掌桥专利:专业的专利平台
掌桥专利
首页

一种模拟雷达和红外特征信号的贴膜及其制备方法与应用

文献发布时间:2023-06-19 10:10:17


一种模拟雷达和红外特征信号的贴膜及其制备方法与应用

技术领域

本发明涉及一种贴膜伪装材料,尤其涉及一种模拟雷达和红外特征信号的贴膜及其制备方法与应用。

背景技术

由于军事真目标(飞机、大炮、车辆、舰船等)都是以各种金属材料为主,对入射的雷达波具有强反射和回波信号。为了能模拟红外以及雷达波探测下的目标的信号特征,假目标需要具有类似真实武器装备的雷达波反射以及红外辐射信号。而一般聚氨脂发泡式假目标、充气式假目标和蒙皮式假目标对雷达波反射信号不强,且现有假目标不具备真目标的红外辐射特征,无法满足现代化战争的需求。

目前模拟红外特征信号的方法有燃气燃烧和电阻丝加热,但是这些方法存在一些缺点,如燃气模拟持续时间短,模拟信号精度低,控制难度大,还存在安全隐患;电阻丝加热,同样有安全隐患,并且发热不均匀,电能利用率低,降温速度慢,与雷达波反射信号模拟难于兼容。假目标需要在多信号兼容模拟、安全、高效、体积小、重量轻、部署快等方面提升。

发明内容

本发明要解决的技术问题是,克服现有技术存在的上述缺陷,提供一种能同时模拟真目标的雷达反射和红外辐射信号特征,并且质量轻、体积小、安全高效、部署快的模拟雷达和红外特征信号的贴膜。

本发明进一步要解决的技术问题是,提供一种模拟雷达和红外特征信号的贴膜的制备方法。

本发明解决其技术问题采用的技术方案是,一种模拟雷达和红外特征信号的贴膜,该贴膜由雷达反射层和红外辐射复合层部分组成,处于外层的雷达反射层为填充有高电导率粉料的橡胶薄膜;红外辐射复合层部分由稀土发热膜层和两层陶瓷绝缘层组成,稀土发热膜层位于两陶瓷绝缘层之间,形成夹芯结构。

进一步,所述高电导率粉料为微米级石墨片、碳纤维、纳米碳纳米管、石墨烯中的一种或几种,填充粉料的质量为雷达反射层总质量的80~95%。

进一步,所述橡胶为二甲基硅橡胶、甲基乙烯基硅橡胶、甲基苯基乙烯基硅橡胶、氟硅橡胶、乙基硅橡胶和硅氮橡胶中的一种或几种,橡胶的质量为雷达反射层总质量的5~20%。

进一步,所述稀土发热膜层由石墨粉、二氧化硅、稀土氧化铈和乙基纤维素组成的混合物经流延工艺制备而成。稀土发热膜层的厚度一般不超过2mm。

进一步,所述陶瓷为高热导率的陶瓷,为氮化铝陶瓷、碳化硅陶瓷和氧化铍陶瓷中的一种。陶瓷绝缘层的厚度优选为1.0~2.5mm

本发明进一步解决其技术问题采用的技术方案是,一种模拟雷达和红外特征信号的贴膜的制备方法,包括下列步骤:

(1)陶瓷绝缘层的制备:将陶瓷粉末与有机溶剂、粘接剂、分散剂和增塑剂均匀混合配制成浆料,再经流延、干燥,得两块陶瓷绝缘生料片;

(2)稀土发热膜层的制备:将石墨粉、二氧化硅、稀土氧化铈、乙基纤维素和松油醇均匀混合配制成浆料,并涂覆在步骤(1)所得的一片陶瓷生料片表面,烘烤干燥,得稀土发热膜层;

(3)红外辐射复合层的制备:在步骤(2)制得的稀土发热膜层表面等静叠压步骤(1)所得另一陶瓷生料片,再经排胶烧结,得具有夹芯结构的红外辐射复合层;

(4)雷达反射层的制备:将高电导率的粉料与橡胶混合配制成浆料,再将所述浆料涂布于步骤(3)所得红外辐射复合层表面,形成雷达反射层,即得能模拟雷达和红外特征信号的贴膜。

进一步,步骤(1)中,所述浆料中陶瓷粉末占原料总质量的48~52%,有机溶剂占原料总质量的28~32%,粘接剂占原料总质量的13~17%,分散剂占原料总质量的1~3%,增塑剂占原料总质量的2~4%。

进一步,步骤(1)中,所述粘接剂为聚乙烯醇;所述分散剂为聚乙二醇辛基苯基醚;所述增塑剂为邻苯二甲酸二甲酯;所述有机溶剂为无水乙醇和正丁醇组成的混合溶剂,两者的体积比为1:2~3;所述干燥的温度为50-150℃。

进一步,步骤(2)中,所述浆料中石墨粉30~50重量份,二氧化硅10~20重量份,稀土氧化铈20~40重量份,乙基纤维素10~20重量份,松油醇10~20重量份;所述烘烤的温度为40~80℃。

进一步,步骤(3)中,所述烧结的气氛为氮气,烧结的温度为300~1500℃。

将本发明能模拟雷达和红外特征信号的贴膜应用被覆于军事假目标表面,可达到“以假乱真”的伪装效果。

与现有技术相比,本发明具有以下有益效果:

(1)本发明贴膜的外层雷达反射层填充有高电导率粉料,具有与金属一致的对入射雷达波强反射作用;红外辐射复合层中的稀土发热膜层可智能模拟红外辐射特征信号,因而本发明所述贴膜具备了同时模拟雷达反射和红外辐射特征信号的功能,使军事假目标具有更强的示假伪装效果。

(2)本发明将稀土发热膜与雷达波反射材料复合在一起,作为一个单元,将该单元组成阵列,通过电控制,可以更真实的模拟真实装备目标的红外以及雷达波探测的特征。

(3)本发明贴膜质量轻、尺寸可调,并能根据实际要求制备阵列式结构,满足实际假目标各种曲面要求,使用时可折叠,更易于运输、安全高效、部署快。

附图说明

图1是本发明模拟雷达和红外特征信号贴膜的结构示意图。

图中:1、雷达波反射层,2-1、陶瓷绝缘层

具体实施方式

下面结合附图和具体实施例对本发明进一步说明,需要指出的是,所描述的仅仅是本发明一部分实施例,而不是全部实施例,这些实施例不得用于解释对本申请权利要求请求保护范围的限制。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他变更或修饰,都属于本申请权利要求的保护范围。

本发明模拟雷达红外特征信号贴膜实施例。

参照附图1,本实施例贴膜由雷达反射层1和红外辐射复合层组成,处于外层的雷达反射层1为填充有高电导率粉料的橡胶薄膜;红外辐射复合层由稀土发热膜层3和陶瓷绝缘层

雷达波反射层1起到反射雷达波的作用,同时对红外线具有低反射,高透射作用;陶瓷绝缘层

本发明模拟雷达红外特征信号贴膜的制备方法实施例,包括以下步骤:

(1)陶瓷绝缘层的制备

流延浆料配制:将60kg份氮化铝陶瓷粉、15kg正丁醇、10kg无水乙醇、7.5kg聚乙烯醇、2.5kg聚乙二醇辛基苯基醚、2kg邻苯二甲酸二甲酯放入带有锆珠的塑料罐中,并在辊磨机下均匀分散15h,之后通过纱网过滤后得陶瓷流延浆料。

陶瓷流延生料片制备:利用逗号刮刀将上述陶瓷流延浆料刮涂在玻璃表面,50℃下干燥0.5h,冷却后,在重复刮涂至涂层厚度为1.5mm,得两片厚度一样的陶瓷生料片;

(2)稀土发热膜层的制备

浆料配制:将40kg石墨粉、15kg二氧化硅、30kg稀土氧化铈、10kg乙基纤维素和15kg松油醇在机械搅拌机下均匀混合配制成浆料。

稀土发热膜层制备:采用刮涂法将稀土发热膜层浆料涂覆在其中一片陶瓷生料片表面,40℃下烘烤干燥,多次涂覆至发热膜厚度为1.0mm,得稀土发热膜层。再利用丝网印刷工艺在发热膜两端印刷银电极;

(3)红外辐射复合层的制备

利用等静压法将第二片陶瓷生料片叠压在稀土发热膜层上。在氮气气氛中1000℃烧结4h,排出有机物,制成出由稀土发热膜层和两层陶瓷绝缘层组成的红外辐射复合层;

(4)雷达反射层的制备

浆料配制:将55kg微米级石墨片、35kg碳纤维、30kg二甲基硅橡胶和15kg二甲苯在机械搅拌下均匀混合获得高导电液体浆料。

雷达反射层制备:利用刮涂法将高导电浆料涂覆在红外辐射复合层表面,在

根据实际需求,经过裁剪、背胶获得所需尺寸模拟雷达红外特征信号贴膜。

贴膜的使用方法:将贴膜片紧密排列贴装在木制或气垫假目标表面,每个单元接上电极,由控制系统控制,控制系统包括处理器和存储器,真实目标的红外特征已经被制作成程序预存入存储器中,处理器根据所需模拟的假目标调用程序,将不同的电信号发送到每个单元,所有贴膜单元所形成的红外辐射特征与真实目标类似。

该贴膜贴敷在假目标表面,空间分辨率为1cm(低于1cm后热像仪将无法清晰分辨出发热单元的形状轮廓),发热单元能制备成1×1cm,使用分辨率为1mrad的热像仪进行测试,在10m才分辨出来;发热膜对真实目标的模拟温度误差为0.1℃,模拟红外发射率误差为0.01,能模拟的温度的范围为10~90℃,温度升温与降温的最快控制速度为真实目标的3倍,具备模拟真实目标的温度与红外特征变化的能力。

相关技术
  • 一种模拟雷达和红外特征信号的贴膜及其制备方法与应用
  • 一种模拟雷达和红外特征信号的贴膜及其制备方法与应用
技术分类

06120112440074