掌桥专利:专业的专利平台
掌桥专利
首页

一种可透光的铜铟镓硒薄膜太阳能电池及其制备方法

文献发布时间:2023-06-19 09:38:30


一种可透光的铜铟镓硒薄膜太阳能电池及其制备方法

技术领域

本发明属于太阳电池技术领域,尤其涉及一种可透光的铜铟镓硒薄膜太阳能电池及其制备方法。

背景技术

随着化石燃料的逐渐枯竭,传统能源发电成本逐年上升。调整能源结构,增加清洁能源的应用,是世界各国都在面对的紧迫而重要的工作。太阳能是最有发展前景的可再生能源,取之不尽,用之不竭。铜铟镓硒(CIGS)薄膜太阳能电池既可以刚性玻璃为衬底,亦可以柔性材料为衬底,具有无衰减、无隐裂、无热斑,温度系数低,弱光效应好,抗阴影能力强,发电功率受太阳光入射角度影响较小,耐辐射,单位功率发电量高,外观均匀美观等优势。CIGS电池既可用于集中式电站,亦可用于分布式电站。CIGS电池凭借其独特的优势,在建筑光伏一体化(BIPV)领域极具市场竞争力,例如光伏屋顶、光伏幕墙、光伏采光顶、光伏窗户、发电窗帘等,其中很多应用都需要光伏发电组件具备一定透光性能。以光伏采光顶和窗户为例,在光伏发电的同时,实现透光性能有两种方式,一是采取局部镂空的设计,对于晶硅电池即采用如此方法,对于薄膜电池则将部分薄膜清楚以达到此目的,但是由于颜色的明显交替,给建筑设计带来一定难度,尤其是用于光伏窗户时,将严重影响窗外景物的视觉效果;二是将光伏发电组件制成整体均匀透光的形式,这种方式避免了颜色交替,提升了视觉效果,可以大大拓展光伏组件在建筑领域的应用场合,目前只有非晶硅薄膜电池可以实现这种可透光组件形式,但是由于非晶硅薄膜电池效率偏低并且有光致衰退效应,导致这种透光组件发电性能很低。传统的CIGS电池结构一般为玻璃衬底/Mo层/CIGS光吸收层/CdS缓冲层/i-ZnO窗口层/AZO透明导电层,其中背电极Mo层厚度约1μm,CIGS光吸收层厚度1~2μm,无法透光,即使将背电极层更换为AZO透明导电层/超薄Mo层的复合膜层,也会由于在制备CIGS光吸收层时经历高温含Se气氛使得AZO透明导电层性能急剧下降,严重影响电池效率。有人【中国发明专利,公开号CN102779891A】以石墨烯作为CIGS电池的背电极层,但是由于CIGS光吸收层厚度达到了500nm以上,电池器件不具备透光性能。

发明内容

本发明的目的在于提供一种可透光的铜铟镓硒薄膜太阳能电池及其制备方法,使得CIGS电池在具有一定光电转换效率的同时,也具备一定的透光性能,以拓展铜铟镓硒薄膜太阳能电池在建筑光伏一体化等领域的应用。为了达到以上目的,本发明采用的技术方案是:

一种可透光的铜铟镓硒薄膜太阳能电池及其制备方法,其特征在于,在透明衬底上依次制备第一透明导电层和超薄Mo层,共同构成可透光背电极层,然后在背电极层上依次制备CIGS光吸收层、缓冲层、窗口层、第二透明导电层,形成结构为透明衬底/第一透明导电层/超薄Mo层/CIGS光吸收层/缓冲层/窗口层/第二透明导电层的铜铟镓硒薄膜太阳能电池器件。

上述的一种可透光的铜铟镓硒薄膜太阳能电池及其制备方法,其特征在于:所述透明衬底可以为刚性玻璃材料,也可以是柔性聚酰亚胺(PI)或者聚对苯二甲酸乙二醇酯(PET)材料;如果采用柔性材料衬底,一般还应在柔性材料衬底和第一透明导电层之间增加应力缓冲层,以提高膜基结合性能。

上述的一种可透光的铜铟镓硒薄膜太阳能电池及其制备方法,其特征在于:所述第一透明导电层为掺杂氧化锡薄膜、掺杂氧化锌薄膜、石墨烯薄膜中的一种,厚度为300~800nm。

上述的一种可透光的铜铟镓硒薄膜太阳能电池及其制备方法,其特征在于:所述超薄Mo层采用磁控溅射或蒸镀法制备,厚度在20nm以下;

上述的一种可透光的铜铟镓硒薄膜太阳能电池及其制备方法,其特征在于:所述CIGS光吸收层厚度在450nm以下,其制备方法采用以下方法中的一种:

方法一:采用磁控溅射法,溅射靶材为CIGS四元陶瓷靶材,沉积CIGS薄膜时对衬底进行加热,工艺气体为Ar气;

方法二:采用磁控溅射法,溅射靶材为CIGS四元陶瓷靶材,沉积CIGS薄膜时对衬底不加热,工艺气体为Ar气;随后将沉积态的CIGS薄膜进行退火处理,退火处理时的保护性气氛为Ar气,气压为0.4~1atm。

上述的一种可透光的铜铟镓硒薄膜太阳能电池及其制备方法,其特征在于:所述缓冲层为CdS或ZnS薄膜的一种,窗口层为本征ZnO薄膜,第二透明导电层为掺铝氧化锌(AZO)薄膜。

本发明的有益结果是:本发明以可透光的TCO/超薄Mo的复合膜层作为CIGS电池的背电极层,采用CIGS四元陶瓷靶材以磁控溅射方法沉积CIGS薄膜,在高温制备CIGS光吸收层时不采用含Se气氛,从而确保背电极层的透明导电性能尽可能不受影响,同时进一步将CIGS光吸收层减薄至450nm以下,最终使得CIGS电池在具有一定光电转换效率的同时,也具备一定的透光性能,从而拓展了铜铟镓硒薄膜太阳能电池在建筑光伏一体化等领域的应用。

附图说明

图1为本发明所述一种可透光的铜铟镓硒薄膜太阳能电池结构示意图。

具体实施方式

以下结合实施例和附图对本发明的技术方案作进一步地说明。

图1为本发明所述一种可透光的铜铟镓硒薄膜太阳能电池结构示意图,在透明衬底上依次制备第一透明导电层和超薄Mo层,共同构成可透光背电极层,然后在背电极层上依次制备CIGS光吸收层、缓冲层、窗口层、第二透明导电层,形成结构为透明衬底/第一透明导电层/超薄Mo层/CIGS光吸收层/缓冲层/窗口层/第二透明导电层的铜铟镓硒薄膜太阳能电池器件。

所述透明衬底可以为刚性玻璃材料,也可以是柔性聚酰亚胺(PI)或者聚对苯二甲酸乙二醇酯(PET)材料;如果采用柔性材料衬底,一般还应在柔性材料衬底和第一透明导电层之间增加应力缓冲层,以提高膜基结合性能。

所述第一透明导电层为掺杂氧化锡薄膜、掺杂氧化锌薄膜、石墨烯薄膜中的一种,厚度为300~800nm。

所述超薄Mo层采用磁控溅射或蒸镀法制备,厚度在20nm以下;

所述CIGS光吸收层厚度在450nm以下,其制备方法采用以下方法中的一种:方法一:采用磁控溅射法,溅射靶材为CIGS四元陶瓷靶材,沉积CIGS薄膜时对衬底进行加热,工艺气体为Ar气;方法二:采用磁控溅射法,溅射靶材为CIGS四元陶瓷靶材,沉积CIGS薄膜时对衬底不加热,工艺气体为Ar气,随后将沉积态的CIGS薄膜进行退火处理,退火处理时的保护性气氛为Ar气,气压为0.4~1atm。

所述缓冲层为CdS或ZnS薄膜的一种,窗口层为本征ZnO薄膜,第二透明导电层为掺铝氧化锌(AZO)薄膜。

下面介绍本发明的实施例,但本发明绝非限于实施例。

实施例1:

以刚性钠钙玻璃材料为衬底,采用磁控溅射法在钠钙玻璃衬底制备掺铝氧化锌(AZO)薄膜,厚度400nm,形成第一透明导电层,在第一透明导电层上以磁控溅射法制备超薄Mo层,厚度10nm,第一透明导电层和超薄Mo层共同构成可透光背电极层。在背电极层上制备CIGS光吸收层,采用磁控溅射法,溅射靶材为CIGS四元陶瓷靶材,沉积CIGS薄膜时将衬底加热至550℃,工艺气体为Ar气,CIGS光吸收层厚度为400nm。在CIGS光吸收层上依次以化学水浴法制备CdS缓冲层,其厚度为50nm;以磁控溅射法制备本征ZnO窗口层,其厚度为50nm;以磁控溅射法制备AZO第二透明导电层,其厚度为600nm;形成结构为钠钙玻璃衬底/AZO第一透明导电层/超薄Mo层/CIGS光吸收层/CdS缓冲层/本征ZnO窗口层/AZO第二透明导电层的铜铟镓硒薄膜太阳能电池器件。

实施例2:

以柔性聚酰亚胺(PI)材料为衬底,在PI衬底上首先制备50nm厚的SiO2应力缓冲层,然后采用磁控溅射法在钠钙玻璃衬底制备掺铟氧化锡(ITO)薄膜,厚度300nm,形成第一透明导电层,在第一透明导电层上以磁控溅射法制备超薄Mo层,厚度10nm,第一透明导电层和超薄Mo层共同构成可透光背电极层。在背电极层上制备CIGS光吸收层,采用磁控溅射法,溅射靶材为CIGS四元陶瓷靶材,沉积CIGS薄膜时衬底不加热,工艺气体为Ar气,随后将沉积态的CIGS薄膜进行退火处理,退火温度为480℃,退火时的保护性气氛为Ar气,气压为0.8atm,CIGS光吸收层厚度为300nm。在CIGS光吸收层上依次以化学水浴法制备ZnS缓冲层,其厚度为50nm;以磁控溅射法制备本征ZnO窗口层,其厚度为50nm;以磁控溅射法制备AZO第二透明导电层,其厚度为500nm;形成结构为PI衬底/ITO第一透明导电层/超薄Mo层/CIGS光吸收层/ZnS缓冲层/本征ZnO窗口层/AZO第二透明导电层的铜铟镓硒薄膜太阳能电池器件。

以上给出的实施例用以说明本发明和它的实际应用,并非对本发明作任何形式上的限制,任何一个本专业的技术人员在不偏离本发明技术方案的范围内,依据以上技术和方法作一定的修饰和变更当视为等同变化的等效实施例。

相关技术
  • 一种可透光的铜铟镓硒薄膜太阳能电池及其制备方法
  • 一种铜铟镓硒薄膜太阳能电池及其制备方法
技术分类

06120112244251