掌桥专利:专业的专利平台
掌桥专利
首页

一种基于迁移对比学习的城市交通流量预测方法和设备

文献发布时间:2023-06-19 19:30:30


一种基于迁移对比学习的城市交通流量预测方法和设备

技术领域

本发明主要涉及城市计算和智能交通领域,具体涉及一种基于迁移对比学习的城市交通流量预测方法和设备,主要研究基于两个城市的私家车运动数据进行城市功能区交通流量变化预测。

背景技术

近年来,城市的发展带来很多问题,其中一个问题就是车辆过多带来的交通问题。建模寻找城市交通流量变化规律不仅对交通管理至关重要,而且对能源消耗、城市增长、城市规划、卫生防疫等问题的研究也至关重要。

目前城市交通流预测主要采用深度学习方法,然而,基于深度学习的方法通常需要大量的训练数据。然而,在实际应用中,由于数据收集机制(如低采样率)、数据隐私问题和低城市开发水平等各种原因,时空数据可能会很稀缺。由于训练数据不足,它们的表现可能会显著下降。此外,这些模型是专门为一种特定的数据类型设计的,很难推广到处理其他类型的时空数据。

因此,提出能够解决数据稀缺问题的城市交通流预测模型是十分必要的。

发明内容

针对目前城市交通流预测存在的数据稀缺问题,本发明提供一种基于迁移对比学习的城市交通流量预测方法和设备,基于两个不同城市的私家车运动数据,将迁移学习与对比学习结合,利用迁移学习学习源域(稠密的城市交通流数据)和目标域(稀疏的城市交通流数据)之间的可转移的潜在特征来对目标域进行预测,同时分别对源域和目标域进行自监督对比学习提取特征从而辅助迁移学习进行交通流量预测。

为实现上述技术目的,本发明采用如下技术方案:

一种基于迁移对比学习的城市交通流量预测方法,包括:

步骤1,获取源城市和目标城市在预设历史时间段内的时空交通流量数据,其中源城市的时空交通流量数据的数据量稠密,目标城市的时空交通流量数据的数据量稀疏;

步骤2,将源城市和目标城市的时空交通流量数据分别作为源数据和目标数据;

步骤3,对源数据和目标数据进行增强处理,分别得到源增强数据和目标增强数据;

步骤4,使用编码器分别对源数据、目标数据、源增强数据和目标增强数据进行编码;

步骤5,将编码的源数据和目标数据输入预测模块,利用最大平均偏差MMD在二者卷积的过程中进行调节,将源数据的知识迁移到目标数据中,最后通过注意力机制并引入外部因素来进行预测输出,得到第一个损失函数;

步骤6,将编码的源数据和源增强数据输入源数据对比学习模块,对二者进行非线性变换,最大化正对相似度同时最小化负对相似度来自监督学习源数据的特征,得到第二个损失函数;

步骤7,将编码的目标数据和目标增强数据输入目标数据对比学习模块,对二者进行非线性变换,最大化正对相似度同时最小化负对相似度来自监督学习目标数据的特征,得到第三个损失函数;

步骤8,整合三个损失函数得到总损失函数,并通过总损失函数训练由编码器、预测模块和两个对比学习模块构成的整体模型;

步骤9,获取源城市和目标城市当前的时空交通流量数据,利用训练得到的编码器对其进行编码,再利用训练得到的预测模块预测目标城市未来的交通流量。

进一步地,所述时空交通流量数据,是从城市私家车的GPS和OBD数据中提取停留点数据并统计交通流量得到,具体地:

从城市私家车的GPS和OBD数据中提取停留点数据,所述停留点数据至少包括经纬度信息和时间戳;

将源城市和目标城市划分为m×n的网格地图,每个网格被定义为一个单元区域,所有的网格组成一个单元区域集R={r

将一天24小时均匀划分为k个时间戳,基于停留点数据统计源城市和目标城市每个单元区域k个时间戳的车辆交通流量,将t时间戳的网格地图每个单元区域的车辆交通流量用矩阵X

设置统计天数为d天,d天的车辆交通流量序列可以表示为四维张量

将统计天数多的源城市的表示为四维张量的交通流量序列,记为源城市的时空交通流量数据

进一步地,对源数据和目标数据进行数据增强操作的方式包括:输入输入掩蔽、短期移位操作、长期移位操作;

(1)输入掩蔽:

(2)短期移位操作:

(3)长期移位操作:

其中,

进一步地,所述编码器由CNN和LSTM堆叠而成,CNN用于捕获时空交通流量数据的空间相关性,LSTM用于捕获时空交通流量数据的时间相关性;所述编码器对源数据

式中,CNNLSTM表示编码器,

进一步地,步骤5中所述的预测模块包括两部分:卷积迁移学习部分和注意力机制预测输出部分;

首先进入卷积迁移学习部分,通过MMD调整源数据和目标数据的分布相似度来不断的让目标数据学习源数据的知识,如下:

式中,conv3D表示3维卷积,MMD表示最大平均偏差,φ(·)表示高斯核函数,

然后再通过注意力机制预测输出部分,学习源数据和目标数据之间的相关性,输出目标数据与源数据之间的相关权重矩阵A,再让相关矩阵A与源数据

式中,Att表示注意力机制,F

进一步地,步骤6中所述的源数据对比学习模块,是将源数据

式中,z

进一步地,步骤7中所述的目标数据对比学习模块,是将目标数据

式中,z

进一步地,负对集合的符合条件为|t-t

进一步地,整合三个损失函数得到的总损失函数为:

式中,Loss表示总损失函数,T

一种基于迁移对比学习的城市交通流量预测设备,包括存储器及处理器,所述存储器中存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器实现上述任一项所述的方法。

有益效果

本发明将私家车数据统计建模为时空交通流量数据,通过迁移学习和对比学习解决目标城市数据稀缺问题,利用迁移学习将源数据知识转移到目标数据进行预测的同时,采用对比学习自监督地学习目标数据和源数据的特征辅助预测,综合两种学习方法的优点,提高了模型的泛化能力,进一步提高预测的精确度。

附图说明

图1是本申请实施例所述预测方法的整体框架图;

图2是本申请实施例中对比学习示意图。

具体实施方式

下面对本发明的实施例作详细说明,本实施例以本发明的技术方案为依据开展,给出了详细的实施方式和具体的操作过程,对本发明的技术方案作进一步解释说明。

下面将将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚,完整地描述,基于本发明的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

如图1所示为本发明基于城市时空交通流量数据进行迁移对比联合学习的交通流量预测方法的整体框架图,其包括数据编码器、预测模块、源数据对比学习模块和目标数据对比学习模块这四个模块组成。对源数据和目标数据进行增强,将增强后的数据与未增强的数据一同输入编码器,编码后将源数据与目标数据输入预测模块进行预测,将源数据与源增强数据输入源数据对比模块,将目标数据与源目标数据输入目标数据对比模块,利用预测模块与对比模块联合构造的总损失函数对编码器和预测模块不断循环优化,输出最优预测,并用于目标城市区域的交通流量数据预测。

步骤1,采集获取原始数据。

本实施例利用湖南大学开源的深圳与长沙私家车数据作为研究数据,选取深圳的南山区和长沙的岳麓区分别作为源城市和目标城市,并将稠密的南山区私家车数据作为源数据,稀疏的岳麓区私家车数据作为目标数据。

具体地,首先采集两个城市私家车在预设历史时间段内的的GPS(包括车辆匿名化ID、车辆所处经纬度、当前时刻、位置信息)和OBD数据(包括私家车开车和停车状态,速度和方向),从中提取私家车的停留点数据;提取的停留点数据至少包括经纬度信息和时间戳。然后使用数据清洗模块利用原则检测数据集中存在不合理的值,包括数据不一致,数据无效等问题并对其删除或修正,比如检测并删除开车时间间隔少于1分钟的数据、开车距离少于3米的数据。

将深圳南山区和长沙岳麓区均划分为16×16的网格地图,每个网格被定义为一个单元区域,所有的网格组成一个单元区域集R={r

将一天24小时均匀划分为24个时间戳,基于停留点数据统计源城市和目标城市每个单元区域24个时间戳的车辆交通流量,将t时间戳的网格地图每个单元区域的车辆交通流量用矩阵X

设置统计天数为d天,d天的车辆交通流量序列可以表示为四维张量

将统计天数多的源城市的表示为四维张量的交通流量序列,记为源城市的时空交通流量数据

步骤2,明确源数据和目标数据。

步骤1获得到的源城市的时空交通流量数据

步骤3,数据增强。

为了对源数据和目标数据无监督学习各单元区域时空交通流量特征,引入对比学习方法,对比学习首先需要对输入数据进行数据增强操作,数据增强对输入数据进行修改并作为新输入用于对比学习提取特征。

对输入的源数据和目标数据分别进行数据增强操作,增强操作主要有三种方式:输入掩蔽、短期移位操作、长期移位操作。

(1)输入掩蔽:

(2)短期移位操作:

(3)长期移位操作:

其中,

步骤4,编码。

编码器由CNN和LSTM堆叠而成,CNN可以捕获时空交通流量数据的空间相关性,LSTM可以捕获时空交通流量数据的时间相关性,两者堆叠后能有效地捕获输入数据的时空特征,便于后续预测与对比。

/>

经过编码器编码后,输出

步骤5,预测。

预测模块包括两部分:卷积迁移学习部分和注意力机制预测输出部分。

首先进入卷积迁移学习部分,通过MMD调整源数据和目标数据的分布相似度来不断的让目标数据学习源数据的知识,如下:

其中,conv3D表示3维卷积,MMD表示最大平均偏差,φ(·)表示高斯核函数,

然后再通过注意力机制预测输出部分,学习源数据和目标数据之间的相关性,输出目标数据与源数据之间的相关权重矩阵,再让相关矩阵与源数据做点积,同时加入外部因素和目标数据辅助预测,输出目标数据未来时刻的预测值Y

Att表示注意力机制,

步骤6,源数据对比学习。

源数据对比学习模块是将源数据

由于时空交通数据存在很强的时间依赖性,比如某一天下午3点和下午4点的时空交通图可能极为相似,这样就容易对时空交通量矩阵匹配精确度造成影响,因此我们设置了一个时间抑制t

其中

步骤7,目标数据对比学习。

目标数据对比学习模块方法与步骤6所述相同。损失函数如下:

其中K

步骤8,综合优化。

整合三个损失函数得到总损失函数,并通过总损失函数训练由编码器、预测模块和两个对比学习模块构成的整体模型。总损失函数为:

γ和ζ表示源数据和目标数据对比学习损失函数的参数值,两者的大小表示源数据和目标数据对比学习结果在整个模型中的影响力大小,模型运行过程中不断优化使总损失函数最小。

步骤9,预测。获取源城市和目标城市当前的时空交通流量数据,利用训练得到的编码器对其进行编码,再利用训练得到的预测模块预测目标城市未来的交通流量。

上述只是本发明的较佳实施例,并非对本发明作任何形式上的限制。虽然本发明已以较佳实施例揭露如上,然而以限定本发明。任何熟悉并非用本领域的技术人员,在不脱离本发明技术方案范围的情况下,都可利用上述揭示的技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均应落在本发明技术方案保护的范围内。

相关技术
  • 一种基于数据挖掘的餐厅客流量预测方法、装置及设备
  • 一种基于深度迁移学习的跨城市交通流量联合预测方法
  • 一种基于联邦学习的城市交通流量时空预测方法
技术分类

06120115935238