732,这些设备被布置为使得它们的成像平面彼此不平行,如图7中所示。双DFC系统可以包括两个相机(例如,微滴形成相机1731和微滴形成相机1732)以及相关的安装结构、成像硬件和图像处理软件。例如,可以使用双DFC系统来有意统一激光转向器1713、燃料目标转向器1763和等离子体生成器1764的坐标系。例如,双DFC系统可以被取向为使得收集器的主焦点PF预期会出现在每个相机1731、1732的视场中心。基于这种技术,双DFC系统可以在提供到扫描仪中的最大EUV辐射传输的等离子体形成区域1665附近具有对每个燃料目标(例如,在X、Y和Z上)的可观察性和对目标取向(例如,由角度R

在一个说明性示例中,本公开在三个阶段中提供了对坐标系的统一。第一,在机器设置期间,可以校准燃料目标转向系统量测的参考点或零点,以将燃料目标定位在双DFC系统视场的中心。第二,同样在机器设置期间,可以校准激光燃料目标量测的参考点或零点,以实现关于X轴和Y轴具有零取向的目标。该过程可以使用与用于校准针对燃料目标(例如,燃料目标1615)的参考点或零点的测量系统相同的测量系统来为预脉冲激光转向量测设备建立参考点。第三,考虑到燃料目标和预脉冲激光射束二者的位置都建立在双DFC系统的参考系内,激光转向器可以通过估计相对于所生成的燃料目标位置的主脉冲激光束位置来测量相对于预脉冲激光束位置的主脉冲激光束位置。因此,针对燃料目标、预脉冲激光束、修改后的燃料目标和主脉冲激光束的量测系统都可以被统一在双DFC系统的参考系中。

在一些实例中,本文所公开的双DFC系统可以被实现为对量测系统的硬件的增量改变,并且用于统一激光转向器1713、燃料目标转向器1763和等离子生成器1764(图17)中的不同量测系统的校准技术在一些实例中可以通过软件设计的少量努力来实现。在一些实例中,坐标系的统一提供了在主要服务之后的改进且更快的操作性能恢复,包括更高的可用性和更少的长时间停机。

本文所公开的机械参考技术具有许多优势和益处。例如,参考图17,本公开提供了用于激光转向器1713、燃料目标转向器1763和等离子体生成器1764的锚点,以在主要服务之后提供更快的恢复并实现与这样的技术相关联的可用性增益。该技术的一个特别益处涉及预脉冲激光束开始与燃料目标接触的方式以及被用来使燃料和预脉冲激光束彼此靠近的对应过程。在一种传统方法中,检测EUV脉冲能量以确定预脉冲激光束何时与燃料目标重叠,这花费了令人无法接受的大量时间。与这种传统方法相比,本公开的双DFC系统被用来在快得多的时间框架下检测预脉冲激光射束与燃料目标之间的重叠,至少有两个单独原因。性能和速度提高的一个原因是双DFC系统被锚定到容器1751的单个地点,并且因此当安装双DFC系统时,双DFC系统会立即被定位在靠近燃料目标将被定位的地点。性能和速度提高的另一个原因是双DFC系统的背光和相机在正确的时间被触发(例如,基于预脉冲光束的创建时间(即,发射时间))。

此外,本文所公开的统一坐标系技术具有许多优势和益处。例如,本公开提供了在协调等离子体位置改变的领域中的改进。在另一个示例中,本公开提供了在主要服务(包括量测服务)之后的更快恢复,因为所有量测系统都包含绝对参考信息并且可以各自被用来重新建立性能操作点。因此,传统系统可能需要花费长达24小时才能在主要服务之后恢复到性能水平,但是这可以被减少到不到一小时。此外,本文所公开的双DFC系统有许多优势和益处,诸如燃料目标的立体成像。这种成像可以支持燃料目标地点的三维空间(3空间)中的测量。此外,这些3-空间测量可以与参考点、统一坐标系或两者连接,以实现本文所公开的方面。

然而,在更详细地描述这些方面之前,呈现可以实现本公开的各方面的示例环境是有益的。

示例光刻系统

图13A和图13B分别是在其中可以实现本公开的各方面的光刻曝光装置1360和光刻曝光装置1360’的示意图示。光刻曝光装置1360和光刻曝光装置1360’各自包括以下:照射系统(照射器)IL,其被配置为调整辐射射束B(例如,深紫外(DUV)辐射或极紫外(EUV)辐射),诸如从EUV光源850输出的EUV光束855);支撑结构(例如,掩模台)MT,其被配置为支撑图案化装置(例如,掩模、掩模版或动态图案化装置)MA并且连接到第一定位器PM,该第一定位器PM被配置为准确地定位图案化装置MA;以及诸如衬底台(例如晶片台)WT之类的衬底保持器,其被配置为保持衬底(例如,涂覆有抗蚀剂的晶片)W并且连接到第二定位器PW,该第二定位器PW被配置为准确地定位衬底W。曝光装置1360和1360’还具有投影系统PS,投影系统PS被配置为将通过图案化装置MA赋予辐射射束B的图案投影到衬底W的目标部分C(例如,包括一个或多个管芯)上。在光刻曝光装置1360中,图案化装置MA和投影系统PS是反射的。在光刻曝光装置1360’中,图案化装置MA和投影系统PS是透射的。

照射系统IL可以包括用于引导、成形或控制辐射射束B的各种类型的光学组件,诸如折射、反射、反折射、磁、电磁、静电或其他类型的光学组件或者它们的任何组合。

支撑结构MT以取决于图案化装置MA相对于参考系的取向、光刻曝光装置1360和1360’中的至少一个的设计以及其他条件(诸如图案化装置MA是否被保持在真空环境中)的方式而保持图案化装置MA。支撑结构MT可以使用机械、真空、静电或其他夹持技术来保持图案化装置MA。支撑结构MT例如可以是框架或平台,其根据需要可以是固定的或可移动的。通过使用传感器,支撑结构MT可以确保图案化装置MA例如相对于投影系统PS而处于期望的位置处。

术语“图案化装置”MA应该被广义地解释为是指可以被用来在其横截面中向辐射射束B赋予图案以便在衬底W的目标部分C中产生图案的任何装置。赋予辐射射束B的图案可以对应于在目标部分C中创建以形成集成电路的器件中的特定功能层。

图案化装置MA可以是透射的(如图13B的光刻曝光装置1360’中)或反射的(如图13A的光刻曝光装置1360中)。图案化装置MA的示例包括掩模版、掩模、可编程反射镜阵列或可编程LCD面板。掩模包括诸如二进制、交替相移或衰减相移之类的掩模类型,以及各种混合掩模类型。可编程反射镜阵列的一个示例采用小反射镜的矩阵布置,每个小反射镜都可以被单独倾斜,以便在不同方向上反射入射辐射射束。倾斜的反射镜在辐射射束B中赋予图案,该图案由小镜子矩阵反射。

术语“投影系统”PS可以涵盖任何类型的投影系统,包括折射、反射、反射折射、磁、电磁和静电光学系统或它们的任何组合,对于所使用的曝光辐射或者对于诸如在衬底W上使用浸没液体或使用真空之类的其他因素是适合的。真空环境可以被用于EUV或电子射束辐射,因为其他气体会吸收过多的辐射或电子。因此可以借助真空壁和真空泵为整个射束路径提供真空环境。

光刻曝光装置1360和/或光刻曝光装置1360’可以是具有两个(双级)或更多个衬底台WT(和/或两个或更多个掩模台)的类型。在这种“多级”机器中,可以并行使用附加的衬底台WT,或者可以在一个或多个台上执行准备步骤,而同时一个或多个其他衬底台WT被用于曝光。在一些情形中,附加的台可能不是衬底台WT。

光刻曝光装置也可以是这样一种类型,其中衬底的至少一部分可以被具有相对高折射率的液体(例如,水)覆盖,从而填充投影系统和衬底之间的空间。也可以将浸没液体施加到光刻装置中的其他空间,例如,在掩模和投影系统之间。浸没技术提供以用于增加投影系统的数值光圈。如本文中所使用的,术语“浸没”并不意味着诸如衬底的结构必须被沉没在液体中,而是仅意味着在曝光期间液体位于投影系统和衬底之间。

参考图13A和图13B,照射系统IL接收来自辐射源SO的辐射射束B,辐射源SO可以对应于例如图1的EUV光源850。例如,当辐射源SO是准分子激光器时,辐射源SO和光刻曝光装置1360、1360’可以是单独的物理实体。在这种情况下,辐射源SO不被认为形成光刻曝光装置1360或1360’的一部分,并且辐射射束B在包括例如合适的定向镜和/或射束扩展器的射束递送系统BD的帮助下从辐射源SO被传递到照射系统IL(在图13B中)。在其他情况下,例如当辐射源SO是汞灯时,辐射源SO可以是光刻曝光1360、1360’的组成部分。如果需要,辐射源SO和照射器IL连同射束递送系统BD可以被称为辐射系统。

照射系统IL可以包括用于调整辐射射束的角强度分布的调整器AD(在图13B中)。通常,可以调整照射器的光瞳平面中的强度分布的至少外部和/或内部径向范围(通常分别称为“σ-外部”和“σ-内部”)。此外,照射系统IL可以包括各种其他组件(在图13B中),诸如积分器IN和辐射收集器(例如,聚光器)CO。照射系统IL可以被用来调整辐射射束B,以在其横截面中具有期望的均匀性和强度分布。

参考图13A,辐射射束B入射在被保持在支撑结构(例如,掩模台)MT上的图案化装置(例如,掩模)MA上,并且被图案化装置MA图案化。在光刻曝光装置1360中,辐射射束B从图案化装置MA被反射。辐射射束B在从图案化装置MA被反射之后穿过投影系统PS,投影系统PS将辐射射束B聚焦到衬底W的目标部分C上。在第二定位器PW和位置传感器IF2(例如,干涉测量器件、线性编码器或电容传感器)的帮助下,衬底台WT可以准确地移动(例如,以便在辐射射束B的路径中定位不同的目标部分C)。类似地,第一定位器PM和另一个位置传感器IF1可以被用来相对于辐射射束B的路径而准确地定位图案化装置MA。图案化装置MA和衬底W可以使用掩模对准标记M1、M2和衬底对准标记P1、P2来对准。

参考图13B,将辐射射束B入射在被保持在支撑结构MT上的图案化装置MA上,并且由图案化装置MA图案化。在穿过图案化装置MA之后,辐射射束B穿过投影系统PS,投影系统PS将射束聚焦到衬底W的目标部分C上。投影系统具有与照射系统光瞳IPU的光瞳共轭PPU。部分辐射从照射系统光瞳IPU处的强度分布发出并穿过掩模图案而不受掩模图案处的衍射影响,并在照射系统光瞳IPU处产生强度分布的图像。

投影系统PS将掩模图案MP的图像MP’投影到涂覆在衬底W上的抗蚀剂层上,其中图像MP’是由通过来自强度分布的辐射而从掩模图案MP产生的衍射射束形成的。例如,掩模图案MP可以包括线和空间的阵列。在阵列处且与零阶衍射不同的的辐射会生成偏转的衍射射束,其方向在垂直于线的方向上发生变化。未衍射射束(例如,所谓的零阶衍射射束)在传播方向没有任何变化的情况下穿过图案。零阶衍射射束在投影系统PS的光瞳共轭PPU的上游穿过投影系统PS的上部透镜或上部透镜组,以到达光瞳共轭PPU。与零阶衍射射束相关联并且在光瞳共轭PPU的平面中的强度分布的部分是照射系统IL的照射系统光瞳IPU中的强度分布的图像。例如,光圈器件PD被安置在或基本上安置在包括投影系统PS的光瞳共轭PPU的平面处。

投影系统PS被布置成借助于透镜或透镜组L不仅捕获零阶衍射射束,而且捕获一阶或一阶和更高阶衍射射束(未示出)。在一些方面,用于对在垂直于线的方向上延伸的线图案进行成像的偶极照射可以被用来利用偶极照射的分辨率增强效果。例如,一阶衍射射束在衬底W的水平上与对应的零阶衍射射束发生干涉,从而以尽可能高的分辨率和工艺窗口创建线图案MP的图像(例如,可用的焦深与可容忍的暴露剂量偏差相结合)。在一些方面,可以通过在照射系统光瞳IPU的相对象限中提供辐射极(未示出)来减少像散像差。此外,在一些方面,可以通过在投影系统的光瞳共轭PPU中阻挡与相反象限中的辐射极相关联的零阶射束来减少像散像差。这在2009年3月31日公布的美国专利号7,511,799中进行了更详细的描述,其通过引用整体并入本文。

在第二定位器PW和位置传感器IF(例如,干涉测量器件、线性编码器或电容传感器)的帮助下,可以准确地移动衬底台WT(例如,以便在辐射射束B的路径中定位不同的目标部分C)。类似地,第一定位器PM和另一个位置传感器(图13B中未示出)可以被用来相对于辐射射束B的路径而准确地定位图案化装置MA(例如,在从掩模库或机械检索之后或在扫描期间)。

通常,支撑结构MT的移动可以借助形成第一定位器PM的一部分的长行程(粗略定位)设备和短行程(粗略定位)设备来实现。类似地,可以使用形成第二定位器PW的一部分的长行程设备和短行程设备来实现衬底台WT的移动。在步进器的情况下(与扫描仪相反),支撑结构MT可以仅连接到短行程致动器或可以是固定的。可以使用掩模对准标记M1、M2和衬底对准标记P1、P2来对准图案化装置MA和衬底W。尽管衬底对准标记(如所图示)占据专用目标部分,但是它们可以位于目标部分之间的空间中(例如,划线对准标记)。类似地,在图案化装置MA上提供多于一个管芯的情形中,掩模对准标记可以位于管芯之间。

支撑结构MT和图案化装置MA可以在真空室V中,其中真空机器人IVR可以被用来将诸如掩模之类的图案化装置移入和移出真空室。替代地,当支撑结构MT和图案化装置MA在真空室的外部时,真空外机器人可以被用于各种运输操作,类似于真空内机器人IVR。在一些实例中,真空内和真空外机器人都需要被校准,以便将任何有效负载(例如掩模)顺利转移到转移站的固定运动支架上。

光刻曝光装置1360和1360’可以用于以下模式中的至少一种:

1.在步进模式中,支撑结构MT和衬底台WT保持基本静止,同时将赋予辐射射束B的整个图案一次投影到目标部分C上(例如,单次静态曝光)。然后衬底台WT在X和/或Y方向上被偏移,从而可以曝光不同的目标部分C。

2.在扫描模式中,同步扫描支撑结构MT和衬底台WT,同时将赋予辐射射束B的图案投影到目标部分C上(例如,单次动态曝光)。衬底台WT相对于支撑结构(例如,掩模台)MT的速度和方向可以由投影系统PS的(缩小)放大率和图像反转特性来确定。

3.在另一种模式中,支撑结构MT保持基本静止,以保持可编程图案化装置MA,并且移动或扫描衬底台WT,同时将赋予辐射射束B的图案投影到目标部分C上。可以采用脉冲辐射源SO,并且在扫描期间的连续辐射脉冲之间或在衬底台WT的每次移动之后根据需要更新可编程图案化装置。这种操作模式可以很容易地被应用于利用诸如可编程反射镜阵列之类的可编程图案化装置MA的无掩模光刻。

还可以采用所描述的使用模式的组合和/或变型或完全不同的使用模式。

在另一方面中,光刻曝光装置1360包括辐射源,其可以是EUV光源,其被配置为生成用于EUV光刻的EUV辐射射束。一般而言,EUV源被配置在辐射系统中,并且对应的照射系统被配置为调整EUV源的EUV辐射射束。

图14更详细地示出了光刻曝光装置1360,包括辐射源(例如,源收集器装置)SO、照射系统IL和投影系统PS。辐射源SO被构造和布置成使得可以在封闭结构1451中维持真空环境。辐射源SO包括源室1451A和收集器室1451B并且被配置为产生和传输EUV辐射。EUV辐射可以由气体或蒸气产生,例如氙气(Xe)气体、锂(Li)蒸气或锡(Sn)蒸气,其中产生EUV辐射发射等离子体1454以发射电磁频谱的EUV范围内的辐射。至少部分电离的EUV辐射发射等离子体1454可以通过例如放电或激光射束而产生。例如,10帕斯卡(Pa)的Xe气体、Li蒸气、Sn蒸气或任何其他合适的气体或蒸气的分压可以被用于有效地生成辐射。在一些方面,提供激发锡的等离子体以产生EUV辐射。

由EUV辐射发射等离子体1454发射的辐射经由位于源室1451A中的开口中或后方的可选气体屏障或污染物捕集器CT(在某些情况下也被称为污染物屏障或箔捕集器)而从源室1451A进入到收集器室1451B中。污染物捕集器CT可以包括通道结构。污染物捕集器CT还可以包括气体屏障或气体屏障与通道结构的组合。本文进一步指出的污染物捕集器CT至少包括通道结构。

收集器室1451B可以包括辐射收集器(例如,诸如收集器852之类的收集器)CO,其可以是所谓的掠入射收集器。辐射收集器CO具有上游辐射收集器侧1452u和下游辐射收集器侧1452d。穿过辐射收集器CO的辐射可以从光栅光谱滤光器SF反射出来,以被聚焦在虚拟源点IF中。虚拟源点IF通常被称为中间焦点,并且源收集器装置被布置为使得虚拟源点IF位于封闭结构1451中的开口1451o处或附近。虚拟源点IF是EUV辐射发射等离子体1454的图像。光栅光谱滤光器SF被特别用于抑制红外(IR)辐射。

随后,辐射穿过照射系统IL,该照射系统IL可以包括多面场反射镜设备RE1和多面光瞳反射镜设备RE2,其被布置为在图案化装置MA处提供辐射射束1455的期望角度分布,并且在图案化装置MA处提供期望辐射强度均匀性。当辐射射束1455在由支撑结构MT保持的图案化装置MA处反射时,形成图案化射束1455p,并且图案化射束1455p由投影系统PS经由反射元件RE3、RE3成像到由晶片台或衬底台WT所保持的衬底W上。

在照射系统IL和投影系统PS中通常可以存在比所示更多的元件。取决于光刻装置的类型,可以可选地存在光栅光谱滤光器SF。此外,可能存在比图14中所示的反射镜更多的反射镜,例如,投影系统PS中可以存在比图14中所示的多一到六个的附加反射元件。

如图14中所图示,辐射收集器CO被描绘为具有掠入射反射器COR1、COR2、COR3的嵌套收集器,仅作为收集器(或收集器镜)的示例。掠入射反射器COR1、COR2、COR3围绕光轴O轴向对称地安置,并且这种类型的辐射收集器CO优选地与放电产生的等离子体(DPP)源结合使用。

图15示出了光刻单元LC,有时也称为光刻单元或簇。光刻曝光装置1360或1360’可以形成光刻单元LC的一部分。光刻单元LC还可以包括用于在衬底上执行预曝光和后曝光过程的一个或多个装置。例如,这些装置可以包括用于沉积抗蚀剂层的旋涂器SC、用于显影曝光的抗蚀剂的显影剂DE、冷却板CH和烘烤板BK。衬底处理机(例如,机器人)RO从输入/输出端口I/O1、I/O2拾取衬底,在不同的处理装置之间移动它们,并将它们递送到光刻曝光装置1360或1360’的装载台LB。这些通常被统称为轨道的装置在轨道控制单元TCU的控制下,轨道控制单元TCU本身由监督控制系统SCS控制,监督控制系统SCS还经由光刻控制单元LACU来控制光刻装置。因此,可以操作不同的装置以最大化吞吐量和处理效率。

示例辐射源

用于示例反射光刻曝光装置的辐射源SO的示例在图16中被示出。图16中示出的辐射源SO 1650是可以被称为激光产生的等离子体(LPP)源的类型,诸如图8中所示的。激光系统1618例如可以包括二氧化碳(CO

尽管在以下描述中提到了锡,但是可以使用任何合适的目标材料。目标材料例如可以是液体形式,并且可以例如是金属或合金。燃料目标生成器1656可以包括喷嘴,该喷嘴被配置为沿着朝向等离子体形成区域1665的轨迹来引导例如燃料目标1615(例如,离散微滴)形式的锡。贯穿说明书的其余部分,对“燃料”、“燃料目标”或“燃料微滴”的参考应被理解为指的是由燃料目标生成器1656发射的目标或目标材料(例如,微滴)。燃料目标生成器1656可以包括燃料发射器。一个或多个光束1610在等离子体形成区域1665处入射到目标材料(例如,锡)上。激光能量到目标材料中的沉积在等离子体形成区域1665处产生等离子体1654。在等离子体的离子和电子的去激发和重组期间从等离子体1654发射包括EUV光(诸如EUV光853)的辐射。

EUV光由收集器1652(例如,辐射收集器CO)收集和聚焦。在一些方面,收集器1652可以包括近垂直入射辐射收集器(有时更一般地被称为垂直入射辐射收集器)。收集器1652可以具有多层结构,其被布置为反射EUV光(例如,具有诸如大约13.5nm的期望波长的EUV辐射)。根据一些方面,收集器1652可以具有椭圆形配置,具有两个焦点。如本文所讨论的,第一焦点可以在等离子体形成区域1665处,并且第二焦点可以在中间焦点IF处。

在一些方面,激光系统1618可以位于距封闭结构1651相对长的距离处。在这种情况下,借助于包括例如合适的定向镜和/或射束扩展器和/或其他光学器件的射束递送系统(图16中未示出,但是以上参考图4和图5进行了讨论),可以将一个或多个光束1610从激光系统1618传递到封闭结构1651。激光系统1618和EUV光源SO 1650可以一起被认为是辐射系统。

由收集器1652反射的辐射形成辐射射束B 1655。辐射射束B1655被聚焦在一个区间或一个点处(即,中间焦点IF)以形成等离子体形成区域1665的图像,它充当照射系统IL的虚拟辐射源。辐射射束B 1655聚焦的点可以被称为中间焦点IF。辐射源SO被布置成使得中间焦点IF位于辐射源SO 1650的封闭结构1651中的开口1651o处或附近。

辐射射束B1655从辐射源SO 1650传递到照射系统IL中,该照射系统IL被配置为调整辐射射束B。辐射射束B从照射系统IL传递并入射在由支撑结构MT所保持的图案化装置MA上。图案化装置MA反射并图案化辐射射束B。在从图案化装置MA反射之后,图案化辐射射束B进入投影系统PS。投影系统包括多个反射镜,其被配置为将辐射射束B投影到由衬底台WT保持的衬底W上。投影系统PS可以对辐射射束应用缩减因子,从而形成特征小于图案化装置MA上的对应特征的图像。例如,可以应用缩减因子4。尽管投影系统PS在图14中被示为具有两个反射镜,但是投影系统可以包括任意数量的反射镜(例如,六个反射镜)。

辐射源SO 1650可以包括图16中未图示的组件。例如,可以在辐射源SO中提供光谱滤光器。光谱滤光器可以对EUV辐射基本上是透射的,但是对诸如红外辐射之类的其他波长的辐射基本上是阻挡的。

辐射源SO 1650(或辐射系统)还包括燃料目标成像系统,用于获得等离子体形成区域1665中的燃料目标(例如,微滴)的图像,或者更具体地获得燃料目标的阴影图像。燃料目标成像系统可以检测从燃料目标的边缘衍射的光。下文中对燃料目标图像的参考也应被理解为指的是燃料目标的阴影图像或由燃料目标引起的衍射图案。

燃料目标成像系统可以包括光电检测器,诸如CCD阵列或CMOS传感器,但是应当了解,可以使用适合于获得燃料目标的图像的任何成像设备。应当了解,除了光电检测器之外,燃料目标成像系统还可以包括光学组件,诸如一个或多个透镜。例如,燃料目标成像系统可以包括相机1631,它可以是光电传感器(或:光电检测器)和一个或多个透镜的组合。可以选择光学组件以使得光电传感器或相机1631获得近场图像和/或远场图像。相机1631可以被定位在辐射源SO内的任何适当地点处,相机从该地点具有到等离子体形成区域1665的视线以及提供在收集器1652上的一个或多个标记(图16中未示出)。然而,可能需要将相机1631定位为远离一个或多个光束1610的传播路径以及远离燃料目标生成器1656发射的燃料目标的轨迹,以避免损坏相机1631。在一些方面,相机1631被配置为经由可以是有线或无线的连接而将燃料目标的图像提供给控制器1634。

如图16中所示,辐射源SO可以包括燃料目标生成器1656,该燃料目标生成器1656被配置为朝向等离子体形成区域1665生成和发射燃料目标1615(诸如离散的锡微滴)。辐射源SO还可以包括激光系统1618,其被配置为用一个或多个光束1610、1636撞击一个或多个燃料目标1615,以在等离子体形成区域1665处生成等离子体1654。辐射源SO还可以包括收集器1652(即,辐射收集器CO),其被配置为收集由等离子体1654发射的辐射。

图17是可以被机械连接(例如,通过一个或多个紧固件、粘合剂或其组合而被锚定或以其他方式附接)到根据本公开的一些方面的示例辐射源SO 1650的示例封闭结构1751(诸如例如图8的封闭结构851、图14的封闭结构1451或图16的封闭结构1651)。可以机械连接到辐射源SO 1650的示例封闭结构1751的示例组件可以包括但不限于激光转向器1713、燃料目标转向器1763、等离子体生成器1764、微滴形成相机1731、微滴形成相机1732、收集器系统1762、任何其他合适的组件或它们的任何组合。

在一些方面,激光转向器1713、燃料目标转向器1763、等离子体生成器1764、微滴形成相机1731、微滴形成相机1732、收集器系统1762、任何其他合适的组件或它们的任何组合中的一个或多个可以机械地参考辐射源SO 1650上的参考点,诸如辐射源SO 1650的示例封闭结构1751上的或投影到其上的单个地点。在一些方面,短语“机械地参考”可以指的是具有关于辐射源SO 1650上的参考点以适当精度已知的大小的机械构造。例如,单个地点可以包括等离子体形成区域1665内的地点、收集器1652的主焦点PF、任何其他合适的地点或它们的任何组合。在一个说明性示例中,激光转向器1713、燃料目标转向器1763、等离子体生成器1764、微滴形成相机1731、微滴形成相机1732、收集器系统1762、任何其他合适的组件或它们的任何组合中的一个或多个可以通过以下来机械地参考:相对于等离子体形成区域1665在1mm内、相对于等离子体形成区域1665在0.1mm内、相对于等离子体形成区域1665在1微米内、或相对于等离子体形成区域1665的任何其他合适的距离或者任何其他合适的地点。在一些方面,等离子体形成区域1665可以是大约50.0微米宽到几毫米宽,并且激光系统1618可以被定位为远离等离子体形成区域1665大约0.25米到1.5米。因此,一个或多个光束1610、1636到等离子体形成区域1665的入射角可以是约0.02毫弧度(mrad)、约0.03mrad、约0.07mrad、约0.2mrad、约0.5mrad、约1mrad、约10mrad或任何其他合适的角度容差。

如图17中所示,辐射源SO 1650还可以包括激光转向器1713,其被配置为监测一个或多个光束1610、1636并将其朝向等离子体形成区域1665转向。在一些方面,激光转向器1713可以包括激光转向致动器,其被配置为将一个或多个光束1610、1636朝向等离子体形成区域1665转向。在一些方面,激光转向器1713还可以包括激光转向量测系统,其被配置为监测一个或多个光束1610、1636。上面参考图4和图5提供了对激光转向器1713的讨论。

辐射源SO 1650还可以包括燃料目标转向器1763,其被配置为监测燃料目标1615并将其朝向等离子体形成区域1665转向。在一些方面,燃料目标转向器1763可以包括燃料目标转向致动器,其被配置为将燃料目标1615朝向等离子体形成区域1665转向。在一些方面,燃料目标转向器1763还可以包括燃料目标转向量测系统,其被配置为监测燃料目标1615。

在一些方面,收集器1652、激光转向器1713和燃料目标转向器1763中的至少两者可以机械地参考辐射源SO 1650上的参考点。在一些方面,参考点可以包括在辐射源SO1650的示例封闭结构1651或1751上的或投影到其上的单个地点。例如,单个地点可以包括等离子体形成区域1665内的地点。在另一个示例中,单个地点可以包括收集器1652的主焦点PF。

辐射源SO 1650还可以包括等离子体生成器1764,其被配置为监测等离子体1654和等离子体形成区域1665。在一些方面,收集器1652、激光转向器1713、燃料目标转向器1763和等离子体生成器1764可以机械地参考辐射源SO 1650上的参考点。在一些方面,收集器1652、激光转向器1713、燃料目标转向器1763和等离子体生成器1764可以机械地连接到辐射源SO 1650的示例封闭结构1751,辐射源SO 1650被配置为机械地参考辐射源SO 1650上的参考点。

辐射源SO 1650还可以包括收集器系统1762。收集器系统1762可以包括收集器1652和辐射源SO 1650内部的框架。框架可以包括基于辐射源SO 1650上的参考点所创建的多个框架参考点。

辐射源SO 1650还可以包括燃料目标成像系统,诸如图2和图3的目标量测装置230以及图7的目标量测装置730。燃料目标成像系统可以包括双微滴形成相机(DFC)系统,其被配置为检测一个或多个光束1610、1636和燃料目标1615之间的重叠。双DFC系统可以包括一个或多个燃料目标形成相机,诸如图17中的微滴形成相机1731和微滴形成相机1732,或者图7的目标量测装置730中的相机731和732。在一些方面,双DFC系统可以连接到辐射源SO1650的示例封闭结构1751并且机械地参考辐射源SO 1650上的参考点。例如,微滴形成相机1731和微滴形成相机1732中的一个或二者可以连接到辐射源SO 1650的示例封闭结构1751并且机械地参考辐射源SO 1650上的参考点。

在一些方面,一个或多个光束1610、1636可以包括预脉冲光束1610(诸如预脉冲光束210、410、810)和主脉冲光束1636(诸如主脉冲光束236、436、836)。在这样的方面,双DFC系统可以包括照射系统(诸如探测模块733)和相机(诸如例如,微滴形成相机1731、微滴形成相机1732或两者),并且被配置为基于大约预脉冲光束1610被创建时的时间来触发照射系统和相机。此外,在这些方面,激光系统1618可以被配置为用预脉冲光束1610撞击每个燃料目标1615以生成修改后的燃料目标(或被修改目标,诸如被修改目标235、435、735、835、1235)。激光系统1618还可以被配置为用主脉冲光束1636撞击每个修改后的燃料目标以生成等离子体1665。在这些方面,辐射源SO 1650上的参考点可以包括主脉冲光束1636在其处撞击修改后的燃料目标的地点。

辐射源SO 1650还可以包括控制器1634,其被配置为使用燃料目标成像系统为激光转向器1713和燃料目标转向器1763生成统一坐标系。统一坐标系可以包括在辐射源SO1650上的参考点。

在一些方面,为了生成统一坐标系,控制器1634可以被配置为:将燃料目标转向器1763的第一参考点校准到主焦点(例如,收集器1652的主焦点PF);并且校准激光转向器1713的预脉冲光束转向器的第二参考点,以使得由激光系统1618生成的预脉冲光束1636击中由燃料目标生成器1656生成的每个燃料目标1615。

在一些方面,为了生成统一坐标系,控制器1634可以被配置为校准燃料目标转向器1763的参考点,以使得由燃料目标生成器1656生成的每个燃料目标1615被定位在大约燃料目标成像系统的视场中心处。在一个示例中,燃料目标转向器1763可以包括粗略燃料目标转向器、精细燃料目标转向器和喷嘴转向器。在该示例中,为了校准燃料目标转向器1763的参考点,控制器1634可以被配置为:控制喷嘴转向器以将燃料目标流(例如,燃料目标1615)转向到大约粗略燃料目标转向器的视场中心;并且控制喷嘴转向器将燃料目标流转向到精细燃料目标转向器的视场中心。在另一个示例中,燃料目标转向器1763的参考点可以是第一参考点,激光转向器1713可以包括预脉冲光束转向器,并且控制器1634还可以被配置为使用燃料目标转向器1763的第一参考点来校准预脉冲光束转向器的第二参考点。在该示例中,激光转向器1713可以包括主脉冲光束转向器,并且控制器1634还可以被配置为使用主脉冲光束转向器来相对于预脉冲光束1610的位置测量主脉冲光束1636位置,以估计主脉冲光束1636相对于每个燃料目标1615的地点。

在一些方面,控制器1634可以被配置为:基于一个或多个光束161与一个或多个燃料目标1615之间的检测到的重叠,诸如上面参考燃料目标成像系统所描述的检测到的重叠,生成统一坐标系。

图18图示了根据本公开的一些方面的用于生成诸如辐射射束1655之类的EUV光的示例工艺流程图。例如,示例工艺流程可以基于来自气体源1880和燃料目标生成器1856的输入来生成燃料目标1815(例如,锡微滴)。示例工艺流程然后可以通过用由预脉冲光源1881生成的预脉冲光束1810照射燃料目标1815来生成修改后的燃料目标1835(例如,呈薄饼形式的倾斜的锡微滴)。随后,示例工艺流程可以通过用由主脉冲光源1882生成的主脉冲光束1836照射修改后的燃料目标1835来生成等离子体1854。预脉冲光源1881和主脉冲光源1882是光或激光源的部分(诸如光源418或激光源1618)。最后,示例工艺流程可以基于等离子体1854来生成EUV光或辐射1855。

图19图示了根据本公开的一些方面的用于校准燃料目标转向器1963(其可以是燃料目标转向器1763)和激光转向器1913(其可以是激光转向器1713)的示例容差和校准架构图。示例架构包括构造1981。示例架构包括燃料目标转向器1963和激光转向器1913。示例架构包括燃料目标转向器校准1982和激光转向器校准1983。示例架构然后包括等离子体到主焦点PF对准1984。示例架构然后包括等离子体图像到中间焦点IF对准1985。

图20A和图20B提供了根据本公开的一些方面的用于将燃料目标流对准收集器(诸如收集器852或1652)的主焦点PF的过程的示例示意图示。图20A示出了在时间t_0与收集器的主焦点2087相关的燃料目标流2086(例如,离散的燃料目标流2015a、2015b和2015c)。

图20B示出了在时间t_1处的燃料目标流2086’,在该时间处燃料目标流2086’已被对准(例如,通过燃料目标转向器1763),以使得燃料目标2015a’、燃料目标2015b’和2015c’中的每一个穿过收集器的主焦点2087。例如,如图20B中所示,燃料目标2015b’可以在时间t_1下出现在收集器的主焦点2087处或附近;燃料目标2015a’可以在时间t_1之前的时间(例如,在t_1-delta_t)下出现在收集器的主焦点2087处或附近;并且燃料目标2015c’可以在时间t_1之后的时间(例如,在t_1+delta_t)下出现在收集器的主焦点2087处或附近。

图21A和图21B提供了根据本公开的一些方面的用于将预脉冲光束2110对准燃料目标的过程的示例示意图示。图21A示出了与时间t_2下的预脉冲光束2110的起点和时间t_3下的主脉冲光束2136的起点相关的在收集器的主焦点PF处的燃料目标2115。

图21B示出了在(例如,通过激光转向器1713)预脉冲光束2110已被对准到燃料目标2115’的时间t_4下与预脉冲光束2110相关的在收集器的主焦点PF处的燃料目标2115’。图21B进一步示出了在时间t_5下与主脉冲光束2136相关的修改后的燃料目标2135。预脉冲光束2110在时间t_4下对燃料目标2115’的照射可以生成修改后的燃料目标2135,并且主脉冲光束2136在时间t_5下对修改后的燃料目标2135的照射可以生成等离子体(诸如等离子体1654),以用于生成EUV光(诸如辐射射束1655)。

图22A和图22B提供了根据本公开的一些方面的用于将预脉冲光束2110的焦点对准燃料目标的过程的示例示意图示。图22A示出了在(例如,通过激光转向器1713)预脉冲光束2110的焦点已被对准到燃料目标2215的时间t_6下与预脉冲光束2110相关的在收集器的主焦点PF处的燃料目标2215。图22A进一步示出了在时间t_7下与主脉冲光束2136相关的平坦的修改后的燃料目标2235。预脉冲光束2110在时间t_6下对燃料目标2215的照射可以生成平坦的修改后的燃料目标2235,而主脉冲光束2136在时间t_7下对平坦的修改后的燃料目标2235的照射可以生成等离子体(诸如等离子体1654),以用于生成EUV光(诸如辐射射束1655)。

图22B示出了在时间t_8下与预脉冲光束2110相关的在收集器的主焦点PF处的燃料目标2215’。图22B进一步示出了在时间t_9下与主脉冲光束2136相关的具有期望角度和尺寸的期望的修改后的燃料目标2235’。在一些方面,可以基于激光转向器1713以及在一些情况下的燃料目标转向器1763的一个或多个操作来生成期望的修改后的燃料目标2235’。预脉冲光束2110在时间t_8下对燃料目标2215’的照射可以生成期望的修改后的燃料目标2235’,并且主脉冲光束2136在时间t_9下对期望的修改后的燃料目标2235’的照射可以生成等离子体(诸如等离子体1654),以用于生成EUV光(诸如辐射射束1655)。

图23A和图23B提供了根据本公开的一些方面的用于将主脉冲光束2136对准修改后的燃料目标的过程的示例示意图示。图23A示出了在时间t_10下与预脉冲光束2110的焦点相关的在收集器的主焦点PF处的燃料目标2315。图23A进一步示出了在时间t_11下与主脉冲光束2236相关的期望的修改后的燃料目标2335,在该时间t_11下,(例如,通过激光转向器1713)主脉冲光束2236已被对准以与期望的修改后的燃料目标2335重叠。预脉冲光束2110在时间t_10下对燃料目标2315的照射可以生成期望的修改后的燃料目标2335,并且主脉冲光束2136在时间t_11下对期望的修改后的燃料目标2335的照射可以生成等离子体(诸如等离子体1654),以用于生成EUV光(诸如辐射射束1655)。

图23B示出了在时间t_12下与预脉冲光束2110相关的在收集器的主焦点PF处的燃料目标2315’。图23B进一步示出了在时间t_13下与主脉冲光束2136相关的期望的修改后的燃料目标2335’,在该时间t_13下,(例如,通过激光转向器1713)主脉冲光束2136已被对准以使期望的修改后的燃料目标2335’与主脉冲光束2136的重叠最大化。在一些方面,主脉冲光束2136可以被称为“基础”。由预脉冲光束2110在时间t_12下对燃料目标2315’的照射可以生成期望的修改后的燃料目标2335’,并且主脉冲光束2136在时间t_13下对期望的修改后的燃料目标2335’的照射可以生成用于生成最大EUV光(诸如辐射射束1655)的等离子体(诸如等离子体1654)。

在一些方面,但不是所有方面,参考图20A、图20B、图21A、图21B、图22A、图22B、图23A、图23B描述的时间可以顺序发生。例如,时间t_1可以发生在时间t_0之后,时间t_2可以发生在时间t_1之后,时间t_3可以发生在时间t_2之后,时间t_4可以发生在时间t_3之后,时间t_5可以发生在时间t_4之后,时间t_6可以发生在时间t_5之后,时间t_7可以发生在时间t_6之后,时间t_3可以发生在时间t_7之后,时间t_9可以发生在时间t_8之后,时间t_10可以发生在时间t_9之后,时间t_11可以发生在时间t_10之后,时间t_12可以发生在时间t_11之后,时间t_13可以发生在时间t_12之后,或者它们的任何组合。

在一些方面,但不是所有方面,参考图20A、图20B、图21A、图21B、图22A、图22B、图23A、图23B描述的等离子体可以生成具有不同特性的EUV辐射。例如,主脉冲光束2136在时间t_5下对修改后的燃料目标2135的照射可以生成第一等离子体,以用于生成具有第一强度的第一EUV辐射;主脉冲光束2136在时间t_7下对平坦的修改后的燃料目标2235的照射可以生成第二等离子体,以用于生成具有大于第一EUV辐射的第一强度的第二强度的第二EUV辐射;主脉冲光束2136在时间t_9下对期望的修改后的燃料目标2235’的照射可以生成第三等离子体,以用于生成具有大于第二EUV辐射的第二强度的第三强度的第三EUV辐射;主脉冲光束2136在时间t_11下对期望的修改后的燃料目标2335的照射可以生成第四等离子体,以用于生成具有大于第三EUV辐射的第三强度的第四强度的第四EUV辐射;主脉冲光束2136在时间t_13下对期望的修改后的燃料目标2335’的照射可以生成第五等离子体,以用于生成具有大于第四EUV辐射的第四强度的第五强度的第五EUV辐射;或者它们的任何组合。

图24是用于实现本公开的一些方面或其(多个)部分的示例方法2490。参考示例方法2490所描述的操作可以通过或根据本文描述的任何系统、装置、计算机程序产品、组件、技术或它们的组合来执行,诸如参考上面的图1A-图23B和下面的图25所描述的那些。

在操作2492,系统校准燃料目标转向器1763的参考点,以使得由燃料目标生成器1656生成的燃料目标1615被定位在双DFC系统(诸如图7的装置730)的视场中心处。在操作2494,系统使用燃料目标转向器1763的已校准参考点来校准激光转向器1713的预脉冲光束转向器的参考点。在操作2496,系统使用主脉冲光束转向器,该主脉冲光束转向器被配置为:相对于预脉冲光束1810的位置测量主脉冲光束1836的位置,以估计主脉冲光束1836相对于燃料目标1815的地点。

本公开的各方面可以以硬件、固件、软件或其任何组合来实现。本公开的各方面还可以被实现为存储在机器可读介质上的指令,该指令可以由一个或多个处理器读取和执行。机器可读介质可以包括用于以机器(例如,计算设备)可读的形式存储或传输信息的任何机制。例如,机器可读介质可以包括只读存储器(ROM);随机存取存储器(RAM);磁盘存储介质;光存储介质;闪存设备;电、光、声或其他形式的传播信号等。此外,固件、软件、例程和/或指令可以在本文中被描述为执行特定动作。然而,应当了解,这样的描述仅仅是为了方便起见,并且这样的动作实际上是由执行固件、软件、例程和/或指令的计算设备、处理器、控制器或其他设备产生的。

例如,可以使用一个或多个计算机系统,诸如图25中所示的计算机系统10,来实现各个方面。计算机系统10可以是能够执行本文所述功能的专用计算机,诸如参考图16所描述的控制器1634;参考图17所描述的激光转向器1713(包括但不限于预脉冲光束转向器和主脉冲光束转向器)、燃料目标转向器1763、等离子体生成器1764、双DFC系统(包括但不限于微滴形成相机1731和微滴形成相机1732)或收集器系统1762;任何其他合适的组件或系统;或其任何组合。计算机系统10包括一个或多个处理器(也称为中央处理单元或CPU),诸如处理器14。处理器14连接到通信基础设施16(例如,总线)。计算机系统10还包括(多个)用户输入/输出设备13,诸如监视器、键盘、定点设备等,它们通过(多个)用户输入/输出接口12来与通信基础设施16通信。计算机系统10还包括:主存储器18(例如,一个或多个主存储设备),诸如随机存取存储器(RAM)。主存储器18可以包括一级或多级高速缓存。主存储器18在其中存储控制逻辑(例如,计算机软件)和/或数据。

计算机系统10还可以包括辅助存储器20(例如,一个或多个辅助存储设备)。辅助存储器20可以包括例如硬盘驱动器22和/或可移动存储驱动器24。可移动存储驱动器24可以是软盘驱动器、磁带驱动器、光盘驱动器、光存储设备、磁带备份设备和/或任何其他存储设备/驱动器。

可移动存储驱动器24可以与可移动存储单元28相互作用。可移动存储单元28包括在其上存储有计算机软件(控制逻辑)和/或数据的计算机可用或可读存储设备。可移动存储单元28可以是软盘、磁带、光盘、DVD、光存储盘和/或任何其他计算机数据存储设备。可移动存储驱动器24从可移动存储单元28读取和/或写入到可移动存储单元28。

根据一些方面,辅助存储器20可以包括用于允许计算机程序和/或其他指令和/或数据被计算机系统10访问的其他部件、工具或其他方法。这样的部件、工具或其他方法可以包括例如可移动存储单元32和接口30。可移动存储单元32和接口30的示例可以包括程序盒和盒接口(诸如在视频游戏设备中发现的)、可移动存储器芯片(诸如EPROM或PROM)和关联的插座、存储棒和USB端口、存储卡和关联的存储卡插槽、和/或任何其他可移动存储单元和关联的接口。

计算机系统10还可以包括通信接口34(例如,一个或多个网络接口)。通信接口34使得计算机系统10能够与远程设备、远程网络、远程实体等的任何组合进行通信和相互作用(单独地称为以及统称为远程设备38)。例如,通信接口34可以允许计算机系统10通过通信路径36来与远程设备38通信,通信路径36可以是有线和/或无线的,并且可以包括LAN、WAN、互联网等的任何组合。控制逻辑和/或数据可以经由通信路径36而被传输到计算机系统10和从计算机系统10传输。

本公开的前述方面中的操作可以以多种配置和架构来实现。因此,前述方面中的一些或全部操作可以以硬件、软件或两者的方式来执行。在一些方面,有形的、非暂时性的装置或制品包括在其上存储有控制逻辑(软件)的有形的、非暂时性的计算机可用或可读介质,在本文中也被称为计算机程序产品或程序存储设备。这包括但不限于计算机系统10、主存储器18、辅助存储器20和可移动存储单元28和32、以及体现上述任意组合的有形制品。这样的控制逻辑当由一个或多个数据处理设备(诸如计算机系统10)执行时,使这样的数据处理设备如本文所述的那样操作。

基于包含在本公开中的教导,对于(多个)相关领域的技术人员来说,如何使用如图25中所示以外的数据处理设备、计算机系统和/或计算机架构来制作和使用本公开的各个方面将是显而易见的。特别地,本公开的各方面可以用除了本文描述的那些之外的软件、硬件和/或操作系统实现来操作。

虽然在本文中可能会具体提及在IC制造中使用光刻装置,但是应该理解,本文所描述的光刻装置可以具有其他应用,诸如集成光学系统的制造、用于磁畴存储器、平板显示器、LCD、薄膜磁头等的引导和检测图案。本领域技术人员将了解,在这样的替代应用的上下文中,本文中术语“晶片”或“管芯”的任何使用可以分别被认为是更一般的术语“衬底”或“目标部分”的同义词。本文提及的衬底可以在曝光之前或之后在例如跟踪单元(通常将抗蚀剂层施加到衬底并使曝光的抗蚀剂显影的工具)、量测单元和/或检查单元中进行处理。在适用的情况下,本文的公开可以被应用于这样的和其他的衬底处理工具。此外,衬底可以被处理一次以上,例如以便产生多层IC,因此本文所使用的术语衬底也可以指代已经包含多个处理层的衬底。

应当理解,本文中的措辞或术语是为了描述而非限制的目的,使得本说明书的术语或措辞将由(多个)相关领域的技术人员根据本文的教导来解释。

如本文中所使用的术语“衬底”描述了材料层被添加到其上的材料。在一些方面,衬底本身可以被图案化并且添加在其顶部的材料也可以被图案化,或者可以保留而不被图案化。

本文公开的示例是说明而非限制本公开的实施例。对本领域中通常遇到的并且对于(多个)相关领域的技术人员来说显而易见的各种条件和参数的其他合适的修改和适配在本公开的精神和范围内。

尽管在本文中可以具体参考装置和/或系统在IC的制造中的使用,但是应当明确理解,这样的装置和/或系统具有许多其他可能的应用。例如,它可以被用于制造集成光学系统、磁畴存储器、LCD面板、薄膜磁头等的引导和检测图案。本领域技术人员将了解,在这样的替代应用的上下文中,在本文中对术语“掩模版”、“晶片”或“管芯”的任何使用都应被视为分别被更通用的术语“掩模”、“衬底”和“目标部分”所取代。

尽管上面已经描述了本公开的特定方面,但是应当了解,可以以不同于所描述的方式来实践这些方面。该描述并不旨在限制本公开的实施例。

应当了解,不是背景技术、发明内容和摘要部分,而是详细描述部分,旨在被用来解释权利要求。发明内容和摘要部分可以阐述如发明人所设想的一个或多个但不是所有示例实施例,因此不旨在以任何方式限制本实施例和所附权利要求。

上面已经借助功能构建块描述了本公开的一些方面,这些功能构建块说明了指定功能的实现及其关系。为了描述的方便,在本文中已经任意定义了这些功能构建块的边界。可以定义替代边界,只要适当地执行指定的功能及其关系即可。

本公开的特定方面的上述描述将如此充分地揭示这些方面的一般性质,以至于其他人可以通过应用本领域技术内的知识来针对各种应用容易地修改和/或适应这些特定方面,无需过度实验,且不背离本公开的一般概念。因此,基于本文所呈现的教导和指导,此类适配和修改旨在落入所公开方面的等同物的含义和范围内。

本发明的其他方面在以下编号的条款中阐述。

1.一种用于极紫外(EUV)光源的量测系统,量测系统包括:

光束量测装置,被配置为:感测经放大光束的一个或多个方面,并且基于感测到的一个或多个方面来对经放大光束进行调整;

目标量测装置,被配置为:在目标与经放大光束相互作用之后,测量被修改目标的一个或多个属性,并且确定被修改目标达到参考校准状态的时刻;以及

控制装置,控制装置与光束量测装置和目标量测装置通信,控制装置被配置为:

从目标量测装置,接收参考校准状态和达到参考校准状态的时刻;

基于接收到的参考校准状态和达到参考校准状态的时刻,确定经放大光束的光束校准状态;以及

向光束量测装置提供光束校准状态。

2.根据条款1的量测系统,其中控制装置被配置为:将光束校准状态确定为经放大光束在参考校准状态时的状态。

3.根据条款2的量测系统,其中光束量测装置包括至少一个传感器,至少一个传感器接收被反射的经放大光束,被反射的经放大光束包括经放大光束的已与目标相互作用的至少一部分的反射。

4.根据条款3的量测系统,其中控制装置被配置为:向光束量测装置指示光束校准状态。

5.根据条款3的量测系统,其中控制装置被配置为:基于光束校准状态,分析来自光束量测装置的传感器的输出。

6.根据条款5的量测系统,其中控制装置与如下项中的一者或多者通信:被配置为产生经放大光束的光源,和被配置为将经放大光束朝向目标空间引导的转向装置。

7.根据条款6的量测系统,其中控制装置被配置为:基于对来自传感器的输出的分析,向光源和转向装置中的一者或多者发送指令,以由此调整经放大光束。

8.根据条款7的量测系统,其中控制装置被配置为向光源发送一个或多个指令,一个或多个指令包括与经放大光束的脉冲的触发或定时、以及经放大光束的脉冲的能量中的一者或多者相关的指令。

9.根据条款1的量测系统,其中目标量测装置包括目标量测设备,目标量测设备被配置为测量被修改目标的一个或多个属性。

10.根据条款9的量测系统,其中目标量测设备包括两个图像传感器,每个图像传感器被布置为感测不同成像平面中的图像。

11.根据条款10的量测系统,其中不同成像平面彼此分开20°至120°。

12.根据条款10的量测系统,其中控制装置被配置为:在当被修改目标沿着来自成像平面的两个投影平面中的每个投影平面具有期望范围时、或者当被修改目标具有期望取向时的时刻,确定被修改目标达到参考校准状态。

13.根据条款1的量测系统,其中目标量测装置不能直接感测经放大光束。

14.根据条款1的量测系统,其中参考校准状态指示:经放大光束的聚焦区域涵盖目标、并且目标居中在经放大光束的聚焦区域中。

15.根据条款1的量测系统,其中光束量测装置被配置为:感测被引导到目标空间或从目标空间反射的经放大光束的一个或多个方面。

16.根据条款1的量测系统,其中所确定的经放大光束的光束校准状态包括经放大光束的能量、值、位置或形状。

17.根据条款1的量测系统,其中控制装置还被配置为:估计被修改目标的扩展率,以确定是否应当基于所估计的扩展率来调整经放大光束的一个或多个方面;以及向光源和转向装置中的一者或多者发送指令,以由此基于该确定来调整经放大光束的一个或多个方面。

18.根据条款1的量测系统,其中光束量测装置被配置为:根据光束校准状态,感测经放大光束的一个或多个方面。

19.一种方法,包括:

将经放大光束朝向目标空间引导,以使得经放大光束与目标空间中的目标相互作用;

调整经放大光束的一个或多个特征;

在目标与目标空间中的经放大光束相互作用之后,测量被修改目标的一个或多个属性;

基于被修改目标的测量到的属性,确定被修改目标何时处于参考校准状态;以及

将经放大光束的产生参考校准状态的一个或多个特征指派给光束校准状态。

20.根据条款19的方法,还包括:根据光束校准状态,控制经放大光束的方面。

21.根据条款20的方法,其中控制经放大光束的方面包括:根据光束校准状态,感测经放大光束的一个或多个方面;以及基于感测到的一个或多个方面,调整经放大光束。

22.根据条款21的方法,其中根据光束校准状态感测经放大光束的一个或多个方面包括:感测被反射的经放大光束,被反射的经放大光束包括经放大光束的已与目标相互作用的至少一部分的反射。

23.根据条款19的方法,其中测量被修改目标的一个或多个属性包括:沿着两个不同成像平面检测被修改目标的至少两个图像。

24.根据条款23的方法,其中确定被修改目标何时处于参考校准状态包括:当被修改目标沿着从成像平面投射的两个平面中的每个平面具有期望范围时,将参考校准状态指派为被修改目标的状态。

25.根据条款19的方法,其中确定被修改目标何时处于参考校准状态包括:确定经放大光束的聚焦区域涵盖目标空间中的目标、并且目标居中在经放大光束的聚焦区域中。

26.根据条款19的方法,其中确定被修改目标何时处于参考校准状态包括:确定被修改目标何时关于界定目标空间的至少一个轴对称。

27.根据条款19的方法,其中调整经放大光束的一个或多个特征包括:调整经放大光束的方向和聚焦区域中的一者或多者。

28.根据条款19的方法,其中确定被修改目标何时处于参考校准状态与感测经放大光束的一个或多个方面无关。

29.根据条款19的方法,其中测量被修改目标的一个或多个属性包括:测量被修改目标相对于第一图像平面的取向、以及测量被修改目标相对于与第一图像平面正交的第二图像平面的取向。

30.一种极紫外(EUV)光系统,包括:

光源,被配置为产生经放大光束;

转向系统,被配置为将经放大光束朝向目标空间转向并聚焦;

光束量测装置,被配置为:感测目标空间中的经放大光束的一个或多个方面,并且基于感测到的一个或多个方面来调整经放大光束;

目标量测装置,被配置为:在目标与经放大光束相互作用之后,测量被修改目标的一个或多个属性,并且确定被修改目标达到参考校准状态的时刻;以及

控制装置,控制装置与光束量测装置和目标量测装置通信,控制装置被配置为:从目标量测装置接收参考校准状态和达到参考校准状态的时刻;基于接收到的参考校准状态和达到参考校准状态的时刻,确定经放大光束的光束校准状态;以及向光束量测装置提供光束校准状态。

31.根据条款30的EUV光系统,其中目标量测装置包括两个图像传感器,每个图像传感器被布置为感测被修改目标在不同成像平面处的图像。

32.根据条款31的EUV光系统,其中图像传感器被固定到壁,壁界定目标空间所在的围场。

33.根据条款32的EUV光系统,其中不同成像平面彼此分开60°至120°。

34.根据条款31的EUV光系统,其中目标量测装置包括相对于每个图像传感器而布置的诊断光束,其中每个诊断光束被引导以与被修改目标相互作用,以使得每个图像传感器感测被修改目标的图像包括:图像传感器感测被修改目标与诊断光束之间的相互作用。

35.一种对准装置,包括:

光源,光源被配置为:

将第一经放大光束朝向目标空间引导,以使得第一经放大光束与目标空间中的移动目标之间的相互作用形成被修改目标;以及

将第二经放大光束朝向目标空间引导,以使得第二经放大光束与目标空间中的被修改目标之间的相互作用生成等离子体;以及

光束致动系统,被配置为:

调整第一经放大光束相对于目标的位置,以使第一经放大光束与目标重叠;以及

在调整第一经放大光束相对于目标的位置以使第一经放大光束与目标重叠之后,调整第二经放大光束相对于第一经放大光束的位置,以使第二经放大光束与被修改目标重叠。

36.根据条款35的对准装置,其中光束致动系统包括转向机构,转向机构被配置为转向或调整经放大光束的方向。

37.根据条款35的对准装置,还包括目标量测装置,目标量测装置被配置为对以下项中的一项或多项进行成像:第一经放大光束与目标之间的相互作用;第二经放大光束与被修改目标之间的相互作用;目标;以及被修改目标。

38.根据条款37的对准装置,其中光束致动系统被配置为:基于成像,调整第一经放大光束相对于目标的位置。

39.根据条款37的对准装置,其中光束致动系统被配置为:基于根据对被修改目标进行成像而确定的被修改目标的取向,调整第一经放大光束相对于目标的位置。

40.根据条款37的对准装置,其中目标量测被配置为:确定第二经放大光束和被修改目标何时重叠。

41.根据条款35的对准装置,其中光束致动系统被配置为通过以下操作来调整第二经放大光束相对于第一经放大光束的位置以使第二经放大光束与被修改目标重叠:移动第二经放大光束而将被修改目标居中。

42.根据条款35的对准装置,其中光束致动系统被配置为通过以下操作来调整第二经放大光束相对于第一经放大光束的位置以使第二经放大光束与被修改目标重叠:移动第二经放大光束而使重叠最大化,以使得第二经放大光束与被修改目标的更大区域重叠。

43.根据条款35的对准装置,其中光束致动系统被配置为通过以下操作来调整第二经放大光束相对于第一经放大光束的位置以使第二经放大光束与被修改目标重叠:沿着垂直于第二经放大光束行进方向的方向,调整第二经放大光束的位置。

44.根据条款35的对准装置,其中光束致动系统被配置为通过以下操作来调整第二经放大光束相对于第一经放大光束的位置以使第二经放大光束与被修改目标重叠:沿着第二经放大光束行进的方向,调整第二经放大光束的束腰。

45.根据条款44的对准装置,其中光束致动系统被配置为沿着第二经放大光束行进的方向将第二经放大光束的束腰调整一定量,该量提高了由所生成的等离子体产生的EUV光的量。

46.根据条款35的对准装置,其中光束致动系统被配置为:相对于第一放大光束经放大光束的位置,测量第二经放大光束的位置。

47.根据条款46的对准装置,其中光束致动系统被配置为:基于相对于第一经放大光束的位置而测量到的第二经放大光束的位置,调整第二经放大光束相对于第一经放大光束的位置。

48.一种对准方法,包括:

将第一经放大光束朝向目标空间引导,以使得第一经放大光束与目标空间中的移动目标之间的相互作用形成被修改目标;

将第二经放大光束朝向目标空间引导,以使得第二经放大光束与目标空间中的被修改目标之间的相互作用生成等离子体;

调整第一经放大光束相对于目标的位置,以使第一经放大光束与目标重叠;以及

在调整第一经放大光束相对于目标的位置以使第一经放大光束与目标重叠之后,调整第二经放大光束相对于第一经放大光束的位置,以使第二经放大光束与被修改目标重叠。

49.根据条款48的对准方法,其中调整第一经放大光束相对于目标的位置是基于第一经放大光束与目标之间的相互作用。

50.根据条款48的对准方法,其中调整第一经放大光束相对于目标的位置是基于被修改目标的成像。

51.根据条款48的对准方法,其中调整第一经放大光束相对于目标的位置是基于被修改目标的取向。

52.根据条款48的对准方法,其中调整第二经放大光束相对于第一经放大光束的位置以使第二经放大光束与被修改目标重叠包括:移动第二经放大光束,以将被修改目标居中。

53.根据条款48的对准方法,其中调整第二经放大光束相对于第一经放大光束的位置以使第二经放大光束与被修改目标重叠包括:移动第二经放大光束以使重叠最大化,以使得第二经放大光束与被修改目标的更大区域重叠。

54.根据条款48的对准方法,其中调整第二经放大光束相对于第一经放大光束的位置包括:沿着垂直于第二经放大光束行进方向的方向,调整第二经放大光束的位置。

55.根据条款48的对准方法,其中调整第二经放大光束相对于第一经放大光束的位置包括:沿着第二经放大光束行进的方向,调整第二经放大光束的束腰。

56.根据条款55的对准方法,其中沿着第二经放大光束行进的方向调整第二经放大光束的束腰包括调整一定量,该量提高了由所生成的等离子体产生的EUV光的量。

57.根据条款48的对准方法,还包括:相对于第一经放大光束的位置,测量第二经放大光束的位置。

58.根据条款57的对准方法,其中调整第二经放大光束相对于第一经放大光束的位置是基于相对于第一经放大光束的位置而测量到的第二经放大光束的位置。

59.一种对准装置,包括:

光源,被配置为将第一经放大光束朝向腔室内的目标空间引导,以使得第一经放大光束与目标空间中的移动目标之间的相互作用形成被修改目标;

目标量测装置,被配置为检测第一经放大光束与目标之间的相互作用;以及

控制系统,控制系统与光源和目标量测装置通信,控制系统被配置为:

分析从目标量测装置检测到的相互作用输出;以及

指使光源调整第一经放大光束相对于目标的位置,以使第一经放大光束与目标重叠,调整基于对检测到的相互作用的分析。

60.根据条款59的对准装置,其中光源被配置为将第二经放大光束朝向目标空间引导,以使得第二经放大光束与目标空间中的被修改目标之间的相互作用生成等离子体。

61.根据条款59的对准装置,其中目标量测装置包括相机,相机被布置为使得目标空间在相机的视场中。

62.根据条款59的对准装置,其中目标量测装置包括两个相机,两个相机以不同视角来布置、并且均被布置为使得目标空间处于它们各自的视场中。

63.根据条款59的对准装置,其中控制系统被配置为:激活目标量测装置,以由此基于由光源提供的关于第一经放大光束的信息来检测第一经放大光束与目标之间的相互作用。

64.根据条款63的对准装置,其中目标量测装置包括双微滴形成相机系统,双微滴形成相机系统包括照射系统和至少两个相机。

65.根据条款64的对准装置,其中至少两个相机和照射系统以机械方式参考腔室中的参考点,其中参考点是目标空间内的地点,或者是收集从等离子体产生的远紫外光的主焦点。

66.根据条款59的对准装置,还包括极紫外(EUV)光收集器,EUV光收集器对被配置为收集EUV光并将EUV光引导到中间焦点的主焦点进行定义。

67.根据条款66的对准装置,其中目标量测装置包括双微滴形成相机系统,双微滴形成相机系统包括两个相机,两个相机被取向为使得EUV光收集器的主焦点在每个相机的视场中。

68.根据条款66的对准装置,其中目标量测装置包括目标转向器,控制系统与目标转向器通信,并且被配置为调整目标流的位置,以由此将目标流与EUV光收集器的主焦点对准。

69.根据条款68的对准装置,其中控制系统被配置为:指使光源调整第一经放大光束相对于目标的位置以使第一经放大光束与目标重叠,调整基于对在目标流与EUV光收集器的主焦点对准之后而检测到的相互作用的分析。

70.一种对准方法,包括:

将第一经放大光束朝向腔室内的目标空间引导,以使得第一经放大光束与目标空间中的移动目标之间的相互作用形成被修改目标;

检测第一经放大光束与目标之间的相互作用;

分析检测到的相互作用;以及

调整第一经放大光束相对于目标的位置,以使第一经放大光束与目标重叠,调整基于对检测到的相互作用的分析。

71.根据条款70的对准方法,其中检测第一经放大光束与目标之间的相互作用包括:在面对目标空间的至少一个图像平面处对目标进行成像。

72.根据条款70的对准方法,其中检测第一经放大光束和目标之间的相互作用包括:在两个不同角度的图像平面处对目标进行成像,每个图像平面面向目标空间。

73.根据条款70的对准方法,其中检测第一经放大光束与目标之间的相互作用包括:在基于第一经放大光束被生成的时间而生成的触发信号上,检测相互作用。

74.根据条款70的对准方法,其中检测第一经放大光束与目标之间的相互作用包括:在主图像平面处对目标的背光图像进行成像。

75.根据条款74的对准方法,其中检测第一经放大光束与目标之间的相互作用包括:在与主图像平面不同的次图像平面处对目标的第二背光图像进行成像。

76.根据条款70的对准方法,还包括:在主焦点处收集由所生成的等离子体产生的极紫外(EUV)光、并将EUV光引导到中间焦点。

77.根据条款76的对准方法,还包括:在调整第一经放大光束相对于目标的位置以使第一经放大光束与目标重叠之前,调整目标流的位置以由此将目标流与主焦点对准。

78.根据条款70的对准方法,还包括:在调整第一经放大光束相对于目标的位置以使第一经放大光束与目标重叠之后,调整朝向目标空间而引导的第二经放大光束的相对于被修改目标的位置,以使第二经放大光束与被修改目标重叠。

本公开的广度和范围不应受任何上述示例方面或实施例的限制,而应仅根据以下权利要求及其等同物来定义。

技术分类

06120114713330