掌桥专利:专业的专利平台
掌桥专利
首页

一种生物可降解性药物缓释支架的制备方法

文献发布时间:2023-06-19 10:03:37


一种生物可降解性药物缓释支架的制备方法

技术领域

本发明涉及一种生物可降解性药物缓释支架的制备方法,属于生物医用材料领域。

背景技术

由于退行性疾病、交通事故和手术等原因引起的骨组织损伤或者缺失,严重影响了患者的生活质量。骨组织具有内在自我修复能力,但是大多数情况下不能完成骨再生或者需加以刺激才能完成骨再生。每年数百万患有骨缺损的患者需要骨移植或骨替代物植入物。因此,利用生物支架材料来模拟微环境并刺激骨组织再生,实现骨缺损修复的治疗方法成为了人们关注的热点。

聚乳酸(PLA)已被美国食品与药品管理局(FDA)认证为生物可吸收性医用材料,但是单一组分的聚乳酸材料存在机械强度较差、降解呈酸性引起局部无菌性炎症等缺陷,不利于骨缺损愈合。羟基磷灰石作为人体骨组织中主要的无机成分,具有良好的骨诱导和骨传导性能。通过添加羟基磷灰石可以提高复合材料体系的力学性能,有效的解决聚乳酸强度较差的问题,同时能够有效缓解聚乳酸降解引起的酸性微环境,从而避免无菌性炎症。

临床中往往出现植入器件尺寸、结构不匹配的情形,影响手术效果,通过3D打印可实现个性化的植入物制备。传统聚乳酸的加工方法需要进行高温处理,造成聚乳酸加工过程中易发生分解,难以保证支架质量,同时由于高温加工过程使得支架难以负载药物或多肽等生物活性物质。

发明内容

鉴于上述现有技术的不足,本发明目的在于提供一种可3D打印的生物可降解性药物缓释支架的制备方法,获得一种力学性能良好、具有药物负载缓释功能及促进骨缺损修复的复合材料支架。

本发明解决上述技术所采用的方案是:

一种生物可降解性药物缓释支架的制备方法,包括如下步骤:

(1)将聚乳酸溶解于有机溶剂中,得到聚合物溶液A;

(2)将载药的羟基磷灰石微球分散于有机溶剂中,并加入至溶液A,得到混合溶液B,使混合溶液B中聚乳酸与羟基磷灰石的质量比为(80~95):(5~20);

(3)持续搅拌溶液B使混合液中复合材料的浓度为20~55%W/V;

(4)将得到的复合材料进行3D打印制备支架;

(5)将步骤(4)得到的复合支架去除溶剂,即得到所述的生物可降解药物缓释支架。

优选地,步骤(1)所述的有机溶剂选自氯仿、二氯甲烷、乙酸乙酯或其组合;步骤(2)所述的有机溶剂为乙醇和氯仿、二氯甲烷、乙酸乙酯中的任一种或多种的复合溶剂,其中乙醇的含量为1~40%V/V。

优选地,所述羟基磷灰石微球的粒径为5~20μm。

优选地,步骤(2)载药的羟基磷灰石微球的制备方法为将羟基磷灰石微球与药物溶液一起搅拌24~48小时,经过离心洗涤,25~40℃烘箱干燥得到负载药物的羟基磷灰石微球,所选药物为庆大霉素、妥布霉素或万古霉素中的任意一种或多种。

优选地,步骤(4)打印过程中由气阀推动挤出,打印线粗为0.2~0.6mm,单层支架层厚为0.2—1.0mm。

优选地,步骤(5)去除溶剂的方式为将打印支架放置液氮中1~30min后,在冷冻干燥机中冻干12~24小时。

相比于现有技术,本发明的有益效果为:

(1)聚乳酸/羟基磷灰石复合支架是一种生物可降解材料,能够避免单一元素材料引发的无菌性炎症,具有良好的骨缺损修复效果。

(2)羟基磷灰石与聚乳酸溶液复配能够使溶液实现低浓度可打印性、实现个性化骨缺损植入物的制备,实现精准治疗。

(3)成型过程中条件温和,避免聚乳酸高温分解,并为支架负载药物等生物活性物质提供了可能。

(4)通过羟基磷灰石微球负载药物,使得药物存于支架内部,避免了药物前期暴释现象,实现了药物长期缓慢释放的效果。

附图说明

图1为本发明实施例4制备支架的表面SEM图片;

图2为本发明实施例1~5制备支架的降解pH曲线;

图3为本发明实施例1~5制备支架的降解失重曲线;

图4为本发明实施例4制备支架的药物释放曲线。

具体实施方式

为更好的理解本发明,下面的实施例是对本发明的进一步说明,但本发明的内容不仅仅局限于下面的实施例。

实施例中,所使用的实验方法如无特殊说明,均为常规方法,所用的材料、试剂等,如无特殊说明,均可从商业途径得到。

实施例1~5

(1)聚乳酸溶解于二氯甲烷中,得到聚乳酸溶液A;

(2)将粒径为5μm的羟基磷灰石微球与庆大霉素药物溶液一起搅拌24小时,经过离心洗涤,40℃烘箱干燥得到负载药物的羟基磷灰石微球;

(2)将载药羟基磷灰石微球溶于乙醇/二氯甲烷的复合有机溶剂中,其中乙醇占比为10%(V/V),并加入到溶液A中,得到混合溶液B,其中羟基磷灰石占聚乳酸和羟基磷灰石总量的0、5、10、15、20wt%;

(3)持续搅拌溶液B使溶剂不断挥发,直到其中溶质总浓度达到25%(W/V);

(4)将得到的复合材料浆料放置于3D打印机中,气阀推动挤出成型制备支架,打印线粗0.2mm,观察打印完成后支架的形状保持情况;

(5)将步骤(4)中制备的支架放置于液氮中保持10min,在冷冻干燥机中冻干12~24小时,对所得支架进行抗压强度测试,结果如表1所示。

表1实施例1~5的参数及支架性能测试结果

可以看出,羟基磷灰石可以提高复合材料的抗压强度,并且在一定的羟基磷灰石添加比例下,复合支架能够保持较好的形状保持能力。图1为实施例4制备支架的表面SEM图片,可知经过后处理后的支架材料具有均匀分布的连通孔,形状结构稳定,层与层之间结合稳定。

对所得复合材料支架进行模拟生理环境降解及药物释放试验,结果如图2~4所示。

相关技术
  • 一种生物可降解性药物缓释支架的制备方法
  • 透室壁性心肌血运重建生物可降解性药物缓释支架及制备方法
技术分类

06120112403740