掌桥专利:专业的专利平台
掌桥专利
首页

半导体结构

文献发布时间:2023-06-19 11:45:49


半导体结构

技术领域

本发明有关于一种具有改良保护环(guard ring)结构的半导体结构。

背景技术

为避免PN接面之间的非预期导通,考虑到P型井或N型井的电位接点(pick up)或是闩锁效应(latch up)的,保护环的使用是需要的。举例来说,当一个晶体管形成于一个P型井内,通过保护环周围的接点分布,保护环可以被设计为围绕晶体管的环形主动区域作为P+电位接点,并且保护环围绕晶体管。

发明内容

本发明的目的在于提供一种具有改良保护环结构的半导体结构。

根据本发明的一实施方式,一种半导体结构包括半导体晶圆。半导体晶圆具有顶侧与背侧。半导体晶圆包括第一导电类型的第一半导体井、第二导电类型的第二半导体井、半导体装置、第一导电类型的多个第一半导体掺杂区域与多个第一硅穿孔(throughsilicon via,TSV)。第二导电类型不同于第一导电类型。第一半导体井设置于第二半导体井内且自顶侧裸露。第一半导体掺杂区域设置于第一半导体区域内且围绕半导体装置。每个第一硅穿孔从背侧经过第一与第二半导体井延伸至相应的一第一半导体掺杂区域内。每个第一硅穿孔为导电材料所填满,并且每个第一硅穿孔从背侧连接直流电压或是接地电压。

在一或多个实施方式中,半导体结构的半导体晶片进一步包括多个导电凸块。每个导电凸块设置于背侧且连接至相应的第一硅穿孔。每个导电凸块连接至直流电压或是接地电压。

在一或多个实施方式中,半导体结构的半导体晶片进一步包括重分布层。重分布层设置于背侧。重分布层连接第一硅穿孔。导电凸块设置于重分布层上。导电凸块连接至直流电压或是接地电压。

在一或多个实施方式中,半导体结构的半导体晶片进一步包括第二导电类型的多个第二半导体掺杂区域与多个第二硅穿孔。第二半导体掺杂区域设置于第二半导体井内且围绕第一半导体井。每个第二硅穿孔从背侧通过第二半导体井延伸至相应的第二半导体掺杂区域。每个第二硅穿孔被导电材料所填满。

在一或多个实施方式中,半导体装置是晶体管。半导体结构的半导体晶片进一步包括隔离区域。隔离区域设置于第一半导体掺杂区域与晶体管之间。晶体管为隔离区域所围绕。

在一些实施方式中,半导体结构的半导体晶片进一步包括绝缘层与导线。绝缘层形成于顶侧之上且覆盖晶体管。导线形成于顶侧上且连接晶体管。导线重叠于第一半导体掺杂区域。

在一些实施方式中,第一导电类型是p型,第二导电类型是n型。在一些实施方式中,晶体管具有源极端、漏极端与栅极端。源极端与漏极端是在第一半导体井内的n掺杂区域。栅极端是形成于位于源极端与漏极端之间的通道区之上。在一些实施方式中,半导体晶圆进一步包括绝缘层。绝缘层形成于顶侧之上且覆盖晶体管。绝缘层具有远离顶侧的顶面。源极端、漏极端与栅极端都分别连接一个延伸至顶面的电极。每个电极连接至形成于绝缘层的顶面之上的导线。每个电极连接至形成于绝缘层的顶面之上的导线。在一些实施方式中,导线进一步重叠于第一半导体井与第二半导体井。

在一或多个实施方式中,半导体装置是第二导电类型的一第二半导体区域。第二半导体区域形成于第一半导体井内。半导体晶圆进一步包括第二硅穿孔。第二硅穿孔从背侧通过第一与第二半导体井延伸至第二半导体区域内。第二硅穿孔被导电材料填满。

综上所述,半导体结构内的硅穿孔形成改良后的保护环结构,并且改良的保护环结构的接点是位于半导体晶圆的背侧。半导体装置的金属布线可以设计在半导体晶圆的顶面上。因此,保护环结构的接点与晶体管的金属布线是分别位于晶圆两侧的二个不相关的金属布线。不需要在晶圆的顶面上进行保护环电位接点布线,从而有助于减少芯片所占用空间。

以上所述仅是用以阐述本发明所欲解决的问题、解决问题的技术手段、及其产生的功效等等,本发明的具体细节将在下文的实施方式及相关附图中详细介绍。

附图说明

本发明的优点与附图,应由接下来列举的实施方式,并参考附图,以获得更好的理解。这些附图的说明仅仅是列举的实施方式,因此不该认为是限制了个别实施方式,或是限制了发明权利要求的范围。

图1A根据本发明的一实施方式绘示一保护环结构的俯视示意图;

图1B是图1A沿线段A-A’的剖面图;

图2A根据本发明的一实施方式绘示一保护环结构的俯视示意图;

图2B是图2A沿线段B-B’的剖面图;

图3根据本发明的一实施方式绘示另一保护环结构的剖面示意图;

图4绘示图3的保护环结构的背侧;

图5A根据本发明的一实施方式绘示一半导体结构的俯视示意图;

图5B是图5A沿线段C-C’的剖面图;

图5C是图5A沿线段D-D’的剖面图;

图6是绘示绝缘层、电极与导线形成于图5A的半导体结构的顶侧上的一剖面示意图;

图7是绘示绝缘层、电极与导线形成于图5A的半导体结构的顶侧上的另一剖面示意图;

图8A根据本发明的一实施方式绘示一半导体结构的俯视示意图;以及

图8B是图8A沿线段E-E’的剖面图。

主要附图标记说明:

100、100’-保护环结构,110-晶圆,110T-顶侧,110B-背侧,120-P型井,120I-界面,125-P掺杂区域,130-N型井,135-N掺杂区域,140-硅穿孔,145-导电材料,148-导电凸块,150-硅穿孔,155-导电材料,158-导电凸块,160-重分布层,165-重分布层,170-隔离区域,180-绝缘层,200-晶体管,210-源极端,220-漏极端,230-栅极端,240-电极,250-导线,300、300’-半导体结构,310-N掺杂区域,320-硅穿孔,325-导电材料,328-导电凸块,A-A’-线段,B-B’-线段,C-C’-线段,D-D’-线段,E-E’-线段,LTSV-长度,D1-方向。

具体实施方式

下文是举实施例配合所附附图进行详细说明,但所提供的实施例并非用以限制本发明所涵盖的范围,而结构运作的描述非用以限制其执行的顺序,任何由元件重新组合的结构,所产生具有均等功效的装置,皆为本发明所涵盖的范围。另外,附图仅以说明为目的,并未依照原尺寸作图。为便于理解,下述说明中相同元件或相似元件将以相同的符号标示来说明。

另外,在全篇说明书与权利要求所使用的用词(terms),除有特别注明外,通常具有每个用词使用在此领域中、在此公开的内容中与特殊内容中的平常意义。某些用以描述本发明的用词,将于下或在此说明书的别处讨论,以提供本领域技术人员在有关本发明的描述上额外的引导。

在本文中,“第一”、“第二”等等用语仅是用于区隔具有相同技术术语的元件或操作方法,而非旨在表示顺序或限制本发明。

此外,“包含”、“包括”、“提供”等相似的用语,在本文中都是开放式的限制,意指包含但不限于。

进一步地,在本文中,除非内文中对于冠词有所特别限定,否则“一”与“该”可泛指单一个或多个。将进一步理解的是,本文中所使用的“包含”、“包括”、“具有”及相似词汇,指明其所记载的特征、区域、整数、步骤、操作、元件与/或组件,但不排除其所述或额外的其一个或多个其它特征、区域、整数、步骤、操作、元件、组件,与/或其中的群组。

请参照图1A与图1B。图1A根据本发明的一实施方式绘示一保护环结构100的俯视示意图。图1B是图1A沿线段A-A’的剖面图。如图1A所示,一个保护环结构100包含晶圆110。晶圆110包含二个半导体井。在本实施方式中,晶圆110包含一个P型井120与一个N型井130。P型井120位于N型井130内。在P型井120内具有多个P掺杂区域125,P掺杂区域125的载子浓度高于同为P型半导体区域的P型井120,并且P掺杂区域125靠近P型井120的边缘。换言之,P掺杂区域125设置接近P型井120的边缘,也就是P掺杂区域125靠近界面120I。因此,P型井120的中心区于为P掺杂区域125所围绕,并且一个被保护的半导体装置(例如晶体管)能够设置在P型井120的中心区域。P掺杂区域125形成环形区域,此环形区域围绕P型井的中心区域。每个P掺杂区域125具有接地电压,并且P掺杂区域125形成保护环结构100。

P型井120位于N型井130内,并且N型井130围绕P型井120。P型井120暴露于晶圆110的顶侧110T。P掺杂区域125也自晶圆110的顶侧110T暴露。如图1B所示,保护环结构100包含多个硅穿孔(through silicon via)140。硅穿孔140能够通过硅穿孔工艺形成。从晶圆110的背侧110B,每个硅穿孔140穿过P型井120与N型井130分别延伸至一个P掺杂区域125,并且每个硅穿孔140被导电材料145所填满。对于一个硅穿孔140,其延伸进P掺杂区域的长度L

在图1B中,导电凸块148是位于晶圆110的背侧110B。在本实施方式中,每个硅穿孔140是连接至一个相应的P掺杂区域125,并且每个导电凸块148是连接至一个硅穿孔140。因此,如图1B所示,使用者可以连接一个接地电压至每个导电凸块148,并且这避免了PN接面(PN junction)之间的非预期导通。在本实施方式中,每个导电凸块148据有一个接地电压,而相应的P掺杂区域125也具有接地电压。因为P掺杂区域125具有一个接地电压,来自于形成在P型井120之中心区域内的半导体装置的泄漏电流流入P掺杂区域125,但不通过界面120I流入N型井130。

请参照图2A与图2B。图2A根据本发明的一实施方式绘示一保护环结构100’的俯视示意图。图2B是图2A沿线段B-B’的剖面图。

如图2A所示,图1A的保护环结构100与图2A的保护环结构100’之间的差异,在于保护环结构100’进一步包含在N型井130内的多个N掺杂区域135。N掺杂区域135具有大于N型井130的载子浓度。进一步地,每个N掺杂区域135是连接至一个相应的硅穿孔150。如图2B所示,每个硅穿孔150从背侧110B穿过N型井130连接至一个相应的N掺杂区域135。导电材料155填满硅穿孔150。多个导电凸块158分别连接到硅穿孔150。类似地,每个硅穿孔150具有延伸到N掺杂区域135之中的长度,以确保N掺杂区域135和导电凸块158之间的连接。N掺杂区域135靠近P型井120的边缘并围绕P型井120。换句话说,N掺杂区域135靠近界面120I。在本实施方式中,P掺杂区域125与相应的N掺杂区域135相对于界面120I是对称的。在一些实施方式中,P掺杂区域125也可以不具有相应的对称N掺杂区域135,而N掺杂区域135仍然形成围绕P型井120的环形。类似于导电凸块148,在图1B中,由于每个导电凸块158连接至对应的N掺杂区域135,所以导电凸块158也可以连接到DC电压作为驱动电压,而可以进一步避免电流泄漏。

在一些实施方式中,可以形成并设计重分布层,以将相同电压的硅穿孔集中在一起,这可以减少晶圆110的背侧110B被占用到的空间。请参照图3与图4。图3根据本发明的一实施方式绘示另一保护环结构的剖面示意图。图4绘示图3的保护环结构的背侧。

图2B的保护环结构100’与图3及图4的保护环结构的不同处,在于额外的重分布层160与165。如图3与图4所示,重分布层160与165可以形成于背侧110B之上,重分布层160连接硅穿孔140,并且重分布层165连接硅穿孔150。因此,如图4所示,重分布层160与165分别具有环形,并且在背侧110B环形的重分布层165围绕环形的重分布层160。重分布层160与165分别具有导电凸块148与158。导电凸块148是形成于重分布层165之上。在图3中,相似于图1B,通过重分布层160与165的连接,每个P掺杂区域125与N掺杂区域135可以具有一个接地电压或是一个直流电压。

请参照图5A与图5B。图5A根据本发明的一实施方式绘示一半导体结构300的俯视示意图。图5B是图5A沿线段C-C’的剖面图。半导体结构300使用类似于如图1A所示的保护环结构。如图5A与图5B所示,晶体管200形成于P型井120之内。在本实施方式中,晶体管200是N型金属氧化物半导体场效晶体管(N-MOSFET),但并不以此限制本发明所使用的晶体管类型。晶体管200包含源极端210、漏极端220与栅极端230。晶体管200是形成在P型井120内的N-MOSFET,源极端210与漏极端220是N掺杂区域,并且栅极端230是形成于一个通道区域上,通道区域是P型井120位于源极端210与漏极端220之间的部分。此外,隔离区域170是形成于P掺杂区域125与晶体管200之间。晶体管200为隔离区域170所围绕。如图5B所示,隔离区域170是形成于P型井120内并且靠进晶圆110的顶侧110T。图5C是图5A沿线段D-D’的剖面图,并且进一步绘示隔离区域170的围绕情况。

在本实施方式中,当晶体管200运作时,P掺杂区域125可以具有一个接地电压,以避免在P型井120与N型井130之间的非预期导通。在一些实施方式中,N型井130内还可以具有一个P-MOSFET,而具有接地电压的P掺杂区域125可以避免载子通过P型井120与N型井130之间的介面,从而避免P-MOSFET与N-MOSFET的晶体管200有非预期的导通。

请参照图6与图7。图6是绘示绝缘层180、电极240与导线250形成于图5A的半导体结构300的顶侧110T上的剖面示意图。图7是绘示绝缘层180、电极240与导线250形成于图5A的半导体结构300的顶侧110T上的另一剖面示意图。

如图6与图7所绘示,为使晶体管200运作,需要电极240与导线250。一个绝缘层180形成于顶侧110T上并覆盖晶体管200。多个电极240设置延伸至绝缘层180的顶面。源极端210、漏极端220与栅极端230分别连接一个电极240。多个导线250分别连接电极240。在一些实施方式中,控制讯号可以通过导线250传输以控制并运行晶体管200。

如图6与图7所示,在一些实施方式中,导线250沿方向D1延伸。在图6中,方向D1垂直于从源极端210延伸至漏极端220的方向,并且方向D1穿出纸面。在图7中,方向D1从栅极端230的一侧延伸至另一侧。因此,导线250能够重叠于P掺杂区域125,如图7所示。而在导线250与P掺杂区域125之间唯一的间隔物仅有绝缘层180。此外,在本实施方式中,导线250重叠P型井120与N型井130。因为P掺杂区域125的导电凸块148是位于晶圆110的背侧110B之上,绝缘层180的顶面之上的导线250不再需要绕开导电凸块148。因此,保护环结构的接点(例如P掺杂区域125所连接的导电凸块148)与晶体管200的金属布线(例如导线250)是分别位于晶圆110两侧的二个不相关的金属布线,彼此并不互相占用,从而有助于减少芯片所占用空间。

请参照图8A与图8B。图8A根据本发明的一实施方式绘示一半导体结构300’的俯视示意图。图8B是图8A沿线段E-E’的剖面图。

在图8A中,N掺杂区域310是形成于P型井120内并且为P掺杂区域125所围绕。在图8B中,如图8A沿线段E-E’所示的剖面图,硅穿孔320形成并且延伸入N掺杂区域310内。导电材料325填充于硅穿孔320内。导电凸块328是形成于晶圆110的背侧110B上并且连接硅穿孔320。在本实施方式中,N掺杂区域310与P型井120形成一个通过直流偏压操作的二极管(也就是一个PN接面)。因此,类似于图1B,导电凸块328可以具有直流电压。导电凸块148与328可以都位于背侧110B上以节省面积,并且易于操作二极管。

综上所述,本发明提供一种具有改进的保护环结构的半导体结构。掺杂区域与延伸至半导体晶圆背侧的硅穿孔形成改良的保护环结构。改良的保护环结构的电性接点是位于晶圆的背侧上,节省晶圆顶侧上的空间,举例来言,晶体管形成于半导体晶圆的顶侧上,保护环结构的掺杂区域围绕晶体管,并且掺杂区域的接点从通过硅穿孔延伸至晶圆的背侧。如此,半导体装置,也就是晶体管的金属布线可以设计位于半导体晶圆的顶侧上,并且晶体管的金属布线可以重叠于保护环结构。改良的保护环结构的接点与晶体管的金属布线是分别位于晶圆两侧的二个不相关的金属布线,彼此并不互相占用。保护环电位接点布线不再需要是位于晶圆的顶侧上,从而有助于减少芯片所占用空间。

虽然本发明已以实施方式公开如上,然其并非用以限定本发明,任何本领域的技术人员,在不脱离本发明的精神和范围内,当可作各种的更动与润饰,因此本发明的保护范围当视权利要求所界定者为准。

对于本领域技术人员将显而易见的是,在不脱离本公开的范围或精神的情况下,可以对本发明实施例的结构进行各种修改和变化。鉴于前述内容,本发明旨在覆盖各种的修改与变形,只要它们落入权利要求的范围内。

相关技术
  • 氮化物半导体结构、氮化物半导体发光元件、氮化物半导体晶体管元件、氮化物半导体结构的制造方法以及氮化物半导体元件的制造方法
  • 衬底结构、包含衬底结构的半导体封装结构,以及制造半导体封装结构的半导体工艺
技术分类

06120113044842